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Abstract— We consider a multiarmed bandit problem where
the expected reward of each arm is a linear function of an
unknown scalar with a prior distribution. The objective is to
choose a sequence of arms that maximizes the expected total
(or discounted total) reward. We demonstrate the effectiveness
of a greedy policy that takes advantage of the known statistical
correlation structure among the arms. In the infinite horizon
discounted reward setting, we show that both the greedy and
optimal policies eventually coincide and settle on the best arm,
in contrast with the Incomplete Learning Theorem for the
case of independent arms. In the total reward setting, we
show that the cumulative Bayes risk after T periods under
the greedy policy is at most O (log T ), which is smaller than
the lower bound of Ω

`

log2
T

´

established by [1] for a general,
but different, class of bandit problems. We also establish the
tightness of our bounds. Theoretical and numerical results show
that the performance of our policy scales independently of the
number of arms.

I. INTRODUCTION

In the multiarmed bandit problem, a decision-maker sam-

ples sequentially from a set of m arms whose reward charac-

teristics are unknown to the decision-maker. The distribution

of the reward of each arm is learned from accumulated

experience as the decision-maker seeks to maximize the

expected total (or discounted total) reward over a horizon.

The problem is a prototypical example of the so-called

exploration versus exploitation dilemma, where a decision-

maker balances the incentive to exploit the arm with the

highest expected payoff with the incentive to explore poorly

understood arms for information-gathering purposes.

Nearly all previous work on the multiarmed bandit prob-

lem has assumed statistically independent arms. This as-

sumption simplifies computation and analysis, leading to

multiarmed bandit policies that decompose the problem by

arm. Prominent examples are [2] for the infinite horizon

problem with discounted rewards, and [1] and [3] for the

finite horizon setting.

When the number of arms is large, statistical independence

comes at a cost, because it typically leads to policies whose

convergence time increases with the number of arms. For

instance, most policies require each arm be sampled at least
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once. At the same time, statistical independence among arms

is a strong assumption in practice. In many applications, we

expect that information gained by pulling one arm will also

impact our understanding of other arms. For example, in a

target marketing setting, we might expect a priori that similar

advertisements will perform similarly. The default approach

in such a situation is to ignore any knowledge of correlation

structure and use a policy that assumes independence. This

seems intuitively inefficient because we would like to use

any known statistical structure to our advantage.

Our main thesis is that known statistical structure among

arms can be exploited for higher rewards and faster conver-

gence. We show this using a version of the bandit problem

where the mean reward of each arm is a known linear

function of an unknown scalar on which we have a prior

distribution. In the discounted infinite horizon setting, we

show that a greedy policy settles on the best arm with proba-

bility one, in contrast with the Incomplete Learning Theorem

known for the classic independent-arm bandit problem. In the

finite horizon setting without discounting, a greedy policy

achieves O(log T ) cumulative risk for every horizon T , less

than what is known to be possible in the classical case.

Assume that we have m arms indexed by 1, . . . ,m, where

the reward for choosing arm ℓ in period t is given by a

random variable Xt
ℓ . We assume that for all t ≥ 1 and for

ℓ = 1, . . . ,m, Xt
ℓ is given by

Xt
ℓ = ηℓ + uℓZ + Et

ℓ , (1)

where ηℓ and uℓ are known for each arm ℓ, and Z and {Et
ℓ :

t ≥ 1, ℓ = 1, . . . ,m} are random variables. We will assume

that for any given ℓ, the random variables {Et
ℓ : t ≥ 1}

are identically distributed; furthermore, the random variables

{Et
ℓ : t ≥ 1, ℓ = 1, . . . ,m} are independent of each other

and of Z.

Our objective is to choose a sequence of arms (one at

each period) so as to maximize either the expected total or

discounted total rewards. Define the history of the process,

Ht−1, as the finite sequence of arms chosen and rewards

observed through the end of period t − 1. For each t ≥ 1,

let Ht−1 denote the set of possible histories up until the end

of period t − 1. A policy Ψ = (Ψ1,Ψ2, . . .) is a sequence

of functions such that Ψt : Ht−1 → {1, 2, . . . ,m} selects an

arm in period t based on the history until the end of period

t−1. For each policy Ψ, the total discounted reward is given

by E
[
∑∞

t=1 βtXt
Jt

]

, where 0 < β < 1 denotes the discount

factor, and the random variables J1, J2, . . . correspond to

the sequence of arms chosen under the policy Ψ, that is,

Jt = Ψt(Ht−1). For every T ≥ 1, we define the T -period

cumulative regret under Ψ given Z = z as Regret(z, T,Ψ) =
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∑T
t=1 E

[

maxℓ=1,...,m (ηℓ + uℓz) − (ηJt
+ uJt

z)
∣

∣ Z = z
]

,

and the T -period cumulative Bayes risk of the policy Ψ by

Risk (T, Ψ) = EZ [Regret (Z, T,Ψ)] .
Although classical formulations of the multiarmed bandit

problem often allow for dependence among the arms ([4],

[5], [6]), there is relatively little work on the analysis of

policies in settings with dependent arms. The papers [7], [8],

[9], [10], [11], and [12] analyze multiarmed bandit problems

with various forms of arm dependency.

II. INFINITE HORIZON WITH DISCOUNTED REWARDS

In this section, we consider the problem of maximizing

the total expected discounted reward. We make the following

assumption on the random variables Z and Et
ℓ .

Assumption 2.1:

(a) The random variable Z is continuous, and E
[

Z2
]

<
∞. Furthermore, for every t and ℓ, we have E [Eℓ] =
0 and γ2

ℓ := E
[

(Et
ℓ)

2 ]

< ∞.

(b) We have uℓ 6= 0, for every ℓ.

(c) If k 6= ℓ, then uk 6= uℓ.

Assumption 2.1(a) places mild moment conditions on

the underlying random variables, while Assumption 2.1(b)

ensures that the reward of each arm is influenced by the

underlying random variable Z. In Section II-C, we will ex-

plore the consequences of relaxing this assumption and allow

some of the coefficients uℓ to be zero. Finally, Assumption

2.1(c) is only introduced for simplicity and results in no loss

of generality. Indeed, if the coefficient uℓ is the same for

several arms, we should only consider playing one with the

largest value of ηℓ, and the others can be eliminated.

A. Complete Learning

Fix an arbitrary policy Ψ, and for every t, let Ft be the σ-

field generated by the history Ht under that policy. Let Yt =

E
[

Z
∣

∣ Ft

]

and Vt = E

[

(Z − Yt)
2 | Ft

]

= Var (Z | Ft) .

The following result states that, under Assumption 2.1, we

have complete learning for every policy Ψ.

Theorem 1: Under Assumption 2.1, for every policy Ψ,

Yt converges to Z and Vt converges to zero, almost surely.

Proof: Let us fix a policy Ψ, and let J1, J2, . . . be

the sequence of arms chosen under Ψ. The sequence {Yt}
is a martingale with respect to the filtration {Ft : t ≥ 0}.

Furthermore, since E
[

Z2
]

< ∞, it is a square integrable

martingale. It follows that Yt converges to a random variable

Y , almost surely, as well as in the mean-square sense.

Furthermore, Y is equal to E[Z | F∞], where F∞ is the

smallest σ-field containing Ft for all t ([13]).

We wish to show that Y = Z. For this, it suffices to show

that Z is F∞-measurable. To this effect, we define

Ŷt =
1

t

t
∑

τ=1

Xτ
Jτ

− ηJτ

uJτ

= Z +
1

t

t
∑

τ=1

Eτ
Jτ

uJτ

.

Then, Var(Ŷt−Z) = 1
t2

∑t
τ=1

γ2

Jτ

u2

Jτ

≤ maxℓ(γ
2

ℓ
/u2

ℓ
)

t . It follows

that Ŷt converges to Z in the mean square. Since Ŷt belongs

to F∞ for every t, it follows that its limit, Z, also belongs

to F∞. This completes the proof of convergence of Yt to Z.

The definition of Vt implies that Vt =E

[

(Z − Yt)
2 | Ft

]

=

E
[

Z2 | Ft

]

− Y 2
t , so that Vt is a nonnegative super-

martingale. Therefore, Vt converges almost surely (and

thus, in probability) to some random variable V . Since

limt→∞ E [Vt] = 0, Vt also converges to zero in probability.

Therefore, V = 0 with probability one.

In our problem, the rewards of the arms are correlated

through a single random variable Z to be learned, and

thus, we intuitively have only a “single” arm in our setting.

Because uncertainty is univariate, we have complete learning

under any policy. This is contrast with the classical multi-

armed bandit case, where the Incomplete Learning Theorem

(see, for example, [14]) states that no policy is guaranteed to

find the best arm. As a consequence of Theorem 1, we will

show in Theorem 3 in Section II-B that an optimal policy

will settle on the best arm with probability one.

B. A Greedy Policy

From Theorem 1, the posterior mean of Z, under any

policy, converges to the true value of Z almost surely. This

suggests that a simple greedy policy – one whose decision

at each period is based solely on the posterior mean – might

perform well. A greedy policy is a policy whose sequence

of decisions
(

JG
1 , JG

2 , . . .
)

is defined by: for each t ≥ 1,

JG
t = arg max

ℓ=1,...,m

{

ηℓ + uℓE
[

Z | FG
t−1

]}

,

where
{

FG
t : t ≥ 1

}

denotes the corresponding filtration; for

concreteness, we assume that ties are broken in favor of arms

with lower index. Note that the decision JG
t is a myopic

one, based only on the conditional mean of Z given the past

observations up until the end of period t − 1.

Intuitively, the quality of the greedy decision will depend

on the variability of Z relative to the difference between the

expected reward of the best and second best arms. To make

this concept precise, we introduce the following definition.

For any µ, let ∆(µ) denote the difference between the reward

of the best and the second best arms, that is,

∆(µ) = max
ℓ=1,...,m

{ηℓ + µuℓ}− max
ℓ=1,...,m: ℓ 6=πG(µ)

{ηℓ + µuℓ} ,

where πG(µ) = arg maxℓ=1,...,m {ηℓ + µuℓ}. Figure 1

shows an example of the function ∆(·) in a setting with

4 arms. Note that ∆(·) is a continuous and nonnegative

function. As seen from Figure 1, ∆(µ) may be zero for some

µ. However, given our assumption that the coefficients uℓ are

distinct, one can verify that ∆(µ) has at most m − 1 zeros.

The next theorem shows that, under any policy, if the

posterior standard deviation is small relative to the the mean

difference between the best and second best arms, then it is

optimal to use a greedy decision.

Theorem 2: Under Assumption 2.1, there exists a constant

δ that depends only on β and the coefficients uℓ, with the
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Fig. 1. An example of ∆(·) with 4 arms.

following property. If we follow a policy Ψ until some time

t − 1, and if

∆
(

E
[

Z
∣

∣ Ft−1

])

/
√

Var
[

Z
∣

∣ Ft−1

]

> δ ,

then it is optimal to apply the greedy policy in period t.
(Here, Ft−1 is the σ-field generated by the history Ht−1.)

Proof: Let us fix a policy Ψ and some t ≥ 1, and define

µt−1 = E [Z | Ft−1]. Let J∗ and R∗ denote the greedy

decision and the corresponding reward in period t: J∗ =
arg maxℓ=1,...,m {ηℓ + uℓµt−1} and R∗ = ηJ∗ + uJ∗µt−1.

We will first establish a lower bound on the total expected

discounted reward (from time t onward) associated with a

policy that uses a greedy decision in period t and thereafter.

For each s ≥ t − 1, let MG
s = E

[

Z | FG
s

]

denote the

conditional mean of Z under this policy, where FG
s is the

σ-field generated by the history of the process when policy

Ψ is followed for up to time t− 1, and the greedy policy is

followed thereafter, so that FG
t−1 = Ft−1. Under this policy,

the expected reward at each time s ≥ t is

E

[

max
ℓ=1,...,m

{ηℓ + uℓM
G
s−1}

∣

∣

∣
Ft−1

]

≥ R∗,

where we first used Jensen’s inequality and the fact that the

sequence MG
s , s ≥ t − 1, forms a martingale. Thus, the

present value at time t of the expected discounted reward

under a strategy that uses a greedy decision in period t and

thereafter is at least R∗/(1 − β).

Now, consider any policy that differs from the greedy

policy at time t, and plays some arm k 6= J∗. Let

Rk = ηk + ukE [Z | Ft−1] = ηk + ukµt−1 denote the

immediate expected reward in period t. The future rewards

under this policy are upper bounded by the expected reward

under the best arm. Thus, under this policy, the expected

total discounted reward from t onward is upper bounded

by Rk + β
1−β E

[

maxℓ=1,...,m{ηℓ + uℓZ}
∣

∣

∣
Ft−1

]

. Using

the fact that maxℓ {ηℓ + uℓZ} ≤ maxℓ{ηℓ + uℓµt−1} +
maxℓ {uℓ(Z − µt−1)} = R∗ + maxℓ {uℓ(Z − µt−1)}, we

can show that the future rewards under this policy are upper

bounded by

Rk+
β

1 − β
R∗+

β

1 − β
E

[

max
ℓ=1,...,m

{uℓ (Z − µt−1 )}
∣

∣

∣
Ft−1

]

.

Note that E
[

maxℓ{uℓ (Z − µt−1 )}
∣

∣Ft−1

]

≤
(maxℓ |uℓ|) (Var(Z | Ft−1))

1/2, which implies that the

present value at time t of the total discounted reward is

upper bounded by

Rk +
β

1 − β
R∗ +

β

1 − β

(

max
ℓ=1,...,m

|uℓ|
)

√

Var
(

Z
∣

∣ Ft−1

)

Recall that the total discounted reward under the greedy

policy is at least R∗/(1−β) = R∗+βR∗/(1−β). Moreover,

for any arm k 6= J∗, R∗ ≥ Rk + ∆(µt−1), and thus,

R∗

(1 − β)
≥ Rk + ∆ (µt−1) +

β

1 − β
R∗

Comparing the expected discounted rewards of the two

policies, we see that a greedy policy is better than any policy

that takes a non-greedy action if

∆(µt−1) >
β

1 − β

(

max
ℓ=1,...,m

|uℓ|
)

√

Var
(

Z
∣

∣ Ft−1

)

,

which is the desired result.

It is straightforward to combine Theorems 1 and 2 to prove

that the greedy and optimal policies both settle on the best

arm with probability one. For the sake of brevity, we state

the following result without proof.

Theorem 3: Under Assumption 2.1, an optimal policy

eventually agrees with the greedy policy, and both settle on

the best arm with probability one.

C. Relaxing Assumption 2.1(b) Can Lead to Incomplete

Learning

In this section, we briefly discuss the consequences of

allowing the coefficients uℓ to be zero for some arms. For

the remainder of the section, we restrict our attention to a

setting where the underlying random variables Z and Et
ℓ are

normally distributed. Given this assumption, it is straightfor-

ward to formulate the problem as a Markov Decision Process

(MDP) with state characterized by (µ, σ), where µ and σ
are the posterior mean and the posterior standard deviation,

respectively. This state can be updated based on observations

using well-known formulas. The expected reward of pulling

arm ℓ in state (µ, σ) is r ((µ, σ) , ℓ) = ηℓ + uℓµ. Although

the reward function is unbounded, it follows from Theorem

1 in [15] that a stationary policy is optimal.

If we restrict ourselves to stationary policies, when an arm

ℓ is played with uℓ = 0, the state remains the same and the

policy will keep playing the same arm forever. Thus, an arm

with uℓ = 0 can be viewed as a “retirement option”. When

such a retirement option exists (without loss of generality, we

may assume that this option corresponds to the arm ℓ = 1
with u1 = 0), we can construct examples where either an

optimal or a greedy policy will retire on the wrong arm with

positive probability. We have the following result.

Theorem 4: If the random variables Z and Et
ℓ are nor-

mally distributed, and if η1 > maxℓ:uℓ 6=0{ηℓ + uℓµ} for

some µ ∈ R, then the optimal and greedy policies disagree

forever with positive probability. Furthermore, under either

the optimal or the greedy policy, there is positive probability

of retiring even though arm 1 is not the best arm.
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III. FINITE HORIZON WITH UNDISCOUNTED REWARDS

We now consider a finite horizon version of the problem,

under the expected total reward criterion, and focus on

identifying a policy with small cumulative Bayes risk. As

in Section II, a simple greedy policy performs well in

this setting. We introduce the following assumption on the

coefficients uℓ and on the error random variables Et
ℓ .

Assumption 3.1:
(a) There exist positive constants b, and λ such that for

every ℓ and x ≥ 0, Pr
(

|Et
ℓ| ≥ x

)

≤ be−λx,
(b) There exist positive constants u and u such that for

every ℓ, u ≤ |uℓ| ≤ u .

We view b, λ, u and u as absolute constants, which are the

same for all instances of the problem under consideration.

Our subsequent bounds will depend on these constants,

although the dependence will not be made explicit. The first

part of Assumption 3.1 states that the tails of the random

variables |Et
ℓ| decay exponentially. It is equivalent to an

assumption that all |Et
ℓ| are stochastically dominated by a

shifted exponential random variable. We use the above obser-

vations to derive an upper bound on the moment generating

function of Et
ℓ , and then a lower bound on the corresponding

large deviations rate function, ultimately resulting in tail

bounds for the estimators Yt given in the following theorem.

Theorem 5: Under Assumption 3.1, there exist positive

constants f1 and f2 depending only on the parameters b,

λ, u, and u, such that for every t ≥ 1, a ≥ 0, and z ∈ R,

Pr (|Yt − z| > a | Z = z) ≤ e−f1ta + e−f1ta2

,

E

[

(Yt − z)2
∣

∣

∣
Z = z

]

≤ f2

t , and E

[

|Yt − z|
∣

∣

∣
Z = z

]

≤ f2√
t

.

The second part of Assumption 3.1 requires, in particular,

the coefficients uℓ to be nonzero. It is imposed because if

some uℓ is zero, then, the situation is similar to the one

encountered in Section II-C: a greedy policy may settle on

a non-optimal arm, with positive probability, resulting in a

cumulative regret that grows linearly with time.

We will study the following variant of a greedy policy.

Greedy Policy for Finite Horizon Undiscounted Rewards

Initialization: Set Y0 = 0.

Description: For periods t = 1, 2, . . .

1) Sample arm Jt = arg maxℓ=1,...,m {ηℓ + Yt−1uℓ},

with ties broken arbitrarily.

2) Let Xt
Jt

denote the observed reward from arm Jt.

3) Update the estimate Yt by letting Yt =
(1/t)

∑t
s=1

(

Xs
Js

− ηJs

)

/uJs
.

Output: A sequence of arms played {Jt : t = 1, 2, . . .}.

The two main results of this section are stated in the

following theorems. The first provides an upper bound on

the regret Regret (z, T, GREEDY) under the GREEDY policy.

The proof is given in Section III-A.

Theorem 6: Under Assumption 3.1, there exist positive

constants c1 and c2 that depend only on the parameters b, λ,

u, and u, such that for every z ∈ R and T ≥ 1,

Regret (z, T, GREEDY) ≤ c1|z| + c2

√
T .

Furthermore, the above bound is tight in the sense that there

exists a problem instance involving two arms and a positive

constant c3 such that, for every policy Ψ and T ≥ 2, there

exists z ∈ R with

Regret (z, T,Ψ) ≥ c3

√
T .

On the other hand, for every problem instance that satis-

fies Assumption 3.1, and every z ∈ R, the infinite hori-

zon regret under the GREEDY policy is bounded; that is,

limT→∞ Regret (z, T, GREEDY) < ∞.

From the regret bound of Theorem 6, and by taking

expectation with respect to Z, we obtain an easy upper bound

on the cumulative Bayes risk, namely, Risk(T, GREEDY) =
O(

√
T ). Furthermore, the tightness results suggest that this

bound may be the best possible. Surprisingly, as established

by the next theorem, if Z is continuous and its prior

distribution has a bounded density function, the cumulative

Bayes risk only grows at the rate of O (log T ), independent

of the number of arms. The proof is given in Section III-B.

Theorem 7: Under Assumption 3.1, if Z is a continuous

random variable whose density function is bounded above

by A, then exist positive constants d1 and d2 that depend

only on A and the parameters b, λ, u, and u, such that for

every T ≥ 1,

Risk (T, GREEDY) ≤ d1E [|Z|] + d2 lnT .

Furthermore, this bound is tight in the sense that there exists

a problem instance with two arms and a positive constant d3

such that for every T ≥ 1, and every policy Ψ,

Risk (T, Ψ) ≥ d3 lnT .

The above risk bound is smaller than the lower bound of

Ω
(

log2 T
)

established by [1]. To understand why this is not

a contradiction, let Xℓ denote the mean reward associated

with arm ℓ, that is, Xℓ = ηℓ + uℓZ, for all ℓ. Then, for

any i 6= ℓ, Xi and Xℓ are perfectly correlated, and the

conditional distribution Pr {Xℓ ∈ · | Xi = xi} of Xℓ given

Xi = xi is degenerate, with all of its mass at a single point.

In contrast, the Ω
(

log2 T
)

lower bound of [1] assumes that

the cumulative distribution function of Xℓ, conditioned on

Xi, has a continuous and bounded derivative over an open

interval, which is not the case in our model.

A. Regret Bounds: Proof of Theorem 6

In this section, we will establish an upper bound on the

regret, conditioned on any particular value z of Z, and

establish its tightness. Let us first introduce some notation.

We define a reward function g : R → R, as follows: for

every z ∈ R, we let

g(z) = max
ℓ=1,...,m

{ηℓ + uℓz}.

Note that g(·) is convex. Let g+(z) and g−(z) be the right-

derivative and left-derivative of g(·) at z, respectively. These

directional derivatives exist at every z, and by Assumption

3.1, max {|g+(z)|, |g−(z)|} ≤ u for all z. Both left and right

derivatives are nondecreasing with g+(−∞) = g−(−∞) =
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z

!1+u1z
!2+u2z

max {!1+u1z, !2+u2z}

Fig. 2. The two-arm instance with (η1, u1) = (0, 1) and (η2, u2) =
(0,−1), used to prove the tightness result in Theorem 6.

minℓ uℓ and g+(∞) = g−(∞) = maxℓ uℓ. (We define

g+(∞) = limz→∞ g+(z), etc.) We define a measure µ on

R as follows: for any b ∈ R, let

µ
(

(−∞, b]
)

= g+(b) − g+(−∞). (2)

It is easy to check that if a ≤ b, µ([a, b]) = g+(b)− g−(a).
Note that this measure is finite with µ(R) ≤ 2u.

Consider a typical time period. Let z be the true value

of the parameter, and let y be an estimate of z. A best arm

j∗ is such that g(z) = ηj∗ + uj∗z. Given the estimate y, a

greedy policy selects an arm j such that g(y) = ηj + ujy.
In particular, ηj + ujy ≥ ηj∗ + uj∗y, which implies that

ηj∗−ηj ≤ −(uj∗−uj)y. Therefore, the instantaneous regret,

which we denote by r(z, y), can be bounded as follows:

r(z, y) = ηj∗ + uj∗z − ηj − ujz ≤ (uj∗ − uj)(z − y).

Since g−(y) ≤ uj ≤ g+(y) and g−(z) ≤ uj∗ ≤ g+(z),

r(z, y) ≤
(

g+(z ∨ y) − g−(z ∧ y)
)

· |z − y| (3)

= µ
(

[z ∧ y, z ∨ y]
)

· |z − y|.
Since µ(R) ≤ 2ū, given an estimate Yt of Z, the

instantaneous regret in period t + 1 is bounded above by

E[r(z, Yt) | Z = z] ≤ 2uE[|z − Yt| | Z = z] ≤ c4√
t

for some constant c4, where the last inequality follows from

Theorem 5. Since
∑T−1

t=1 1/
√

t ≤ 2
√

T , it follows that the

cumulative regret until time T is bounded above by

Regret(z, T, GREEDY) ≤ 2u|z| + 2c4

√
T ,

where we use the fact that the instantaneous regret incurred

in period 1 is bounded above by 2u|z| because Y0 = 0. This

proves the upper bound on regret given in Theorem 6.

To establish the tightness result, we consider a problem

instance with two arms with (η1, u1) = (0, 1) and (η2, u2) =
(0,−1), as illustrated in Figure 2. Fix a policy Ψ and T ≥ 2.

Let z0 = 1/
√

T . Also, let Prz0
{·} and Pr−z0

{·} denote

Pr
{

·
∣

∣ Z = z0

}

and Pr
{

·
∣

∣ Z = −z0

}

, respectively. Then,

max {Regret(z0, T,Ψ), Regret(−z0, T,Ψ)}

= 2z0 max

{

T
∑

t=1

Prz0
{Jt = 2} ,

T
∑

t=1

Pr−z0
{Jt = 1}

}

≥ 2z0

T
∑

t=1

1

2

(

Prz0
{Jt = 2} + Pr−z0

{Jt = 1}
)

, (4)

where the inequality follows from the fact that the maximum

of two numbers is lower bound by their average. For this

problem instance, we assume that the random variables Et
ℓ

have a standard normal distribution. We recognize the right-

hand side in Eq. (4) as the Bayesian risk in a finite horizon

Bayesian variant of our problem, where Z is equally likely

to be z0 or −z0. This can be formulated as a (partially ob-

servable) dynamic programming problem whose information

state is Yt (because Yt is a sufficient statistic, given past

observations). Since we assume that the random variables

Et
ℓ have a standard normal distribution, the distribution of

Yt, given either value of Z, is always normal, with mean

Z and variance 1/t, independent of the sequence of actions

taken. Thus, we are dealing with a problem in which actions

do not affect the distribution of future information states;

under these circumstances, a greedy policy that myopically

maximizes the expected instantaneous reward at each step is

optimal. Hence, it suffices to prove a lower bound for the

right-hand side of Eq. (4) under the greedy policy.

By symmetry, under the greedy policy, we have

2z0

T
∑

t=1

1

2

(

Prz0
{Jt = 2} + Pr−z0

{Jt = 1}
)

=
2√
T

T
∑

t=1

Prz0
{Jt = 2} =

2√
T

T
∑

t=1

Prz0
(Yt < 0).

Let W denote a standard normal random variable. Since z0 =
1/
√

T , we have, for t ≤ T ,

Prz0
(Yt < 0) = Pr

(

z0 +
W√

t
< 0

)

= Pr

(

W < −
√

t√
T

)

≥ Pr(W < −1) ≥ 0.15.

It follows that Regret(z0, T, GREEDY) ≥ 0.3
√

T . This im-

plies that for any policy Ψ, there exists a value of Z (either

z0 or −z0), for which Regret(z, T,Ψ) ≥ 0.3
√

T .

We finally prove the last statement in Theorem 6. Fix some

z ∈ R, and let j∗ be an optimal arm. There is a minimum dis-

tance d > 0 such that the greedy policy will pick an inferior

arm j 6= j∗ in period t+1 only when our estimate Yt differs

from z by at least d (that is, |z − Yt| ≥ d). By Theorem 5,

the expected number of times that we play an inferior arm

j is bounded above by
∑∞

t=1 Pr {|z − Yt| ≥ d | Z = z} ≤
2

∑∞
t=1

(

e−f1td +e−f1td2)

< ∞. Thus, the expected number

of times that we select suboptimal arms is finite.

B. Bayes Risk Bounds: Proof of Theorem 7

We assume that the random variable Z is continuous, with

a probability density function pZ(·), which is bounded above

by A. The argument below involves integrals with respect to

the measure µ introduced in Section III-A (see Equation (2)).

Consider an arbitrary time t + 1 at which we make a

decision based on the estimate Yt computed at the end of pe-

riod t. It follows from the upper bound on the instantaneous

regret (see Equation (3)) that the instantaneous Bayes risk at

time t + 1 is bounded above by E
[

(g+(Z) − g−(Yt))(Z −
Yt)1lYt≤Z

]

+ E
[

(g+(Yt)− g−(Z))(Yt −Z)1lZ≤Yt

]

. We will

derive a bound just on the term E[(g+(Yt) − g−(Z))(Yt −
Z)1lZ≤Yt

]. The same bound is obtained for the other term,
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through an identical argument. Since µ([a, b]) = g+(b) −
g−(a) whenever a ≤ b, we have

E
[

(g+(Yt) − g−(Z))(Yt − Z)1lZ≤Yt

]

= E

[

∫

q∈[Z,Yt]

(Yt − Z)1lZ≤Yt
dµ(q)

]

= E

[

∫

1lZ≤q1lYt≥q(Yt − Z)1lZ≤Yt
dµ(q)

]

=

∫

E
[

1lZ≤q1lYt≥q(Yt − Z)
]

dµ(q).

The interchange of the integration and the expectation is jus-

tified by Fubini’s Theorem, because 1lZ≤q1lYt≥q(Yt−Z) ≥ 0.

Though we omit the details of the argument, we can use

Theorem 5 to show that for any q ∈ R,

E
[

1lZ≤q1lYt≥q(Yt − Z)] ≤ d4

t
,

for some constant d4 that depends only on the parameters u,

u, b, and λ of Assumption 3.1. Since
∫

dµ(q) = µ(R) ≤ 2u,

it follows that the instantaneous Bayes risk incurred in period

t + 1 is at most 2ud4/t. Then, the cumulative Bayes risk is

bounded above by

Risk(T, GREEDY) ≤ 2uE [|Z|] + 2ud4 lnT.

It remains to establish the tightness of our bound. We

consider again the two-arm example of Figure 2, and also

assume that Z is uniformly distributed on [−2, 2]. Consider

an arbitrary time t ≥ 2 and suppose that z = 1/
√

t, so

that arm 1 is the best one. In the proof of Theorem 6, we

have shown that the expected instantaneous regret in period

t under the GREEDY policy is at least 0.30/
√

t. A simple

modification of this argument shows that for any z between

1/
√

t and 2/
√

t, the expected instantaneous regret in period

t is at least d5/
√

t, where d5 is a positive number (easily

determined from the normal tables). Since Pr(1/
√

t ≤ Z ≤
2/
√

t) = 1/(4
√

t), we see that the instantaneous Bayes risk

at time t is at least d5/(4t). Consequently, the cumulative

Bayes risk satisfies

Risk(T, GREEDY) ≥ d6 lnT,

for some new numerical constant d6. As we have argued in

the proof of Theorem 6, for this two-arm problem instance,

the greedy policy is optimal. It follows that that the lower

bound we have established actually applies to all policies.

IV. NUMERICAL RESULTS

We summarize a numerical study comparing our greedy

policy with a policy that assumes independent arms. We

choose the well-known independent-arm multiarmed bandit

policy of [1], to be referred to as “Lai87”, which provides

performance guarantees for a wide range of priors, including

priors that allow for dependence between the arm rewards

[1]. However, Lai87 policy tracks separate statistics for each

arm, and thus does not take advantage of the known values

of the coefficients ηℓ and uℓ.

We consider problem instances with 5 arms, where all

of the coefficients ηℓ and uℓ are generated randomly and
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Fig. 3. Instantaneous rewards and per-period average cumulative regret
for randomly generated problem instances with m = 5, averaged over
5000 paths. Differences between the policies in the right-hand plot are all
significant at the 95% level.

independently, according to a uniform distribution on [−1, 1].
We assume that the random variables Et

ℓ are normally

distributed, with mean zero and variance γ2
ℓ = 1. For each

of 5000 instances, we sample a value z from the standard

normal distribution and compute arm rewards according to

Equation (1) for T = 100 time periods. We compare the

two policies with an oracle policy that knows the true value

of z and always chooses the best arm. In Figure 3, we plot

for the case m = 5, instantaneous rewards Xt
Jt

and per-

period average cumulative regret, 1
t

∑t
s=1(X

s
oracle − Xs

Js
),

both averaged over the 5000 paths.

We observe that the greedy policy appears to converge

faster than Lai87, and we found the difference to be greater

for larger m, supporting the insight from Theorem 7, that

Bayes risk under our greedy policy is independent of m.
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