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Abstract— This paper presents a new nonlinear passivity-
based controller for a wound rotor synchronous machine,
acting as a motor drive. From the standard dq-model the
control objectives are stated, and the Port-controlled Hamil-
tonian model is also obtained. A simple power flow study
allows to state the control goals in terms of reactive power
compensation and ohmic losses reduction. Starting from the
Hamiltonian structure, the Simultaneous Interconnection and
Damping Assignment (SIDA-PBC) technique is used to develop
the control action. The desired robustness of the control action is
also taken into account in the design procedure. This results in a
globally asymptotically stabilizing controller, which is validated
via numerical simulations.

I. INTRODUCTION

The wound rotor synchronous machine (WRSM) is used

for generation and also for drive applications [15]. In the

generation case the field voltage is used for regulating the

stator voltage, while in motor applications this variable can

be used to compensate the power factor of the machine

[16]. Several techniques are proposed for controlling the

WRSM. Linear techniques are the most used in the industry

[9][17], but decoupling methods [8], widely employed for

asynchronous machines, have also been extended to the

synchronous case, and advanced nonlinear controllers have

been applied to this class of machines as well [10].

Passivity-based control (PBC) is a technique that can be

used to design controllers for a large kind of systems. Control

of a rather general class of electrical machines using PBC

methods has been proposed in [11], and the specific cases

for synchronous generators and drives can be found also in

[5] and [7], respectively. Recently, a new technique based

on the PBC properties called Interconnection and Damping

Assignment (IDA-PBC) has been proposed in [12]. Using

the IDA-PBC approach many electrical machines have been

controlled [14], in particular induction machines [1] and

permanent magnet synchronous ones [13]. The simultaneous

IDA-PBC methodology was proposed in [2], were the induc-

tion machine was studied and controlled. The SIDA-PBC

technique offers more degrees of freedom than IDA-PBC,

and allows to solve more complex interconnected systems
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and to design output feedback, as opposed to state feedback,

controllers (see examples in [2] and [4]).

The main goal of this work is to design a control algorithm

for a wound rotor synchronous drive machine, based on the

Simultaneous IDA-PBC technique. The paper is organized as

follows. In Section II the wound rotor synchronous machine

model is introduced and its control goals are described.

Section III presents the SIDA-PBC technique and then the

control law is obtained. The simulation results are included

in Section IV and, finally, conclusions are stated in Section

V.

II. THE WRSM MODEL AND CONTROL GOALS

In this Section we present the dynamical model of the

WRSM. From the well-known dynamical equations we also

propose a port-Hamiltonian model which allows to describe

in a compact form and with a nice physically interpretation

the system dynamics. Finally, we compute, in terms of the

fixed point values, the active and reactive powers flowing

through the stator side of the machine and define the control

objectives.

A. dq-model of the WRSM

The state space model in dq coordinates of a wound rotor

synchronous machine with a field winding (and no damper

windings) is given by [3]

λ̇d = −Rsid + npωLsiq + vd (1)

λ̇q = −npωLsid − Rsiq − npωMiF + vq (2)

λ̇F = −RF iF + vF (3)

where λT = (λd, λq, λF ) ∈ R
3 and iT = (id, iq, iF ) ∈ R

3

are the fluxes and currents, respectively1, ω is the mechanical

speed, np is the number of pole pairs, Rs and RF are the

ohmic resistances of the stator dq and rotor field windings,

and Ls, LF and M are the leakage and mutual inductances.

The dynamical model has to be completed with the

mechanical equation

Jm

dω

dt
= npMiF iq − Brω + τL. (4)

Here Jm is the rotor inertia, τL is a generic mechanical

torque (negative in case of braking), and Br is a viscous

mechanical damping coefficient.

Fluxes and currents are related by

λ = Li

1d, q and F subindexes refers to dq coordinates and the field variables,
respectively.
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where

L =





Ls 0 M

0 Ls 0
M 0 LF



 .

B. Port-Hamiltonian model of the WRSM

Hamiltonian modeling uses the state dependent energy

functions to characterize the dynamics of the different sub-

systems, and connects them using a Dirac structure, which

embodies the power preserving network of relations estab-

lished by the corresponding physical laws. The result is a

mathematical model with an specific structure, called port-

controlled Hamiltonian system (PCHS) [18], which lends

itself to a natural, physics-based analysis and control design.

Explicit PCHS have the form

{
ẋ = (J(x) − R(x))∂xH(x) + g(x)u
y = gT (x)∂xH(x)

(5)

where x ∈ R
n is the vector state, u, y ∈ R

m are the port

variables, and H(x) : R
n → R is the Hamiltonian function,

representing the energy function of the system. The ∂x (or

∂, if no confusion arises) operator defines the gradient of

a function of x, and in what follows we will take it as a

column vector. J(x) ∈ R
n×n is the interconnection matrix,

which is skew-symmetric (J(x) = −J(x)T ), representing

the internal energy flow in the system, and R(x) ∈ R
n×n is

the dissipation matrix, symmetric and, in physical systems,

semi-positive definite (R(x) = RT ≥ 0), which accounts for

the internal losses of the system. Finally, g(x) ∈ R
n×m is an

interconnection matrix describing the port connection of the

system to the outside the world. It yields the flow of energy

to/from the system through the port variables, u and y.

Equations (1), (2), (3) and (4) can be given a port-

Hamiltonian form with energy variables, fluxes (λd, λq , λF )

and momentum (p = Jmω). Then, the interconnection and

dissipation matrices are, respectively

J(x) =







0 npLsω 0 0
−npLsω 0 0 −npMiF

0 0 0 0
0 npMiF 0 0







,

R =







Rs 0 0 0
0 Rs 0 0
0 0 RF 0
0 0 0 Br







,

with Hamiltonian (energy) function

H(x) =
1

2
λT L−1λ +

1

2Jm

p2,

and

g =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







,

where the external inputs are u = (vd, vq, vF , τL).

C. Fixed points and power flow study

In this subsection we compute the electrical power, in

steady-state, flowing through the stator side of the machine in

order to compensate the power factor. All this study consider

that the three-phase system is sinusoidal and balanced.

Fixed points are solutions to

0 = −Rsi
∗

d + npωLsi
∗

q + vd (6)

0 = −npωLsi
∗

d − Rsi
∗

q − npωMi∗F + vq (7)

0 = −RF i∗F + vF

0 = npMi∗F i∗q − Brω
∗ + τL (8)

From the dq-active power definition,

Ps = vdid + vqiq

and using the fixed points (6) and (7), we obtain

P ∗

s = R2

s(i
∗2

d + i∗2q ) + npω
∗Mi∗F i∗q ,

and tacking into account τe = npMiF iq , we recover the

power balance equation (in steady-state)

P ∗

s = R2

s(i
∗2

d + i∗2q )
︸ ︷︷ ︸

Electrical losses

+ τeω
∗

︸︷︷︸

Mechanical power

(9)

The same study for the reactive power,

Qs = vdiq − vqid,

together with (6) and (7), yields

Q∗

s = −npω
∗(Ls(i

∗2

d + i∗2q ) + Mi∗di
∗

F ). (10)

Notice that iF can compensate the power factor (or Qs = 0)

with an appropriate value in the third term of (10).

D. Control objectives

Following the results presented above, we can summarize

the control goals as follows: to regulate the mechanical

speed, ω, and to compensate the power factor, i.e. Q∗

s = 0.

To achieve these objectives we have three control inputs, vd,

vq and vF . There is still one degree of freedom which allows

to regulate id = i∗d to minimize the loses (see equation (9)).

Unfortunately, both control goals (reactive power and

minimization losses) cannot be achieved simultaneously.

Equation (10) shows that the term which compensates the

reactive power requires a nonzero id value. For this reason,

the control goal i∗d = 0 is replaced by the objective of getting

an small value of the d-current component.

III. CONTROL DESIGN

Figure 1 shows the proposed control scheme. As explained

above the control objectives are to regulate ω, id and to

compensate the reactive power. The SIDA-PBC controller

directly regulates ω and id, while Qs is controlled through

the rotor current iF by means of setting Q∗

s = 0 in equation

(10),2 implying that

i∗F =
Ls

Mi∗d
(i∗2d + i2q). (11)

2The iq is used instead of i∗q to improve the robustness (the i∗q value is
strongly dependent on the parameters).
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WRSM
SIDA-PBC

Controller

vd

vq

vF

i
∗

d

ω
∗

i
∗

F

ω, id, iq , iF

(11)

Fig. 1. Control scheme.

A. SIDA-PBC technique

The Simultaneous Interconnection and Damping Assign-

ment (SIDA-PBC) was proposed in [2]. It considers the

problem of stabilization of an equilibrium point for nonlinear

systems in an affine form or, alternatively, in a PCHS form

(5).

The key idea behind the SIDA-PBC technique (as it

occurs also in the classic IDA-PBC) is to solve the so-called

matching equation

(J(x, t) − R(x, t))∂H + gu = Fd(x, t)∂Hd, (12)

where, to enforce dissipativity, the following constraint on

the Fd matrix is required

Fd(x, t)T + Fd(x, t) ≤ 0. (13)

The equilibrium assignment of the desired energy function

translates to

x∗ = arg minHd(x).

With appropriate Fd and Hd choices, the control law yields

u = (g(x)T g(x))−1gT (x)(Fd∂Hd − (J − R)∂H).

As pointed out in [2], there exists several techniques to

solve the matching equation (12), namely the PDE approach

of [12] and the so-called algebraic approach of [6]. In this

case the problem is solved using the last procedure, i.e.,

fixing the energy function and then solving the algebraic

equations.

B. SIDA-PBC for the WRSM

As proposed above, we will use the SIDA-PBC approach

to design a controller for the WRSM. First we fix the energy

function as

Hd =
1

2
(x − x∗)T P (x − x∗)

where P = PT > 0. To simplify the solution we restrict P

to have the form

P =







kd 0 0 0
0 γq 0 0
0 0 γF 0
0 0 0 kω







.

Notice that the positiveness requirement on P implies thet

kd, γq, γF , kω > 0.

The F (x) matrix is chosen in order to facilitate the

solution of the resulting algebraic equations. Furthermore, in

order to simplify the control structure, we want to assign one

output to each control action and also to obtain a controller

as robust as possible. The proposed structure is as follows

F (x) =







F11(x) 0 0 0
0 0 0 F24(x)
0 0 F33(x) 0
0 F42(x) F43(x) F44(x)







,

where inequality (13) must be accomplished.

Decoupling control actions and feedback outputs is pos-

sible if the F matrix contains only one nonzero term in

each row. The three first rows of F (x) have nonzero F11,

F24 and F33 elements, which relate vd, vq and vF to the

errors in id, ω and iF , respectively. This is a critical point to

improve the robustness of the resulting controller, because

in this way only the fixed points of the outputs appear

in the control action. Effectively, as it is shown later, the

fixed point i∗q , whose computation requires solving the fixed

points equations, (6)–(8), with strong dependence on the

parameters, do not appear in the control law.

From the three first rows of (12) we obtain the control

actions

vd = Rsid − npωLsiq + F11kd(id − i∗d)

vq = npωLsid + Rsiq + npωMiF + F24kω(ω − ω∗)

vF = RF iF + F33γF (iF − i∗F ),

while from the fourth row,

npMiF iq − Brω + τL − F42γq(iq − i∗q)

−F43γF (iF − i∗F ) − F44kω(ω − ω∗) = 0. (14)

To solve equation (14) we propose

F42 =
1

γq

npMi∗F

F43 =
1

γF

npMiq

F44 = −
1

kω

Br

where the steady-state solution of (4)

τL = −npMi∗F i∗q + Brω
∗

has been also used. In order to simplify the solution, now

we assign

F11 = −1

F24 = −F42.

With the last choice, it is clear that (13) holds if F33 < 0
and

−2(F33 + F44) > F 2

43,

or substituting,

−2

(

F33 −
1

kω

Br

)

>

(
1

γF

npMiq

)2

.
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Finally, with

F33 = −
1

4
n2

pM
2i2q

the previous equation reduces to

1

kω

Br >
1

γ2

F

.

In order to simplify the controller the following parameters

are assigned

γq = npMi∗F ,

γF = kF

4

n2
pM

2
,

and the control actions are finally

vd = Rsid − npωLsiq − kd(id − i∗d),

vq = npωLsid + Rsiq + npωMiF − kω(ω − ω∗),

vF = RF iF − kF i2q(iF − i∗F ),

while the restriction can be expressed as

kω < Br

(npM)4

16
k2

F .

From the point of view of energy efficiency, it is desirable

for an electrical machine to have a mechanical damping as

close to zero as possible, and many control design strategies

assume that Br = 0. In our case, mechanical losses play

a fundamental role, because the kω value is bounded from

above by Br, and this seems to limit the range of available

kω. However, even if Br is very small, it cannot be strictly

zero and, taking into account that kF is a free tuning gain,

the open set for which the closed loop system is stable can

be enlarged.

IV. SIMULATIONS

In this section we present some simulations using the

designed controller. The WRSM parameters are: Ls = 1mH,

Rs = 0.0303Ω, M = 1.5mH, LF = 8.3mH, RF =
0.0539Ω, np = 2, Jm = 0.01525kg·m2, Br = 0.05N·m·s

and τL = 0N·m. The control parameters are selected as:

kd = 1, kF = 10 and kω = 0.001.

The first numerical experiment is performed increasing the

desired speed from ω∗ = 100rad·s−1 to ω∗ = 150rad·s−1 at

t = 2s. As pointed out in Section II, the desired d-current

must have an small value in order to reduce the electrical

losses; in our case, it is fixed at i∗d = −0.1A. Figure 2 shows

that the system is perfectly regulated under changes of the

desired outputs.

Figure 3 shows the results of a second test. In this case the

external torque is suddenly changed at t = 2 from zero to

τL = −0.8N·m. Even under this change, the system achieves

the control goals due to the fact that some robustness has

been built-in in the design of the controller.
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Fig. 2. Simulation results: Mechanical speed, reactive power and id current,
for a change of the speed reference.

V. CONCLUSIONS

The SIDA-PBC technique has been applied to control a

wound rotor synchronous machine for a motor drive appli-

cation. The SIDA-PBC matching equation has been solved

using the algebraic approach and the desired robustness of

the resulting controller has been taken into account. The

obtained controller is globally asymptotically stable and

assures stability for a large range of control gain values.

The presented method also allows to decouple the outputs,

improving the robustness and facilitating the gain tuning.

Future research includes a dynamical extension keeping

the Hamiltonian structure to improve the robustness (basi-

cally on the electrical parameters Rs, Ls, M , and RF ) and

the behavior. This can be easily done for the id and iF
currents (due to the fact that they are passive outputs), but

a more complicated task is to design a dynamical extension

for the speed loop. Experimental validation with a real plant

using the presented control law will be also considered in

the future.
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[1] C. Batlle, A. Dòria-Cerezo, and R. Ortega. Power Flow Control of
a Doubly–Fed Induction Machine Coupled to a Flywheel. European

Journal of Control, 11(3):209–221, 2005.

[2] C. Batlle, A. Dòria-Cerezo, G. Espinosa-Pérez, and R. Ortega. Si-
multaneous interconnection and damping assignment passivity-based
control: Two practical examples. Lecture Notes in Control and

Information Sciences, 366:157–169, 2007.

[3] J. Chiasson. Modeling and High Performance Control of Electric

Machines. John Wiley & Sons Inc., 2005.

[4] A. Dòria-Cerezo. Modeling, simulation and control of a doubly-
fed induction machine controlled by a back-to-back converter.
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