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Abstract— Recently, nonlinear H∞ control theory has been
paid attention. The solvable condition of nonlinear H∞ control
problem is given by the Hamilton Jacobi Inequality (HJI). State-
Dependent Riccati Inequality (SDRI) is one of approaches to
solve the HJI. The SDRI contains State-Dependent Coefficient
(SDC) form of a nonlinear system. The SDC form is not unique,
so free parameters of it is considered. If bad SDC form is
chosen, then there is no solution of SDRI.

In this paper, the relationship between free parameters and
SDRI is clarified. The free parameters are generated when
SDRI is derived from HJI. And they affect the conservativeness
of SDRI. Then new method of design free parameters which
reduces the conservativeness of SDRI is proposed. Finally,
numerical examples to verify the effect of this method is shown.

I. INTRODUCTION

Linear H∞ Control Theory has become a remarkably

popular tool in engineering applications because there are

many convenience tools (MATLAB, etc.) to solve it. On the

other hand, even though a lot of theoretical developments

of Nonlinear H∞ Control Theory have been done [1][2][3],

applications are very few, since a useful method of solving

it has not been established yet.

In order to solve Nonlinear H∞ Control Problems, we

have to deal with a kind of partial differential inequalities

called Hamillton-Jacobi Inequality (HJI). For Linear H∞

Control Problems, we can design the linear H∞ controller

easily by solving a familiar Algebraic Riccati Inequality

(ARI), but it turns out to be much more complicate to derive

nonlinear H∞ controller due to a necessity on dealing with

the HJI. Since HJI is a partial differential inequality, it is

quite hard to solve HJI analytically.

Numerical solutions of HJI have been researched. One of

the researches is approximate solution of HJI using Taylor

Expansion around a equilibrium point [4]. This approximate

solution shows a good behavior around the equilibrium

point, but not away from that point. On the other hand,

there is a way using nonlinear matrix inequality which is

so-called State-Dependent Riccati Inequality(SDRI)[5][6][7].

For a nonlinear system, Lu and Doyle showed SDRI issues

[5]. If there exists a positive definite matrix P (x) which is

a solution of SDRI and also exists a positive definite scalar
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function V (x) satisfying ∂V/∂x = 2xT P (x) (a integrability

condition), then such the V (x) is a positive definite solution

of the HJI. By solving the point-wise ARI, they got a set

of point-wise solutions and also an approximate continuous

solution P (x).
For these methods which use SDRI to solve HJI, there

is a problem that State-Dependent Coefficient (SDC) form

of nonlinear system is not unique. This problem means that

there are many representations of A(x) satisfying f(x) =
A(x)x. In other words, free parameters is considered in SDC

form[8][9]. Since the solution of SDRI depends on choice of

SDC form. If bad SDC form is chosen, there is no solution. It

is very important to choose a good SDC form to solve SDRI.

But, naturally HJI dosen’t depends on this free parameters.

In this paper we focus on the free parameters of SDC

form. First, we introduce a representation of free parameters

of SDC form. And then, we clarify that free parameters of

SDC form affect the conservativeness of SDRI. In addition,

we introduce new method of design free parameters which

reduces the conservativeness of SDRI. Finally, we show

numerical examples to verify the effect of this method.

II. PRELIMINARIES

A. Linear H∞ Control Problem

Let us consider the following linear system Sl

Sl

{

ẋ = Ax + B1w + B2u

z = C1x + D12u
(1)

where w is an unknown disturbance, z is a controlled output,

u is a control input to be chosen. Objectives of Linear H∞

Control Problem are to find a state feedback controller that

achieves closed-loop stability and makes L2-gain from w to

z less than or equal to γ . For an easy formulation of control

input, let us assume CT
1 D12 = 0, DT

12D12 = I . Then the

control input is given by

u = −BT
2 Px (2)

where P is a positive definite matrix which satisfies follow-

ing Algebraic Riccati Inequality (ARI)

PA + AT P + P

(

1

γ2
B1B

T
1 − B2B

T
2

)

P + CT
1 C1 < 0.

(3)

B. Nonlinear H∞ Control Problem

Let us consider the following nonlinear system Snl

Snl

{

ẋ = f(x) + g1(x)w + g2(x)u

z = h1(x) + j12(x)u
(4)
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where w, z, u is the same as (1). And objectives of Nonlinear

H∞ Control Problem are also the same as linear one. Refer to

[1], under standard assumptions hT
1 j12 = 0 and jT

12j12 = I ,

an optimal feedback control law is given by

u(x) = −
1

2
gT
2 (x)

∂V

∂xT
(5)

where V (x) is a positive definite solution of Hamilton Jacobi

Inequality(HJI)

∂V

∂x
f +

1

4

∂V

∂x

(

1

γ2
g1g

T
1 − g2g

T
2

)

∂V

∂xT

+ hT
1 h1 + εxT x ≤ 0 (6)

for some positive ε.

C. State-Dependent Riccati Inequality

Let us define as follows

f(x) = A(x)x, g1(x) = B1(x), g2(x) = B2(x)

h1(x) = C1(x)x, j12(x) = D12(x),

then the nonlinear system Snl is transformed into SDC form

Snl

{

ẋ = A(x)x + B1(x)w + B2(x)u

z = C1(x)x + D12(x)u
. (7)

With assumption

∂V

∂xT
= 2P (x)x, (8)

the HJI becomes State-Dependent Riccati Inequality(SDRI)

P (x)A(x) + AT (x)P (x) +
1

γ2
P (x)B1(x)BT

1 (x)P (x)

− P (x)B2(x)BT
2 (x)P (x) + CT

1 (x)C1(x) < 0. (9)

For this SDRI, a nonlinear H∞ control input u is given by

u = −
1

2
gT
2 (x)

∂V

∂xT
= −BT

2 (x)P (x)x. (10)

D. Solving SDRI via LMI

When SDRI(9) is fixed with a state x, it is a same

inequality as ARI(3) with variable P . To solve this matrix

inequality, (3) is transformed into LMI. By using Schur

Complement and a variable transformation X = P−1, (3)

becomes

[

AX + XAT + 1
γ2 B1B

T
1 − B2B

T
2 XCT

1

C1X −I

]

< 0 (11)

which is a LMI with respect to a variable X . If we ignore

the integrability condition(8), we get state-dependent solution

P (x) by solving (11) at each state. One solution which

satisfies (8) is a constant solution Pc which satisfies ARIs at

several states simultaneously.

E. Existence of Free Parameters of SDC Form

We can represent f(x) as below.

f(x) = A(x)x = (A(x) + E(x))x (12)

E(x) ∈ R
n×n is any matrix that satisfies

E(x)x = 0. (13)

Lemma 1: Although we can represent h1(x) as well as

f(x), the nonlinearity of C1(x) is transformed into A(x) by

using coordinate transformation.

Let us consider coordinate transformation

x̃ = T (x) =

[

h⊥
1 (x)

h1(x)

]

. (14)

h⊥(x) is any function which is independent of h(x). In other

words, the rank of ∂T (x)/∂x should be n. And x = T−1(x̃).
By using coordinate transformation, nonlinear system(4) is

transformed into

Snl































˙̃x = ∂T (x)
∂x

(f(x) + g1(x)w + g2(x)u)

:= f̃(x̃) + g̃1(x̃)w + g̃2(x̃)u

z =
[

0 I
]

x̃ + j12(x)u

:= C1x̃ + ˜j12(x̃)u

(15)

As we can see, the controlled output z is represented in a

linear expression with this transformed system. And the f(x)
is transformed into f̃(x̃) which includes the nonlinearity of

z. From now on, we only focus on SDC form of f(x).

III. REPRESENTATION OF FREE PARAMETERS OF

SDC FORM

We introduce a representation which clarifies free param-

eters of SDC form.

Theorem 1: Let A0(x) be one of state-dependent coeffi-

cient matrices of f(x), x ∈ R
n such that

f(x) = A0(x)x. (16)

All A(x) which satisfies

∀x 6= 0, f(x) = A(x)x (17)

can be represented by

A(x) =A0(x) + Ma(x)Θ(x). (18)

Θ(x) :=

[

xT /|x|
Θp(x)

]

, Θpx = 0, Θp ∈ R
n−1×n

Ma(x) :=
[

0 Map(x)
]

,Map(x) ∈ R
n×n−1

The first column of Ma(x) ∈ R
n×n must be 0. Anather

elements (Map) are free parameters. And Θ(x) ∈ R
n×n

is combined rotation matrices which rotate x1 axis to the

direction of x. For detail of Θ(x), see the appendix A.

Proof: Sufficiency: Let A(x) be (18). A(x)x becomes

A(x)x = A0(x)x + Ma(x)Θ(x)x = A0(x)x = f(x) (19)

∵ Ma(x)Θ(x)x = 0.

So A(x)x is a state-dependent coefficient matrix of f(x).
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Necessity: Let A(x) be a state-dependent coefficient ma-

trix of f(x). To represent A(x), Ma(x) should be

Ma(x) = {A(x) − A0(x)}ΘT (x). (20)

The first column of Ma(x) is 0 , because the first column

of ΘT (x) is x/|x| and A1(x)x−A0(x)x = 0. Since inverse

matrix of rotation matrix is transpose matrix of itself,

A0(x) + Ma(x)Θ(x)

=A0(x) + {A(x) − A0(x)}ΘT (x)Θ(x)

=A(x). (21)

So we can represent all of A(x) by (18).

IV. EFFECT OF FREE PARAMETERS ON

CONSERVATIVENESS OF SDRI

Nevertheless HJI dosen’t depend on free parameters, SDRI

which is derived from HJI depends on these. In this section,

we clarify relationship between HJI, SDRI and free param-

eters. And then we propose a new method of design free

parameters.

A. Conservativeness of SDRI

With SDC form and assumption (8) , SDRI is derived from

HJI as follows,

HJI :xT G(x)x < 0 (22)

⇐∀z ∈ R
n : zT G(x)z < 0 (23)

⇔G(x) < 0 : SDRI (24)

G(x) :=P (x)A(x) + AT (x)P (x)

+ P (x)

{

1

γ2
B1(x)BT

1 (x) − B2(x)BT
2 (x)

}

P (x)

+ CT
1 (x)C1(x). (25)

Note that HJI and SDRI are not equal. SDRI is sufficient

condition of HJI. In other words, SDRI is more conservative

than HJI. So, even if the solution of HJI exists , the solution

of SDRI dose not necessarily exist.

B. Effect of free parameters

Here, let us consider Ma. By substituting (18) for A(x),
we have

G(x) =G0(x) + He {P (x)Ma(x)Θ(x)} (26)

G0(x) :=P (x)A0(x) + AT
0 (x)P (x)

+ P (x)

{

1

γ2
B1(x)BT

1 (x) − B2(x)BT
2 (x)

}

P (x)

+ CT
1 (x)C1(x) (27)

where He{J} means J + JT . Sice Ma(x)Θ(x)x = 0,

xT G(x)x = xT G0(x)x (28)

zT G(x)z 6= zT G0(x)z. (29)

Then we realize that the effect of free parameters is generated

at (23).

C. Relationship between conservativeness and free parame-

ters

Sice, Θ(x) is full rank,

SDRI : G(x) < 0 ⇔ Θ(x)G(x)ΘT (x) < 0. (30)

It’s expanded to

Θ(x)G(x)ΘT (x) =

[

xT

|x|

Θp(x)

]

G(x)
[

x
|x| ΘT

p (x)
]

=

[

xT G(x)x
|x|2 ∗

∗ ∗

]

< 0. (31)

The (1, 1) element of (31) is HJI. It implies that SDRI

includes HJI and other extra conditions. Furthermore, by

substituting (26) for G(x),

Θ(x)G(x)ΘT (x) =Θ(x)G0(x)Θ(x)

+ He {Θ(x)P (x)Ma(x)} . (32)

The nodes which include Ma are

He {Θ(x)P (x)Ma(x)}

=





0
xT P (x)Map(x)

|x|
MT

ap(x)P (x)x

|x| He {Θp(x)P (x)Map(x)}



 . (33)

Now we realize that free parameters(Ma) effect on extra

conditions without HJI.

D. Method of setting free parameters

Let us consider the design of Ma which reduces conser-

vativeness of SDRI.

Theorem 2: Let us define A(x) as (18) , G0(x) as (27)

and P (x) as (8). If we define Ma(x) as follows

Ma(x) = − P−1(x)ΘT (x)

{[

1 0

0 Ip/2

]

Θ(x)G0(x)ΘT (x)

+ I

}[

0 0

0 Ip

]

(34)

where Ip ∈ R
n−1×n−1 is a identitiy matrix, then HJI (6) and

SDRI (9) are equal.

Proof: By substituting (34) for Ma(x), (33) becomes

He {Θ(x)P (x)Ma(x)}

= − He

{[

1 0

0 Ip/2

]

Θ(x)G0(x)ΘT (x)

[

0 0

0 Ip

]}

−

[

0 0

0 2Ip

]

= − He











0
xT G0(x)ΘT

p (x)

|x|

0
Θp(x)G0(x)ΘT

p (x)

2











−

[

0 0

0 2Ip

]

= −





0
xT G0(x)ΘT

p (x)

|x|
ΘT

p G0(x)x

|x| Θp(x)G0(x)ΘT
p (x)



 −

[

0 0

0 2Ip

]
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So (32) becomes

Θ(x)G0(x)Θ(x) + He {Θ(x)P (x)Ma(x)}

=

[

xT G0(x)x
|x|2 0

0 −2Ip

]

. (35)

Then HJI (22) and SDRI (30) are equal.

V. METHOD OF SEARCHING A BETTER

SOLUTION

To solve SDRI, it should be transformed into LMI. By

substituting (18) for A(x) , (11) become
[

lmi11 XCT
1

C1X −I

]

< 0 (36)

lmi11 := He {(A0 + MaΘ)X} +
1

γ2
B1B

T
1 − B2B

T
2 .

Unfortunately, (34) includes P (x) = X−1(x) which is a

solution of SDRI. So if we substitute (34) for Ma(x) then

(36) dosen’t become LMI.

Then let us use iteration to search a better solution P (x).
Initial value of P (x) should be calculated without Ma(x).
And then a better solution is calculated by iteration with

Ma(x) which is derived with last P (x).

VI. SIMULATION

We consider constant solution Pc which satisfies SDRI at

local area. Let us solve SDRI wia LMI which is satisfied at

several point in local area , and minimize γ.

A. Considered System

Snl































ẋ =

[

− sin(2x1)

x1 − x2 − 2x3
1

]

+

[

1

−1

]

w +

[

1

0

]

u

z =







u

x1/10

x2







x = [x1, x2]
T , x0 = [−1.0, 1.0]T ,

w = 3 sin(πt)

The SDC form is selected as

A(x) = A0(x) + Ma(x)Θ(x),

A0(x) :=

[

− sin(2x1)
x1

0

1 − 2x2
1 −1

]

,

Θ(x) =











1
|x|

[

x1 x2

−x2 x1

]

(x 6= 0)

0 (x = 0)

,

B1(x) =

[

1
−1

]

, B2(x) =

[

1
0

]

,

C1(x) =





0 0
1/10 0

0 1



 ,D12(x) =





1
0
0



 .

The considered points where LMIs are solved simultaneously

are

xd = {0.5[i1, i2]
T | − 2 ≤ ij ≤ 2, ij ∈ Z} (37)

B. ARI

Let us solve LMI(11) at the origin. The constant solution

Pc and minimam γ are obtained as

P0 =

[

13.1 19.1
19.1 28.2

]

γ0 = 0.452.

The simulation results are shown P0 in Fig.1, Fig.2. HJI isn’t

satisfied in large area, so states can not be converged.

−4

−2

0

2

4

P0

 

 

−4

−2

0

2

4

P1

0 2 4 6 8 10
−4

−2

0

2

4

Time[sec]

P80

z1
z2
z3
w

Fig. 1. Simulation Result
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C. SDRI without Ma at several states

Let us solve LMIs(11) without Ma at (37). We can get

P1 =

[

10.2 −0.745
−0.745 0.963

]

γ1 = 1.42.

The simulation results are shown P1 in Fig.1, Fig.2. As we

can see, the system converges to the origin.

D. SDRI with Ma at several states

Let us solve LMIs(11) with Ma(34) at (37). The initial

value of P is P1. 80 times iteration derives,

P80 =

[

31.8 14.5
14.5 7.27

]

γ80 = 0.768.

γ80 is smaller than γ1. The simulation results are shown P80

in Fig.1, Fig.2. As we can see, the system converges to the

origin. And the effect of disturbance is smaller Than P1.

VII. CONCLUSION

In this paper, the relation between free parameters of SDC

form and SDRI is clarified. First, we introduced a representa-

tion of free parameters of SDC form. And then, we clarified

that free parameters of SDC form affect the conservativeness

of SDRI. In addition, we introduced new method of design

free parameters which reduces the conservativeness of SDRI.

Finally, we showed numerical examples to verify the effect

of this method.
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APPENDIX A

Hereunder the structure of combined rotation matrices are

presented.

Θ(x) =
n

∏

i=2

Θi(x).

Θi(x) is a rotation matrix at x1 − xi plane, i.e.

Θi(x) =









cos θi 0 sin θi 0

0 Ip1 0 0

− sin θi 0 cos θi 0

0 0 0 Ip2









where Ip1 ∈ R
(i−2)×(i−2) and Ip2 ∈ R

(n−i)×(n−i) are

identity matrices. Let us choose trigonometric function as

follows,

(cos θi, sin θi) :=

{

(ti+1/ti, xi/ti) ti 6= 0

(1, 0) ti = 0

ti :=

{

√

x2
1 +

∑n
k=i x2

k 2 ≤ i ≤ n

x1 i = n + 1.

The first row of Θ(x) is calculated to

ϑ11 =
n

∏

k=2

cos θk =
t3
t2

t4
t3

. . .
tn+1

tn
=

tn+1

t2
=

x1

|x|

ϑ12 = sin θ2 =
x2

|x|

ϑ13 = sin θ3 cos θ2 =
x3

t3

t3
t2

=
x3

|x|

...

ϑ1i = sin(θi)
i−1
∏

k=2

cos(θk) =
xi

ti

t3
t2

. . .
ti

ti−1
=

xi

|x|
.

So the first row of Θ(x) is xT /|x|. And Θ−1(x) = Θ(x)T ,

because Θ−1
i (x) = ΘT

i (x).
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