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Abstract— In this paper, we study the tracking problem for
Lur’e-type measure differential inclusions. The framework of
measure differential inclusions allows us to describe systems
with discontinuities in the state evolution, such as mechanical
systems with unilateral constraints. As a stepping stone, we
present results on the stability of time-varying solutions of such
systems in the scope of the convergence property. Next, this
property is exploited to provide a solution to the tracking prob-
lem. The results are illustrated by application to a mechanical
motion system with a unilateral velocity constraint.

I. INTRODUCTION

In this paper, we study the tracking problem for Lur’e-

type measure differential inclusions. Measure differential

inclusions can be used to describe systems which expose

discontinuities in the state and/or vector field [1]–[4]. The

differential measure of the state vector does not only consist

of a part with a density with respect to the Lebesgue measure

(i.e. the time-derivative of the state vector), but is also al-

lowed to contain an atomic part. The dynamics of the system

is described by an inclusion of the differential measure of

the state to a state-dependent set (similar to the concept of

differential inclusions). Consequently, the measure differen-

tial inclusion concept describes the continuous dynamics as

well as the impulsive dynamics with a single statement in

terms of an inclusion and is able to describe accumulation

phenomena. An advantage of this framework over other

frameworks, such as the hybrid systems formalism [5], [6],

is the fact that physical interaction laws, such as friction and

impact in mechanics or diode characteristics in electronics,

can be formulated as set-valued force laws and be seamlessly

incorporated in the formulation, see e.g. [7], [8].

Stability properties of measure differential inclusions are

essential in the control of such systems. In [8], results

on the stability of stationary sets of measure differential

inclusions (with a special focus on mechanical systems with

unilateral constraints) are presented. In [9], stability proper-

ties of an equilibrium of measure differential inclusions of

Lur’e-type are studied. The nonlinearities in the feedback

loop are required to exhibit monotonicity properties and, if

additionally passivity conditions on the linear part of the

system are assured, then stability of the equilibrium can

be guaranteed. Note that this work studies the stability of

stationary solutions. However, many control problems, such

as tracking control, output regulation, synchronisation and

Nathan van de Wouw is with the Department of Mechanical Engineering,
Eindhoven University of Technology, POBox 513, 5600 MB Eindhoven, The
Netherlands n.v.d.wouw@tue.nl

Remco I. Leine is with the Institute of Mechanical Systems, Department
of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich,
Switzerland, remco.leine@imes.mavt.ethz.ch

observer design require the stability analysis of time-varying

solutions. The research on the stability and stabilisation of

time-varying solutions of non-smooth systems (especially

with state jumps) is still in its infancy and the current

paper should be placed in this context. It should be noted

that the tracking control of measure differential inclusions

has received very little attention in literature, see [10]–[12]

for works focusing on mechanical systems with unilateral

constraints.

In order to study the stability of certain time-varying

solutions we consider the framework of convergence. A

system, which is excited by an input, is called convergent if it

has a unique solution that is bounded on the whole time axis

and this solution is globally asymptotically stable. Obviously,

if such a solution does exist, then all other solutions converge

to this solution, regardless of their initial conditions, and

can be considered as a steady-state solution [13]–[15]. The

property of convergence can be beneficial in the context

of control. In many control problems, such as the tracking

problem, it is required that controllers are designed in such

a way that all solutions of the corresponding closed-loop

system “forget” their initial conditions. Actually, one of the

main tasks of feedback is to eliminate the dependency of

solutions on initial conditions. In this case, all solutions

converge to some steady-state solution that is determined

only by the input of the closed-loop system. This input can

be, for example, a command signal or a signal generated by

a feedforward part of the controller or, as in the observer

design problem, it can be the measured signal from the

observed system.

In this paper, we will provide sufficient conditions for

the convergence property of Lur’e-type measure differential

inclusions, i.e. measure differential inclusions consisting of

a linear plant and output-dependent set-valued nonlinearities

in the feedback loop) and will exploit this property to tackle

the tracking problem for such systems.

The outline of the paper is as follows. Section II provides a

brief introduction to measure differential inclusions. Subse-

quently, we define the convergence property of dynamical

systems in Section III. In Section IV, we present suffi-

cient conditions for the convergence of Lur’e-type measure

differential inclusions, which are exploited to provide a

solution to the tracking problem in Section V. An illustrative

example of a mechanical system with a unilateral constraint

is discussed in detail in Section VI. Finally, Section VII

presents concluding remarks.
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NOTATION AND DEFINITIONS

Definition 1 (Maximal Monotone Set-valued Function)

A set-valued function F(x) : R
n → R

n is called monotone

if its graph is monotone in the sense that for all (x,y) ∈
Graph(F) and for all (x∗,y∗) ∈ Graph(F) it holds that

(y−y∗)T (x−x∗) ≥ 0. In addition, if (y−y∗)T (x−x∗) ≥
α‖x − x∗‖2 for some α > 0, then the set-valued map is

strictly monotone. A monotone set-valued function F(x) is

called maximal monotone if there exists no other monotone

set-valued function whose graph strictly contains the graph of

F . If F is strictly monotone and maximal, then it is called

strictly maximal monotone.

Definition 2

The system ẋ = Ax + Bu, y = Cx or the triple (A,B,C)
is said to be strictly passive if there exist an ε > 0 and a matrix

P = P T > 0 such that

AT P + PA ≤ −εI, BT P = C. (1)

II. MEASURE DIFFERENTIAL INCLUSIONS

In this section, we introduce the measure differential

inclusion

dx ∈ dΓ (t,x(t)) (2)

as has been proposed by Moreau [16]. The concept of

differential inclusions has been extended to measure dif-

ferential inclusions in order to allow for discontinuities in

x(t), see e.g. [1]–[3]. With the differential inclusion ẋ(t) ∈
F(t,x(t)), in which F(t,x(t)) is a set-valued mapping,

we are able to describe a non-smooth absolutely continuous

time-evolution x(t). The solution x(t) : I → R
n fulfills

the differential inclusion almost everywhere, because ẋ(t)
does not exist on a Lebesgue negligible set D ⊂ I of

time-instances ti ∈ D related to non-smooth state evolution.

Instead of using the density ẋ(t), we can also write the

differential inclusion using the differential measure:

dx ∈ F(t,x(t)) dt, (3)

which yields a measure differential inclusion (with dt the

Lebesgue measure). The solution x(t) fulfills the measure

differential inclusion (3) for all t ∈ I because of the

underlying integration process being associated with mea-

sures. Moreover, writing the dynamics in terms of a measure

differential inclusion allows us to study a larger class of

functions x(t), as we can let dx contain parts other than

the Lebesgue integrable part. In order to describe a time-

evolution of bounded variation which is discontinuous at

isolated time-instances, we let the differential measure dx

also have an atomic part:

dx = ẋ(t) dt + (x+(t) − x−(t)) dη, (4)

where dη is the atomic differential measure, being the sum

of Dirac point measures, as defined in [7], [8], and x+(t) =
limτ↓0 x(t + τ), x−(t) = limτ↑0 x(t + τ). Therefore, we

extend the measure differential inclusion (3) with an atomic

part as well: dx ∈ F(t,x(t)) dt + G(t,x−(t),x+(t)) dη.

Here, G(t,x−(t),x+(t)) is a set-valued mapping, which in

general depends on t, x−(t) and x+(t). More conveniently,

and with some abuse of notation, we write the measure

differential inclusion as in (2), where dΓ (t,x(t)) is a set-

valued measure function defined as

dΓ (t,x(t)) = F(t,x(t)) dt+G(t,x−(t),x+(t)) dη. (5)

The measure differential inclusion (2) has to be under-

stood in the sense of integration and its solution x(t)
is a function of locally bounded variation which fulfills

x+(t) = x−(t0) +
∫

I
f(t,x) dt + g(t,x−,x+) dη, for

every compact interval I = [t0, t], where the functions

f(t,x) and g(t,x−,x+) have to obey f(t,x) ∈ F(t,x),
g(t,x−,x+) ∈ G(t,x−(t),x+(t)). Note that for functions

of locally bounded variation, the limits defining x+ and

x− exist. Substitution of (4) in the measure differential

inclusion (2), (5) gives ẋ(t) dt + (x+(t) − x−(t)) dη ∈
F(t,x(t)) dt+G(t,x−(t),x+(t)) dη, which we can separate

in the Lebesgue integrable part ẋ(t) dt ∈ F(t,x(t)) dt, and

atomic part (x+(t) − x−(t)) dη ∈ G(t,x−(t),x+(t)) dη
from which we can retrieve ẋ(t) ∈ F(t,x(t)) and the jump

condition x+(t) − x−(t) ∈ G(t,x−(t),x+(t)). The latter

formulation hints towards the relation with hybrid systems

(or hybrid inclusions) as e.g. in [6]. We note that here

the above jump condition may generally be implicit in the

sense that the map G(t,x−(t),x+(t)) actually depends not

only on t, x−(t) but also on x+(t), which is typically the

case when e.g. modelling mechanical systems with unilateral

constraints. In mechanical system with e.g. inelastic impacts

the map G may only depend on t and x+(t).
It should be noted that the state x of (2) may be confined

to a so-called admissible set, which we denote by X . Here,

we will assume that the measure differential inclusions under

study exhibit the consistency property.

Definition 3 ( [8])

The measure differential inclusion (2) is consistent if for any

initial condition taken in its admissible set, i.e. x0 = x(t0) is

such that x0 ∈ X , there exists a solution in forward time that

resides in the admissible domain, i.e. x(t) ∈ X for almost all

t ≥ t0.

Assumption 1

The measure differential inclusion (2) is consistent.

III. CONVERGENT SYSTEMS

In this section, we briefly discuss the definition of con-

vergence. Herein, the Lyapunov stability of solutions of (2)

plays a central role. For the definition of stability of time-

varying solutions we refer to [14], [17], or to [8] for the

specific case of measure differential inclusions. The defini-

tions of convergence properties presented here extend the

definition given in [13].

We consider systems of the form

dx ∈ F(x(t),k(t)) dt+G(x−(t),x+(t),K(t)) dη, (6)

with state x ∈ R
n and where k(t), K(t) ∈ R

d represent the

non-impulsive and impulsive parts of the input, respectively.
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The function G(x−(t),x+(t),K(t)) is assumed to be affine

in K(t). In the following, we will consider the inputs k(t) :
R → R

d to be in the class PCd of piecewise continuous

inputs which are bounded on R. Moreover, we will assume

that K(t) : R → R
d is zero almost everywhere (which

means that the impulsive inputs are separated in time) and

bounded on R; this class of functions will be denoted by

K(t) ∈ Md.

Let us formally define the property of convergence.

Definition 4

System (6) is said to be

• exponentially convergent if, for every input k ∈ PCd,

K ∈ Md, there exists a solution x̄k(t) satisfying the

following conditions:

(i) x̄k(t) is defined for almost all t ∈ R

(ii) x̄k(t) is bounded for all t ∈ R for which it is

defined,

(iii) x̄k(t) is globally exponentially stable.

The solution x̄k(t) is called a steady-state solution (where

the subscript emphasizes the fact that the steady-state solu-

tion depends on the input, characterised by k(t) and K(t)).
As follows from the definition of convergence, any solution

of a convergent system “forgets” its initial condition and

converges to some steady-state solution. In general, the

steady-state solution x̄k(t) may be non-unique. But for any

two steady-state solutions x̄k,1(t) and x̄k,2(t) it holds that

‖x̄k,1(t)− x̄k,2(t)‖ → 0 as t → +∞. At the same time, for

exponentially convergent systems the steady-state solution is

unique, as formulated below.

Property 1 ( [14])

If system (6) is exponentially convergent, then, for any input

k ∈ PCd, K ∈ Md, the steady-state solution x̄k(t) is the only

solution defined and bounded for all t ∈ R.

IV. CONVERGENCE PROPERTIES OF LUR’E-TYPE

MEASURE DIFFERENTIAL INCLUSIONS

In this section we study the convergence properties for

perturbed Lur’e-type measure differential inclusions of the

following form:

dx = Ax dt + B dw(t) + D ds,

y = Cx, −ds ∈ H(y) dt + H(y+) dη,
(7)

with A ∈ R
n×n, B ∈ R

n×d, C ∈ R
m×n, D ∈ R

n×m and

x ∈ R
n is the system state. Moroever, ds = λdt + Λdη

and H(y) dt + H(y+) dη is the differential measure of

the nonlinearity in the feedback loop that is characterised

by the set-valued maximal monotone mapping H(y) with

0 ∈ H(0). These properties of H(y) imply that yTh ≥ 0

for all h ∈ H(y) and y ∈ {y ∈ R
m|y = Cx ∧ x ∈ X},

i.e. the action of H is passive. Furthermore, the inclusion

in (7) indicates that λ ∈ −H(y) and Λ ∈ −H(y+). Finally,

the differential measure of the time-dependent perturbation

is decomposed as dw(t) = k(t) dt + K(t) dη, where

k(t) ∈ PCd, K(t) ∈ Md are functions that represent

the non-impulsive and impulsive parts of the perturbation,

respectively.

In the following theorem, we state conditions under which

system (7) is exponentially convergent. Later, we will exploit

this property to solve the tracking problem. However, since

the convergence property has been shown to be beneficial

in a wider context, for example in the scope of output

regulation, observer design and performance analysis for

nonlinear systems, we state this result separately here.

Theorem 1

Consider a measure differential inclusion of the form (7),

which satisfies Assumption 1, with H(y) a (set-valued) max-

imal monotone mapping with 0 ∈ H(0). If the following

conditions are satisfied:

1) the triple (A,D,C) is strictly passive. In other words,

there exists a positive definite matrix P = P T > 0 and

α > 0 for which the following conditions are satisfied:

ATP + PA ≤ −2αP , DTP = C. (8)

2) there exists a β ∈ R such that (x+)TPBK(t) ≤ β for

all x ∈ X and P satisfying (8); i.e. the energy input of

the impulsive inputs is bounded from above,

3) the time instances ti for which the input is impulsive,

i.e. for which K(t) is non-zero, are separated by the

dwell-time τ ≤ ti+1 − ti, with

τ =
δ

2(δ − 1)α
ln(1 +

2β

δ2γ2
),

γ := sup
t∈R,λ(0)∈−H(0)

{

‖Bk(t) + Dλ(0)‖P

α

}

,
(9)

for some δ > 1.

then the system (7), with inputs k(t) and K(t), is exponen-

tially convergent.

Proof: The proof is given in the appendix.

V. TRACKING CONTROL PROBLEM

In this section we study the tracking control problem for

Lur’e-type measure differential inclusions of the following

form:

dx = Aolx dt + B du + D ds,

y = Cx, −ds ∈ H(y) dt + H(y+) dη,
(10)

with Aol ∈ R
n×n and du = pdt + P dη is the differential

measure of the control action.

The tracking problem considered in this work is formalised

as follows:

Tracking problem:

Design a control law for du that, based on infor-

mation on the desired state trajectory xd(t) and

the measured state x, renders x(t) → xd(t) as

t → ∞ and the states of the closed-loop system

are bounded.

To solve this problem, we adopt the following assumption:
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Assumption 2

The desired trajectory xd(t) is a function of locally bounded

variation and there exists duff (t) = pff (t) dt + Pff (t) dη,

with both pff (t) ∈ PCd and Pff (t) ∈ Md, such that xd(t)
satisfies

dxd(t) = Aolxd(t) dt + B duff (t) + D ds,

−ds ∈ dH(Cxd(t)) dt + H(Cx+
d (t)) dη,

(11)

i.e. duff (t) can be considered to be a reference control

(feedforward) generating xd(t).

When addressing the tracking problem, it is commonly split

in two parts: firstly, finding the appropriate feedforward

and, secondly, stabilising the desired solution. In the current

paper, we primarily focus on the second problem. Note that

also for smooth systems the existence of the feedforward is a

natural assumption (think of the solvability of the regulator

equations as a natural assumption in the scope of output

regulation [14], [18]).

We propose to tackle the tracking problem by means of

a combination of Lebesgue measurable linear error-feedback

and a possibly impulsive feedforward control:

du = ufb(x,xd(t)) dt + duff (t), (12)

with ufb(x,xd(t)) = N (x − xd(t)), duff (t) =
pff (t) dt+Pff (t) dη, where N ∈ R

d×n is the feedback gain

matrix. We restrict the energy input of the impulsive control

action Pff (t) to be bounded from above: (x+)TBPff ≤ β.

Note that this condition puts a bound on the jumps in the

desired trajectory xd(t) which can be realised. Combining

the control law (12) with the system dynamics (10) yields

the closed-loop dynamics:

dx = Ax dt + D ds + B(−Nxd(t) dt + duff (t)),

y = Cx, −ds ∈ H(y) dt + H(y+) dη,
(13)

with A = Aol + BN . In the next result, the convergence

property of the closed-loop system is exploited to solve the

tracking problem.

Theorem 2

Consider a measure differential inclusion of the form (10),

which satisfies Assumption 1, with H(y) a (set-valued)

maximal monotone mapping with 0 ∈ H(0). Suppose the

desired trajectory xd(t) satisfies Assumption 2 with duff (t)
being the corresponding feedforward. If the conditions in

Theorem 1 are satisfied, with k(t) := −Kxd(t)+pff (t) and

K(t) := Pff (t), then the desired solution xd(t) is a globally

exponentially stable solution of the closed-loop system (13),

i.e. the tracking problem is solved.

Proof: Since the conditions of Theorem 1 are satisfied,

all solutions of the closed-loop system (13) converge to each

other exponentially, see (21) in the proof of Theorem 1. Since

the desired solution is a solution of (13), for x(0) = xd(0),
by the choice of the feedforward, see Assumption 2, the

desired solution is a globally exponentially stable solution

of (13).

VI. EXAMPLE OF A MECHANICAL SYSTEM WITH A

UNILATERAL CONSTRAINT

Let us consider a mechanical system consisting of two

inertias, m1 and m2, which are coupled by a linear spring

c and a linear damper b1, see Figure 1. The inertia m1 is

attached to the earth by a linear damper b2 and m2 is subject

to a one-way clutch. Moreover, m1 is actuated by a (possibly

impulsive) control force du. The open-loop dynamics is

du

Fig. 1: Motor-load configuration with one-way clutch and impul-
sive actuation.

described by (10) with

Aol =





0 −1 1
c

m1
− b1+b2

m1

b1
m1

− c
m2

b1
m2

− b1
m2



 , B =





0
1

m1

0



 , (14)

DT =
[

0 0 1
m2

]

and C =
[

0 0 1
]

. The state vector

is given by x =
[

q2 − q1 u1 u2

]T
, with q1 and q2 the

displacements of m1 and m2, respectively, and u1 and u2

the velocities of m1 and m2, respectively. The differential

measure ds = H(y) dt+H(y+) dη of the force in the one-

way clutch is characterised by the scalar set-valued maximal

monotone mapping H(x) = Upr(x). The set-valued function

Upr(x) is the unilateral primitive [7]: −y ∈ Upr(x) ⇔
0 ≤ x ⊥ y ≥ 0 ⇔ x ≥ 0, y ≥ 0, xy = 0, being a

maximal monotone operator. We adopt the following system

parameters: m1 = m2 = 1, c = 10, b1 = 1 and b2 = −1.4.

The desired velocity of the second mass is a periodic

sawtooth wave with period time T :

xd3(t) =



















mod (t, T ) for 0 ≤ mod (t, T ) ≤ T
4

T
2 − mod (t, T ) for T

4 ≤ mod (t, T ) ≤ T
2

0 for T
2 ≤ mod (t, T ) ≤ T

,

where these equations represent a ramp-up, ramp-down, and

a deadband phase, respectively. The signal xd3(t) for T = 1 s

is shown by the dotted line in Fig. 2. The desired trajectory

xd3(t) is a periodic signal which is time-continuous but has

three kinks in each period. Kinks in xd3(t) can be achieved

by applying an impulsive force on the first mass which

causes an instantaneous change in the velocity x2 = u1 and

therefore a discontinuous force in the damper b1. The one-

way clutch on the second mass prevents negative values of

xd3 and no impulsive force on the first mass is therefore

necessary for the change from ramp-down to deadband. In a
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first step, the signals xd1(t), xd2(t) and ds(t) are designed

such that

ẋd1(t) = − xd2(t) + xd3(t)

dxd3(t) =
(

−
c

m2
xd1(t) −

b1

m2

(

− xd2(t) + xd3(t)
)

)

dt

+
1

m2
ds(t),

with

−ds(t) ∈Upr(xd3(t)) dt + Upr(x+
d3(t)) dη,

(15)

for the given periodic trajectory xd3(t). The solution of this

problem is not unique as we are free to chose ds(t) ≥ 0 for

xd3(t) = 0. By fixing ds(t) = ṡ0 dt to a constant value for

xd3(t) = 0 (i.e. ṡ0 is a constant), we obtain the following

discontinuous differential equation for xd1(t):

ẋd1 =

{

m2

b1
(−ẋd3(t) −

c
m2

xd1) xd3(t) > 0,
m2

b1
(−ẋd3(t) −

c
m2

xd1 + 1
m2

ṡ0) xd3(t) = 0.
(16)

The numerical solution of xd1(t) gives (after a transient) a

periodic signal xd1(t) and xd2(t) = −ẋd1(t) + xd3(t) (see

the dotted lines in Figs. 4 and 5 which are mostly hidden

by the solid lines). We have taken ṡ0 = 1. Subsequently, the

feedforward input duff = pff dt + Pff dη is designed such

that

duff =m1 dxd2−
(

cxd1 + b1(−xd2 +xd3)− b2xd2

)

dt (17)

and it therefore holds that x(t) = xd(t) for t ≥ 0 if x(0) =
xd(0), where x(t) is a solution of (10), (14), with du =
duff . The feedforward input duff/dt is shown in Fig. 6

and is equal to pff (t) almost everywhere. Two impulsive

inputs Pff (t) per period can be seen at the time-instances

for which there is a change from ‘ramp-up to ramp-down’

and from ‘deadband to ramp-up’. Next, we implement the

control law (12) on system (10) with the feedforward duff

as in (17). We choose N =
[

0 −4 0
]

which ensures

that (8) is satisfied with

P =





34 −10.5 0
−10.5 6 0

0 0 1



 , α = 0.25. (18)

Consequently, the closed-loop system (10), (14), (12), (17)

is exponentially convergent. Fig. 2 shows the closed-loop

dynamics for which the desired periodic solution xd(t) is

globally exponentially stable. Fig. 3 shows the open-loop

dynamics for which there is no state-feedback. Without

feedback, the desired periodic solution xd(t) is not globally

attractive, not even locally, and the solution from the chosen

initial condition is attracted to a stable period-2 solution.

Clearly, the system without feedback is not convergent. For

both cases the initial condition x(0) =
[

0.16 2.17 0
]T

was used. Figs. 4 and 5 show the time-histories of x1(t) and

xd1(t), respectively x2(t) and xd2(t), in solid and dotted

lines. Jumps in the state x2(t) and desired state xd2(t) can

be seen on time-instances for which the feedforward input

is impulsive.

Fig. 2: x3(t) (solid) and xd3(t) (dotted) for the case
of feedback and feedforward control.

Fig. 3: x3(t) (solid) and xd3(t) (dotted) for the case
of only feedforward control.

VII. CONCLUSIONS

In this paper, the tracking problem for Lur’e-type measure

differential inclusions is studied. The framework of measure

differential inclusions allows us to describe systems with

discontinuities in the state evolution, such as mechanical

systems with unilateral constraints. In the scope of the

tracking problem, the stability properties of time-varying

solutions play a central role. Therefore, we have presented

results on the stability of time-varying solutions of such

systems in the terms of the convergence property. Next, this

property is exploited to provide a solution to the tracking

problem, where the desired solution may exhibit state jumps.

The results are illustrated by application to a mechanical

motion system with a unilateral velocity constraint.
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Fig. 4: x1(t) (solid) and xd1(t) (dotted) for the case
of feedback and feedforward control.

Fig. 5: x2(t) (solid) and xd2(t) (dotted) for the case
of feedback and feedforward control.
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APPENDIX

In this proof, we will show that system (7) is exponentially

convergent. Hereto, we first show that the all solutions of the

system converge to each other exponentially. The next step

in the proof of exponential convergence is to show that there

exists a unique (steady-state) solution that is bounded on

t ∈ R.

Consider two solutions x1(t) and x2(t) of the closed-

loop system (7) and a Lyapunov candidate function V =
1
2‖x2 −x1‖

2
P , where we adopt the notation ‖ξ‖2

P = ξTPξ.

Consequently, the differential measure of V satisfies: dV =
1
2 (x+

2 + x−
2 − x+

1 − x−
1 )TP ( dx2 − dx1), with dxi =

Axi dt + D dsi + B dw(t), i = 1, 2, where dsi =
λi dt + Λi dη, with λi ∈ −H(Cxi), Λi ∈ −H(Cx+

i ),
i = 1, 2. The differential measure of V has a density V̇
with respect to the Lebesgue measure dt and a density

V + − V − with respect to the atomic differential measure

dη, i.e. dV = V̇ dt + (V + − V −) dη. We first evaluate the

density V̇ :

V̇ = (x2 − x1)
TP (Dλ2 + Ax2 − (Dλ1 + Ax1))

=
1

2
(x2 − x1)

T

(

(PA + ATP )(x2 − x1) + 2CT(λ2 − λ1)
)

,

≤ −α‖x2 − x1‖
2
P ,

(19)

where we used that both solutions x1 and x2 correspond to

the same perturbation dw(t), the fact that (8) is satisfied and

the fact that the mapping H(y) is monotone. Subsequently,

we consider the jump V + −V − of V : V + −V − = 1
2 (x+

2 +
x−

2 −x+
1 −x−

1 )TP
(

x+
2 − x−

2 − x+
1 + x−

1

)

, with x+
i −x−

i =
DΛi + BK(t), Λi ∈ −H(Cx+

i ), i = 1, 2. Elimination

of x−
1 and x−

2 and exploiting the monotonicity of H(y)
gives

V + − V − = (x+
2 − x+

1 −
D

2
(Λ2 − Λ1))

TPD (Λ2 − Λ1)

= (y+
2 − y+

1 )T (Λ2 − Λ1) −
1

2
‖(DΛ2 − DΛ1)‖

2
P ≤ 0,

(20)

where we used the matrix equality in (8). Using (19)

and (20), the differential measure of V satisfies dV ≤
−2αV dt, along solutions of (7). It therefore holds that

V strictly decreases (exponentially) over every Lebesgue

non-negligible time-interval as long as x2 6= x1. In turn,

this implies that all solutions of (7) converge to each other
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exponentially (i.e. the system is exponentially incrementally

stable):

‖x+
2 (t) − x+

1 (t)‖

≤

√

λmax(P )

λmin(P )
e−α(t−t0)‖x−

2 (t0) − x−
1 (t0)‖,

(21)

for t ≥ t0 and where λmax(P ) and λmin(P ) represent the

maximum and minimum eigenvalue of P , respectively.

Let us now show that there exists a unique (steady-state)

solution that is bounded on t ∈ R. Consider, hereto, the

Lyapunov candidate function W = 1
2xTPx. The differential

measure of W can be decomposed as dW = Ẇ dt+(W+−
W−) dη. We first evaluate the density Ẇ :

Ẇ =xTP (Dλ + Ax + Bk(t))

=xTPD(λ − λ(0)) +
1

2
xT(PA + ATP )x

+ xT PBk(t) + xTPDλ(0),

(22)

with λ ∈ H(y) and λ(0) ∈ H(0). Due to the satisfaction

of (8) and the monotonicity of H(y), we have that Ẇ ≤
−α‖x‖2

P +‖x‖P ‖Bk(t)+Dλ(0)‖P . Note that Ẇ < 0 for

x satisfying ‖x‖P > γ with γ defined in (9). Let us use the

fact that the function −(1− 1
δ
)α‖x‖2

P > −α‖x‖2
P +γα‖x‖P

for ‖x‖P > δγ, where δ > 1 is an arbitrary constant and

γ > 0. It therefore holds that

Ẇ ≤ −2

(

1 −
1

δ

)

αW for ‖x‖P ≥ δγ, δ > 1. (23)

Subsequently, we consider the jump W+−W− of W : W+−
W− = 1

2 (x++x−)TP (x+ − x−), with x+−x− = DΛ+
BK(t) and Λ ∈ −H(Cx+). Elimination of x−, exploiting

the passivity of H(y) and using the matrix equality in (8)

gives

W+ − W− =
1

2
(2x+ − DΛ − BK(t))TP (DΛ + BK(t))

= (x+)T (PDΛ + PBK(t)) −
1

2
‖DΛ + BK(t)‖

2
P

≤ y+T
Λ + x+T

PBK(t) ≤ β,

(24)

in which we used condition 2 in the theorem. Then, due

to (23), for the non-impulsive part of the motion it holds

that if ‖x(t0)‖P ≤ δγ then ‖x(t)‖P ≤ δγ for all t ∈
[t0, t

∗] (if no state resets occur in this time interval). More-

over, as far as the state resets are concerned, (24) shows

that a state reset from a state x−(ti) ∈ V with V =
{x ∈ X | ‖x‖P ≤ δγ} can only occur to x+(ti) such that

W (x+(ti)) := 1
2‖x

+(ti)‖
2
P ≤ W (x−(ti))+β ≤ 1

2δ2γ2+β.

During the following open time-interval (ti, ti+1) for which

K(t) = 0, the function W evolves as W (x−(ti+1)) =

W (x+(ti))+
∫

(ti,ti+1)
dW , which may involve impulsive

motion due to dissipative impulses Λ. Let tV ∈ (ti, ti+1) be

the time-instance for which ‖x−(tV)‖P = δγ. The function

W will necessarily decrease during the time-interval (ti, tV)
due to (23) and W+−W− = (x+)T (PDΛ)− 1

2 ‖DΛ‖
2
P ≤

0 (the state-dependent impulses are passive due to passivity

of H(y)). It therefore holds that

W (x−(tV)) ≤ e−2(1− 1
δ
)α(tV−ti)W (x+(ti)), (25)

because dW ≤ −2(1 − 1
δ
)αW dt + (W+ − W−) dη ≤

−2(1 − 1
δ
)αW dt for positive measures. Using

W (x−(tV)) = 1
2δ2γ2 and W (x+(ti)) ≤ 1

2δ2γ2 + β
in the exponential decrease (25) gives 1

2δ2γ2 ≤

e−2(1− 1
δ
)α(tV−ti)( 1

2δ2γ2 + β) or tV − ti ≤ δ
2(δ−1)α ln(1 +

2β
δ2γ2 ). Consequently, if the next impulsive time-instance ti+1

of the input is after tV , then the solution x(t) has enough

time to reach V . Hence, if the impulsive time-instance of

the input are separated by the dwell-time τ given in (9), i.e.

ti+1 − ti ≥ τ , then the set

W =

{

x ∈ X |
1

2
‖x‖2

P ≤
1

2
δ2γ2 + β

}

(26)

is a compact positively invariant set. Since the size of

this positively invariant set is of no concern we can take

the limit of the expression for τ in (9) for δ → ∞:

limδ→∞
δ

2(δ−1)α ln(1 + 2β
δ2γ2 ) = 0, which indicates that the

dwell-time can be taken arbitrarily small. It therefore suffices

to assume that the impulsive inputs K(t) are separated in

time (as required in the theorem) to conclude that the system

exhibits a compact positively invariant set, defined in (26).

Now, we use Lemma 2 in [19], which formulates that

if a dynamic system exhibits a compact positively invariant

set, then the existence of a solution that is bounded for t ∈
R is guaranteed. We will denote this ‘steady-state’ solution

by x̄(t). The original lemma is formulated for differential

equations (possibly with discontinuities, therewith including

differential inclusions, with bounded right-hand sides). Here,

we use this lemma for measure differential inclusions and

would like to note that the proof of the lemma allows for

such extensions if we only require continuous dependence

on initial conditions. The latter is guaranteed for the Lur’e-

type measure differential inclusions under study, because the

system is exponentially incrementally stable (as shown in the

first part of the proof), which implies continuous dependence

on initial conditions.

The combination of the fact that all solutions are expo-

nentially stable with the fact that there exists a (steady-state)

solution x̄(t), of locally bounded variation, which is bounded

for t ∈ R for which it is defined, completes the proof of the

fact that the system (7) is exponentially convergent according

to Definition 4. �
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