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Abstract— In modern robust control, control synthesis may
be cast as an interpolation problem where the interpolant
relates to robustness and performance criteria. In particular,
robustness in the gap fits into this framework and the mag-
nitude of the corresponding interpolant dictate the robustness
to perturbations of the plant as a function of frequency. In
this paper we consider the correspondence between weighted
entropy functionals and minimizing interpolants in order to
find appropriate interpolants for e.g. control synthesis. There
are two basic issues that we address: we first characterize
admissible shapes of minimizers by studying the corresponding
inverse problem, and then we develop effective ways of shaping
minimizers via suitable choices of weights. These results are
used in order to systematize feedback control synthesis to obtain
frequency dependent robustness bounds with a constraint on
the controller degree.

I. INTRODUCTION

The topic of this paper relates to the framework and

the mathematics of modern robust control. The foundational

work [33] of George Zames in the early 1980’s cast the basic

robust control problem as an analytic interpolation problem,

where interpolation constraints ensure stability of the feed-

back scheme, and a norm bound guarantees performance and

robustness. In this context, the analytic interpolant represents

a particular transfer function of the feedback system. The

work of Zames and the fact that the degree of the interpolant

relates to the dimension of the closed-loop system motivated

a program to investigate analytic interpolation with degree

constraint (see [8], [9]). This led to an approach based on

convex optimization, in which interpolants of a certain degree

are obtained as minimizers of weighted entropy functionals.

In this paper we study the correspondence between weights

and such interpolants, and we develop a theory which allows

for systematic shaping of interpolants to specification.

The basic issue of how the choice of weights and indices

in optimization problems affects the final design is by no

means new. It was R.E. Kalman [20] who, in the context of

quadratic optimal control, first raised the question of what

it is that characterizes optimal designs and, further, how to

describe all performance criteria for which a certain design

is optimal. Following Kalman’s example we study here the

analogous inverse problem for analytic interpolation with

complexity constraint.

The analysis of the inverse problem leads to a new pro-

cedure for feedback control synthesis. More specifically, the

quality of control depends on the frequency characteristics

of the interpolant, which in turn dictates the loop shape of

the feedback control system. The theory of [8], [9] provides

a parametrization of all interpolants, having degree less than

the number of interpolation constraints, in terms of weights

in a suitable class. The choice of weights for feedback control

design via this procedure has been the subject of several

papers (see e.g., [27], [28]). The challenge stems from the

fact that the correspondence between weights and the shape

of interpolants is nonlinear. One of the contributions of this

paper is to develop a systematic procedure for the selection

of weights based on the inverse problem.

The synthesis proceeds in two steps. We first obtain an in-

terpolant with the required shape, but without any restriction

on the degree. Then, via the inverse problem, we identify

all weights for which the given interpolant is a minimizer

of the corresponding entropy functional. The problem of

approximating the interpolant by one of lower degree is then

replaced by approximating weights in a suitable class. This

approximation problem is quasi-convex and can be solved

by standard methods. Hence we have replaced a non-convex

problem by one that is tractable.

This paper is a short version of [22] which is a consid-

erable extension of [21]. If nothing else is stated, proofs of

theorems, propositions, and lemmas are found in [22]. In

Section II we establish notation and review basic facts on

bounded analytic interpolation and complexity-constrained

interpolation. We only discuss interpolation in the unit disc

D = {z : |z| < 1}, but the theory applies equally well to

interpolation in the half plane. In Section III we consider

a robust design example where the robustness margin is

frequency-dependent. In Section IV we provide the char-

acterization of minimizers of weighted entropy functionals

and describe the set of weights which give interpolants of a

prespecified bounded degree. Here we also formulate and

solve the inverse problem which is one of the key tools

needed in the paper. In Section V we study continuity

properties of the mapping from weights to minimizers, and

in Section VI we develop a method for degree reduction

of interpolants via the corresponding weights. Finally, in

Section VII, we revisit the motivating example of Section

III and apply the procedure of Section VI.

II. BACKGROUND

Given complex numbers z0, z1, . . . , zn in D which we

assume to be distinct for simplicity, and given complex

numbers w0, w1, . . . , wn, the classical Pick interpolation

problem asks for a function f in the Schur class

S = {f ∈ H∞(D) : ‖f‖∞ ≤ 1}

which satisfies the interpolation condition

f(zk) = wk, k = 0, 1, . . . , n, (1)
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where H∞(D) (or simply H∞) is the Hardy space of

bounded analytic functions on D. It is well-known (see, e.g.,

[12]) that such a function exists if and only if the Pick matrix

P =

[

1 − wkw̄ℓ

1 − zkz̄ℓ

]n

k,ℓ=0

(2)

is positive semi-definite. The solution is unique if and only

if P is singular, in which case f is a Blaschke product of

degree equal to the rank of P . In this paper, throughout, we

assume that P is positive definite and hence that there are

infinitely many solutions to the Pick problem. A complete

parameterization of all solutions was given by Nevanlinna

(see e.g. [1]), and for this reason the subject is often referred

to as Nevanlinna-Pick interpolation.

In engineering applications f usually represents the trans-

fer function of a feedback control system or of a filter, and

therefore the McMillan degree of f is of significant interest.

Thus, it is natural to require that f be rational and of bounded

degree. Such a constraint completely changes the nature of

the underlying mathematical problem.

Following [9], [17], we consider the generalized entropy

functional KΨ : S → R ∪∞, defined by

KΨ(f) = −

∫

T

Ψ log(1 − |f |2)dm, (3)

where Ψ is a non-negative log-integrable function on T =
{z = eiθ : θ ∈ (−π, π]} and dm := dθ/2π is the

(normalized) Lebesgue measure on T. We study how the

minimizer of

min{KΨ(f) : f ∈ S, f(zk) = wk, k = 0, . . . , n} (4)

depends on the weighting function Ψ and then determine

when an interpolant f is attainable as a minimizer of (4)

for a suitable choice of Ψ. One particularly interesting case,

as we will see below, is when Ψ = |σ|2 and σ belongs to

the class of rational functions with poles at the conjugate

inverses of the interpolation points.

Let φ be the Blaschke product

φ(z) =

n
∏

k=0

zk − z

1 − z̄kz
(5)

and let U : f(z) → zf(z) denote the standard shift operator

on H2. Then φH2 is a shift invariant subspace, i.e. f ∈
φH2 implies that U(f) = zf ∈ φH2. Denote by K the co-

invariant subspace H2⊖φH2. Then K is invariant under U∗,

where U∗ denotes the adjoint of U . Let K0 denote the set

of outer functions in K that are positive at the origin. The

following result is taken from [9].

Theorem 1: Suppose that the Pick matrix (2) is positive

definite, and let σ be an arbitrary function in K0. Then there

exists a unique pair of elements (a, b) ∈ K0 × K such that

(i) f = b/a ∈ H∞ with ‖f‖∞ ≤ 1
(ii) f(zk) = wk, k = 0, 1, . . . , n, and

(iii) |a|2 − |b|2 = |σ|2 a.e. on T.

Conversely, any pair (a, b) ∈ K0 × K satisfying (i) and (ii)

determines, via (iii), a unique σ ∈ K0. Moreover, setting Ψ =
|σ|2, the optimization problem

min KΨ(f) s.t. f(zk) = wk, k = 0, . . . , n

has a unique solution f that is precisely the unique f ∈ S

satisfying conditions (i), (ii) and (iii).

We define

τ(z) :=

n
∏

k=0

(1 − z̄kz),

where {zk}
n
k=0 are the interpolation points. Then, it is easy

to see that

K =

{

p(z)

τ(z)
: p ∈ Pol(n)

}

,K0 =

{

p(z)

τ(z)
: p ∈ Pol+(n)

}

,

where Pol(n) denotes the set of polynomials of degree at

most n, and where Pol+(n) denotes the subset of polyno-

mials p ∈ Pol(n) such that p(z) 6= 0 in D and p(0) > 0.

The function σ = p/τ ∈ K0 with p ∈ Pol+(n), as in

the theorem, represents a spectral factor of the nonnegative

function 1− |f |2 on the unit circle. Thus, the n roots of the

polynomial znp̄(z−1) are often referred to as spectral zeros.

We also note that the degree of f may be less than n, which

happens when a, b, and σ, have common roots.

The theorem, stated in [9], allows for considerably more

general interpolation conditions than (ii). In the case where

the points {z0, . . . , zn} are not necessarily distinct, condition

(ii) needs to be replaced by

f = f0 + φq with q ∈ H∞(D),

which encapsulates interpolation of derivatives as well. The

theorem is also valid when φ is an arbitrary inner function.

The background to the derivation of Theorem 1 has a long

history. The existence part of the parameterization was first

proved in the covariance extension case in [13], [14] and in

the Nevanlinna-Pick case in [15]. The uniqueness part (as

well as well-posedness) in [7]. The optimization approach

was initiated in [5] (also, see the extended version [6]) and

further developed in, e.g., [8], [4], [16].

III. FREQUENCY-DEPENDENT ROBUSTNESS MARGIN

To motivate our procedure we consider a problem related

to H∞ loop-shaping and robustness in the gap metric.

Let P0 denote the transfer function of a single-input,

single-output finite-dimensional linear system

P0 =
N0

M0
,

with stable coprime factors M0, N0 ∈ H∞, normalized to

satisfy

M∗
0M0 +N∗

0N0 = 1, on T, (6)

where f(z)∗ := f(z̄−1). Then, as is well-known, all stabi-

lizing controllers for P0 are parameterized by q ∈ H∞ via

C =
U0 +M0q

V0 +N0q
, (7)
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where U0, V0 ∈ H∞ satisfy V0M0 − U0N0 = 1, see, e.g.,

[10], [30]. To model perturbations of the coprime factors for

frequency-dependent uncertainty, we consider plants P =
N/M such that

∥

∥

∥

∥

(

M(z) −M0(z)
N(z) −N0(z)

)
∥

∥

∥

∥

< α|w(z)| for z ∈ T, (8)

where ‖ · ‖ denotes Euclidean vector norm and w is an outer

function shaping the radius. Moreover, the size of the radius

is controlled by a separate scaling parameter α ∈ R+. Thus,

we consider the problem of robust stabilization of the ball

of plants

B(P0, αw) :=

{

P =
N

M
: (8) holds

}

,

around the center P0.

As shown in [31], a controller specified by q stabilizes

B(P0, αw) provided
∥

∥

∥

∥

(

U0 +M0q
V0 +N0q

)

αw

∥

∥

∥

∥

∞

≤ 1. (9)

This condition can be expressed as a Nevanlinna-Pick prob-

lem. Indeed, taking advantage of the normalization of the

coprime factors as in [24] (see also [18]), we define the

transformation

Z :=

(

M∗
0 N∗

0

−N0 M0

)

which is unitary, i.e., ZZ∗ = Z∗Z = I . We also denote by

φ the Blaschke product that vanishes at the conjugate inverse

of the poles of M0, N0. Hence, φM∗
0 , φN∗

0 ∈ H∞. Then,

the left hand side of (9) is
∥

∥

∥

∥

(

φ 0
0 1

)

Z

(

U0 +M0q
V0 +N0q

)

αw

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

(

F
1

)

αw

∥

∥

∥

∥

∞

,

(10)

where F0 = φM∗
0U0 + φN∗

0V0 ∈ H∞ and

F = F0 + φq. (11)

It can be seen that the values of F at the roots of φ are

independent of q and are specified by the plant. Moreover,

as seen from (10), condition (9) holds provided F ∈ H∞

satisfies (11) and

√

|F |2 + 1 ≤
1

α|w|
, on T. (12)

Conversely, for any F ∈ H∞ satisfying (11), there corre-

sponds a unique parameter q and a controller C, where C
stabilizes the ball of plants B(P0, αw) with radius

α|w| = (|F |2 + 1)−
1
2 .

Furthermore, if the degree of F is small, so is the degree of

the controller C. This is stated in the following proposition.

Proposition 2: Let F ∈ H∞ satisfy (11) and C be the

controller specified via (11) and (7). Then

degC ≤ degF.

We consider

ΠP//C :=

( P0

1−P0C
−P0C
1−P0C

1
1−P0C

−C
1−P0C

)

= Z∗

(

1 −φ∗F
0 0

)

Z,

which is the matrix of transfer functions from disturbances at

the input and output ports of the plant to the plant input and

output. This is a rank-one matrix function (see [18]) with

singular value
√

|F |2 + 1. Thus, the shape of |F | relates

directly to amplification of external disturbances in the loop,

and it also dictates how robust the control system is to plant

uncertainty in the coprime factor (or, in the gap metric; cf.

[24], [18]). In fact,

bopt(P ) := max
C stabilizing

‖ΠP//C‖
−1
∞

is precisely the optimal robustness radius for gap-ball un-

certainty (see [18]) and coincides with 1/
√

|F |2 + 1 for the

smallest ‖F‖∞ consistent with (11).

The use of a frequency-dependent weight w allows shap-

ing the loop-gain [24] as well as the performance and the

robustness of the closed-loop system over different frequency

bands [31], [3], [32]. By scaling α in (12) one can maximize

the radius of B(P0, αw) for which a stabilizing controller

exists (as in [31], [24], [18]). The maximal value αmax and

the optimal interpolant F , consistent with (11) and (12),

satisfy

|F |2 =
1 − α2

max|w|
2

α2
max|w|

2
.

Thus the use of a nontrivial weight w forces the interpolant

to have a nontrivial outer factor. This causes a corresponding

increase in the degree of the closed-loop system and of the

controller. In this paper we shall develop techniques for

reducing the degree of the control system while relaxing

design requirements in a controlled fashion, and to illustrate

this we shall consider a design example in Section VII.

IV. CHARACTERIZATION OF KΨ-MINIMIZERS AND THE

INVERSE PROBLEM

Theorem 1 provides a (complete) parametrization of

Nevanlinna-Pick interpolants of degree ≤ n. It states that

such interpolants are in correspondence with Ψ = |σ|2

for σ ∈ K0. Furthermore, it states that such interpolants

originate as minimizers of the generalized entropy integral

KΨ specified by such a weight Ψ. In this paper we are also

interested in interpolants of higher degree. Thus, we are led

to consider KΨ-entropy minimizers for more general choices

of Ψ. Indeed, the entropy functional KΨ can be defined for

arbitrary nonnegative functions Ψ and since the minimizer

relates algebraically to Ψ, choices of a rational Ψ generate

minimizers of a suitable degree. Thus, he following theorem

is a generalization of Theorem 1 which allows for the use

of general weights Ψ. This is one of our main results.

Theorem 3: Suppose that the Pick matrix (2) is positive

definite and Ψ is a log-integrable nonnegative function on the

unit circle. A function f is a minimizer of (4) if and only if

the following three conditions hold:

(i) f(zk) = wk for k = 0, . . . , n,
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(ii) f = b
a ∈ S where b ∈ K and a is outer,

(iii) Ψ = |a|2 − |b|2.

Any such minimizer is necessarily unique.

As seen from Theorem 1, any choice of Ψ = |σ|2 with

σ ∈ K0 gives rise to a, b ∈ K, and hence to an interpolant

f with a degree bounded by n. Even if Ψ is rational of an

arbitrarily high degree or is irrational, b still belongs to K. In

fact, the additional “complexity” is absorbed in a. Naturally,

in such a case, the interpolant f will also be rational of a high

degree or irrational, respectively. This observation allows us

to characterize all minimizers of KΨ of degree at most n+m
for any given m ∈ N+. More specifically, let

Km :=
{

σ = σ0p : σ0 ∈ K0, deg p ≤ m,

p outer, p(0) > 0
}

=
{ q

τπ
: π ∈ Pol+(m), q ∈ Pol+(n+m)

}

.(13)

The following statement gives the sought characterization.

Proposition 4: Let Ψ = |σ|2 with σ ∈ Km. Then the

minimizing function f in (4) satisfies

(i) f(zk) = wk for k = 0, . . . , n,

(ii) f has at most n zeros in D,

(iii) the degree of f is at most n+m.

Conversely, for any f ∈ S which satisfies (i), (ii), and (iii),

there exists a corresponding choice of σ ∈ Km so that f is

the minimizer of (4).

Corollary 5: If f ∈ S is a minimizer of KΨ for some

choice of a log-integrable non-negative function Ψ, then f has

at most n zeros in D.

This corollary underscores the significance of Theorem 3 for

understanding the structure of minimizers.

We now consider the inverse problem of ananlytic inter-

polation with a degree constraint, namely the problem to

decide when a particular interpolant is a minimizer of some

weighted entropy functional, and if so, to determine the set of

all admissible weights. It turns out that the number of roots

in D determine whether an interpolant f is a minimizers

of KΨ for some choice of Ψ. Furthermore, it is possible to

characterize all such Ψ. This is stated below.

Proposition 6: Any function f ∈ S that satisfies

(i) f(zk) = wk for k = 0, . . . , n,

(ii) f has at most n zeros in D,

(iii) log(1 − |f |2) ∈ L1(T),

is the unique minimizer of (4) for

Ψ = (|f |−2 − 1)|b|2 (14)

with b ∈ K chosen so that bf−1 is outer. Conversely, a

(nonzero) function f having more than n zeros in D cannot

arise as the minimizer of (4) for any choice of Ψ.

The choice of b ∈ K in Theorem 6 is not unique, in

general. The selection of b must prevent bf−1 from having

poles in D, and hence any zero of f must also be a zero

of b. If f has more than n zeros in D, there is no such b,
whereas if f has exactly n zeros in D, then b is uniquely

defined. In all other cases, when f has nf < n zeros in D,

the family of possible choices of b, and hence the family of

possible weights

{Ψ : Ψ = (|f |−2 − 1)|b|2, b ∈ K, bf−1outer}

has dimension n − nf . The design freedom offered by this

nonuniqueness will be exploited in Section VI for finding

a weight corresponding to f that is close to a low-degree

weight.

It is not unusual that it is the shape of the interpolant |f |,
instead of the interpolant f itself, that is of interest. Suppose

that g ∈ S is a given outer function. When does there exist a

minimizer of (4), specified by a suitable choice of Ψ, which

satisfies

|f(eiθ)| = |g(eiθ)|, θ ∈ (−π, π]?

This inverse problem is closely connected to the the Pick-

matrix

Pick(g) :=

[

1 − wkg(zk)−1wlg(zl)−1

1 − zkzl

]n

k,l=0

(15)

according to the folowing proposition.

Proposition 7: Let g ∈ S be outer and such that log(1 −
|g|2) ∈ L1. Then there exists a pair (Ψ, f) of functions on T

such that

(i) log Ψ ∈ L1,

(ii) f is the solution of (4), and

(iii) |f | = |g| on T

if and only if Pick(g) is positive semidefinite and singular.

Furthermore, f is uniquely determined.

V. CONTINUITY PROPERTIES OF THE MAP FROM

WEIGHTS TO MINIMIZERS

Assume that f is the minimizer of the entropy functional,

as in (4), for a suitable weight selected without regard to the

degree. We begin by studying the properties of the nonlinear

transformation

ϕ : Ψ 7→ f (16)

which maps a space of weights

Ψ ∈ M := {Ψ | log Ψ ∈ L∞(T)}

to the corresponding minimizers f of (4). We define the

metric on M as d(Ψ,Ψr) := ‖ log(Ψ) − log(Ψr)‖∞, and,

it turns out that, ϕ is continuous when the range is taken to

be H2, but not with range H∞. On the other hand, the map

Ψ 7→ |f | ∈ L∞ is again continuous.

Remark 1: Here we only study the case where Ψ ∈ M.

However, it is easy to show that these continuity properties

also holds for arbitrary L∞ perturbations of log Ψ when Ψ
is non-negative and log-integrable.

Lemma 8: Let Ψ and Ψr be nonnegative log-integrable

functions on T that satisfy

‖ log(Ψ) − log(Ψr)‖∞ = ǫ, (17)

and set f := ϕ(Ψ) and fr := ϕ(Ψr). Then the inequalities
∫

T

Ψ log

(

1 +
|f − fr|

2

8

)

dm ≤ (e2ǫ − 1)KΨ(f) (18)
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and

‖σ(f − fr)‖
2
2 ≤ 10(e2ǫ − 1)KΨ(f) (19)

hold.

A direct consequence of this is the sought continuity of ϕ.

Proposition 9: The map ϕ in (16) with range H2, is con-

tinuous.

The mapping ϕ from Ψ ∈ M to f ∈ H∞ is not continuous.

A counterexample that shows this is presented in [22].

From an engineering viewpoint, ∞-norm bounds on the

approximation error are important in order to guarantee per-

formance and robustness. To this end, consider the mapping

ψ : Ψ 7→ |f | ∈ L∞, (20)

which maps a choice of weight Ψ ∈ M to the magnitude

|f | of the corresponding minimizer f of (4). The lack of

H∞ continuity of interpolants is due to the fact that spectral

factorization is not continuous. This problem does not ocur

with ψ, which is continuous, and small approximation error

on the weight Ψ will correspond to small L∞ error in the

shape of the interpolant.

Proposition 10: The map ψ in (20) is continuous.

VI. APPROXIMATION OF INTERPOLANTS

The continuity properties described in the previous section

suggests a new approach for approximating interpolants

that exploits the correspondence between minimizers and

weights. Given an interpolant f we would like to find a

degree-r approximating interpolant fr of f , where r ≥ n.

From the inverse problem there is a set ϕ−1(f) of admissible

weights Ψ for which a given f is the minimizer of (4). Our

first task is to find a pair (Ψ,Ψr) for which Ψ ∈ ϕ−1(f)
and Ψr = |σr|

2, with σr ∈ Kr−n, so that their logarithmic

distance is minimal. That is, we solve the following opti-

mization problem

min ‖ log(Ψ) − log(Ψr)‖∞

subject to (21)

Ψ ∈ ϕ−1(f) and Ψr = |σr|
2 with σr ∈ Kr−n.

This optimization problem may be reformulated as a quasi-

convex optimization and solved efficiently. By Proposition 4

the degree of the interpolant fr = ϕ(Ψr) is bounded by r,
and by Lemma 8, a bound on the approximation error f−fr

is obtained based on the quality of approximation obtained

via the quasi-convex optimization.

By Proposition 4, the function ϕ, defined in (16), maps

Kr−n into the set of interpolants of degree at most r. Thus,

the basic idea is to replace the hard nonconvex problem

of approximating f by another interpolating function fr

of degree at most r, by the simpler quasi-convex problem

to approximate a Ψ ∈ ϕ−1(f) by a Ψr = |σr |
2 with

σr ∈ Kr−n.

The theory presented so far suggests a computational

procedure in several steps, which we now summarize. In

general, the required bound on the norm of the interpolant

may differ from one, and therefore we consider the more

general problem to find a function F , of a desired shape,

which satisfies ‖F‖∞ ≤ γ and the interpolation conditions

F (zk) = Wk for k = 0, 1 . . . , n. (22)

Step 1. Find an interpolant having the desired shape, but

without restricting its degree. To this end, we begin with a

family of functions {gα} having desired shape, and we select

one function g in this class for which the Pick condition in

Proposition 7 is satisfied. Then, by Proposition 7, there is

a Ψ such that f := ϕ(Ψ) satisfies |f(z)| = |g(z)| for all

z ∈ T.

Typically we choose this family of functions in such a way

that |gα| is monotonically decreasing in α. In our motivating

example we take

|gα|
2 =

1 − α2|w|2

α2|w|2

which leads to a typical 2-block problem. Another typical

choice would be gα = w/α, which leads to a standard H∞

optimization problem.

We then seek a solution to the optimization problem

maxα

subject to

|F | ≤ |gα| and F (zk) = Wk, k = 0, 1 . . . , n.

The optimum is attained when Pick(gα) is positive semidef-

inite and singular (Proposition 7). Here the bound γ must

satisfy

‖F‖∞ ≤ γ and log(γ2 − |F |2) ∈ L1,

or else the bound γ needs to be relaxed. Then the normalized

interpolant

f :=
1

γ
F

satisfies the interpolation conditions

f(zk) = wk :=
1

γ
Wk, k = 0, 1, . . . , n,

as well as the log-integrability condition of 1 − |f |2. Hence

we have constructed an interpolant with the required shape,

but which in general does not satisfy the desired degree

constraint.

Step 2. For some r ≥ n, find an approximation fr of f
of degree at most r which satisfies the same interpolation

conditions. To this end, find functions Ψ and Ψr that solve

the optimization problem (21), where

ϕ−1(f) = {Ψ : Ψ = (|f |−2 − 1)|b|2 | b ∈ K, bf−1outer}.

This is a quasi-convex optimization problem. In fact,

‖ log(Ψ) − log(Ψr)‖ ≤ ǫ if and only if

e−ǫ ≤
Ψr(z)

Ψ(z)
≤ eǫ for all z ∈ T. (23)

The constraints (23) define an infinite set of linear constraints

on the pseudo-polynomials representing the nominator and

denominator, respectively, of Ψr/Ψ. Since the sublevel set of
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nominators and denominators solving (23) is convex for each

ǫ > 0, the problem is quasiconvex. The reader is referred to

[23] for a detailed description how to solve this problem.

Step 3. Next we solve the optimization problem

min{KΨr
(fr) : fr ∈ S, fr(zk) = wk, k = 0, . . . , n}

for the unique solution fr. In Step 2 we have determined the

weight Ψr as an approximation of Ψ, and therefore fr will

also be an approximation of to f , for which the bounds (18)

and (19) hold. Furthermore, since Ψr = |σr|
2 with σr ∈

Kr−n, the degree of fr is bounded by r (Proposition 4).

Finally, we renormalize the interpolant

Fr := γfr

to obtain the approximant which solves the original interpo-

lation problem.

VII. EXAMPLE

We now return to the example in Section III. The un-

derlying mathematical problem is an analytic interpolation

problem where a desired shape is sought for the interpolant.

This problem is addressed using the procedure outlined in

Section VI.

We consider a continuous-time plant having one inte-

grator, a slow unstable pole, and a time-lag, modeled via
s−1
s+1

1
s(s−0.1) . We base our design on its discrete-time coun-

terpart

P0(z) =
0.08772z3 − 0.08772z2 − 0.4386z − 0.2632

z3 − 2.439z2 + 1.807z − 0.3684

obtained via the Möbius transform s 7→ z = (2 + s)/(2− s)
and restrict our analysis to the discrete-time domain.

The design objective is encapsulated in the choice of a

weight w, chosen as in Section III to increase robustness to

high-frequency modeling uncertainty. The selected “nominal

weight” w is shown in Figure 1. The maximal scaling

parameter αmax can be readily computed by first calculating

the outer factor gα of

|F |2 =
1 − α2|w|2

α2|w|2
= |gα|

2 on T,

and then, finding the maximal value αmax for which the Pick

matrix Pick(gα) is positive semidefinite (cf. Proposition 7).

The Pick matrix Pick(gα) is defined in (15) and requires

the interpolation data that can be obtained by evaluating

F0 at the roots of φ in (11). Denote by Fideal the unique

interpolant which satisfies |Fideal| = |gαmax
|, and denote the

corresponding controller by Cideal. Since w is not rational,

neither are Fideal and Cideal. Next we describe how to

approximate Fideal with an admissible interpolant of low

degree. Using the corresponding controller leads to closed-

loop transfer functions of low degree.

The uniform robustness margin corresponding to the

controller Cideal is determined by the value of ‖Fideal‖∞
via (12). For the above choices ‖Fideal‖∞ = 10.87. In

order to achieve the desired characteristic for the frequency-

dependent robustness margin, we relax the H∞ bound on F .
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Fig. 1. The frequency-dependent robustness shape w

For the particular example, it is deemed appropriate to allow

‖F‖∞ ≤ γ = 20. We normalize F by defining f = 1
γF ,

which is then required to satisfy

f(z) =
1

γ
F0(z) whenever φ(z) = 0, (24)

in view of the interpolation condition (11). Then we follow

the steps of Section VI to obtain approximants to fideal =
1
γFideal.

For a given r ≥ n we determine a degree-r approximant

fr of fideal as follows. We first compute a minimizer σr of

the quasi-convex optimization problem to find a σr ∈ Kr−n

and a Ψ ∈ ϕ−1(fideal) which minimize
∥

∥log(|σr |
2) − log(Ψ)

∥

∥

∞
.

Next we determine fr as the minimizer of the convex

optimization problem

fr = arg min{K|σr|2(fr)
∣

∣f ∈ S and (24)}.

A corresponding controller Cr can now be determined via q
from (11) and (7).

The uniform robustness radius for gap-metric uncertainty

is maximal for an optimal choice of the controller Copt and

equals bopt(P ) ([31], [18]). This is the inverse of the H∞-

norm of the “parallel projection” operator ΠP//Copt
, and this

value is shown in Figure 2 with a dash-dotted line. On the

other hand, the inverse of the maximal singular value of

ΠP//Cideal
, plotted as a function of frequency with solid line,

represents a frequency-dependent robustness radius [31].

Both are now compared with a degree-four approximant

C4 =
0.876z4 − 0.190z3 − 0.0669z2 − 0.460z + 0.157

z4 + 0.1205z3 + 1.389z2 + 0.07538z + 0.2214
,

and it is seen that there is substantial improvement of

robustness as compared to bopt(P ) in the high-frequency

range. Figure 3 compares the gains of C4 and Copt. Similarly,

Figure 4 and Figure 5 compare the loop-gains and the
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Nyquist plots, respectively, for the two cases. It is seen that

some form of phase compensation is effected by C4 around

1.6 rad/sec, as compared to Copt so as to gain the sought

advantage. Figure 6 compares the gains of the four entries

of the closed-loop transfer matrix ΠP//C . The improvement

in the sensitivity function at middle range becomes evident.
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Fig. 2. The robustness radius obtained for the controllers Cideal, C4, and
Copt .

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

20

Angle (θ)

M
a

g
n

it
u

d
e

 (
d

b
)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

Angle (θ)

P
h

a
s
e

 (
ra

d
)

 

 

C
4

C
 opt

Fig. 3. Bode plots of controllers C4, and Copt

VIII. CONCLUDING REMARKS

The formulation of feedback control synthesis as an ana-

lytic interpolation problem has been at the heart of modern

developments in robust control. Yet, many of the standard

approaches often lead to designs of a large degree, due to

degree inflation when introducing and absorbing “weights”

into the controller. At various stages, alternative method-

ologies for dealing with control design under structural and
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Fig. 4. Bode plots of P and of loop gains PC4, and PCopt

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

a
ry

 A
x
is

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

a
ry

 A
x
is

Fig. 5. Nyquist plots of the loop gains PC4 (above) and PCopt (below),
respectively

dimensionality constraints were developed by several authors

based primarily on suitable approximations and a linear

matrix inequality formalism (see [11], [29], [19], [2]). In

particular, a comparison between the viewpoint in Gahinet

and Apkarian [11] and Skelton, Iwasaki, and Grigoriadis [29]

and the viewpoint advocated in our work is provided in [17].

Our approach builds on the original H∞-formulation of

control synthesis as an analytic interpolation problem and

on the recently discovered fact that, in contrast to H∞-

minimization, dimensionality and performance are inher-

ited by the weighted-entropy minimization. In this setting,

“weights” provide the means of shaping interpolants in a

manner akin to H∞ design. Thus, the advantage of the new

methodology which involves entropy functionals stems from

the fact that selection of weights within a specific class does

not unduly penalize the degree of the design. However, the
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Fig. 6. The four closed loop transfer functions of ΠP//C4
and ΠP//Copt

choice of weights is not immediate, as it is in the standard

H∞ paradigm [10]. The choice of weights that lead to

acceptable controllers is, in itself, a non-convex optimization

problem. Thus, one of the contributions of this paper is a

relaxation of this non-convex problem into one which is

quasi-convex, and thus solvable by standard methods. The

methodology builds on a more fundamental question which

forms a main theme of the paper, namely the characterization

of all possible minimizers of weighted entropy functionals.

The inverse problem of constructing weights for permissible

minimizers is the basis for our new design theory. In a more

general context, the results of this paper provide a solution to

the longstanding open problem of determining which spectral

zeros correspond to a certain desired shape of the interpolant.
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