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Abstract— We present a family of metrics for power spectra
based on the Monge-Kantorivic transportation distances. These
metrics are constructed so that distances reduce with additive
and multiplicative noise, reflecting the intuition that noise
typically reduces our ability to discriminate spectra. In addition,
perturbations measured in these metrics are continuous with
respect to the statistics of the underlying time series. A general
framework for constructing such metrics is put forth and these
are contrasted with an earlier Riemannian metric which is
based on prediction theory and the relevant geometry of the
underlying time-series.

I. INTRODUCTION

Our goal in this paper is to motivate and develop met-

rics between power spectra that have a number of natural

properties. More specifically, since noise impedes our ability

to discriminate it is natural to seek metrics for which the

distance between two power spectra does not increase when

the same amount of noise power is added to both. Similarly,

multiplicative noise of unit variance must also not increase

their distance. Finally, since power spectra are invariably

estimated using second-order statistics, it is important that

statistics and spectra relate in a continuous manner. Naturally,

such a property depends on the metric that we use for assess-

ing perturbation from a nominal power spectrum. Thus, we

are interested in metrics for which any statistic is continuous

with respect to spectral uncertainty. The usefulness of such

a property, known as weak∗ continuity, is further explored

in [14]. The present paper is based on [9] where we refer

the reader for detailed proofs of the various propositions.

Thus, below, we first motivate and discuss a set of axioms

that from a certain viewpoint are natural for characterizing

spectral metrics (Section II). We then draw analogies and

contrasts with the setting of Information Geometry which

deals with probability distributions instead of spectra (Sec-

tion III). In Section III we also outline an alternative route

to a spectral geometry based on prediction theory which was

introduced in [6], [7]. Returning to the type of metric proper-

ties that are sought in Section II, weak∗ continuity of power

spectral distances readily suggests Monge-Kantorovich trans-

portation between measures as a suitable framework for

constructing such metrics. Thus, in Section IV, we introduce

the Monge-Kantorovich transportation problem and review

certain basic results. These results are then utilized in

Section V where we develop a suitable family of metrics

satisfying the axioms of the sought spectral geometry. We

conclude in Section VI with an example of power spectra

having spectral lines which highlights differences between

our metrics, the well-known Itakura-Saito distance, and the

prediction-related metric introduced in [6], [7].

II. TRANSFORMATIONS ON POWER SPECTRA

We consider power spectra of discrete-time stochastic pro-

cesses. These are bounded positive measures on the interval

I = (−π, π], and thus belong to

M := {dµ : dµ ≥ 0 on I} .

The physics of signal interactions suggests certain natural

transformations between spectra that model mixing in the

time-domain. The most basic such interactions, additive and

multiplicative, adversely affect the information content of

signals. It is our aim to devise metrics that respect such

a degradation in information content. Another property that

ought to be inherent in a metric geometry for power spectra is

the continuity of statistics. More specifically, since modeling

and identification is often based on statistical quantities, it

is natural to demand that “small’ changes in the spectral

content, as measured by any suitable metric, result in small

changes in any relevant statistical quantity.

Consider a discrete-time stationary (real-valued) random

process {y(k), k ∈ Z} with corresponding power spectrum

dµ ∈ M. The sequence of covariances

R(ℓ) := E{y(m)y(m− ℓ)},

where E{·} denotes expectation and “ ” denotes complex

conjugation, are the Fourier coefficients of dµ, i.e.,

R(ℓ) =

∫

I

e−jℓθdµ(θ).

In general, second order statistics that are being considered

in this paper, are integrals of the form

R =

∫

I

G(θ)dµ(θ)

for an arbitrary vectorial integration kernel G(θ) which is

continuous in θ ∈ R and periodic with period 2π. For

future reference we denote the set of such functions by

Cperio((−π, π]).
Now, suppose that dµa represents the power spectrum

of an “additive-noise” process ya which is independent of

y. Then the power spectrum of y + ya is simply dµ +
dµa. Similarly, if dµm represents the power spectrum of

a “multiplicative-noise” process ym, the power spectrum of

y · ym is the circular convolution dν = dµ ∗ dµm, i.e. dν

satisfies
∫

x∈S

dν(x) :=

∫

x∈S

∫

t∈I

dµ(t)dµa(x− t) for all S ⊆ I,

where the arguments are interpreted modulo 2π.
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We postulate situations where we need to discriminate

between two signals on the basis of their power spectra and

their statistics. In such cases, additive noise or multiplicative

noise may impede our ability to differentiate between the

two. Thus, we consider noise spectra as transformations on

M that transform power spectra accordingly. Additive and

multiplicative noise transformations are defined as follows:

Adµa
: dµ 7→ dµ+ dµa

for any dµa ∈ M, and

Mdµm
: dµ 7→ dµ ∗ dµm

for any dµm ∈ M, normalized so that
∫

I
dµm = 1. The

normalization is such that multiplicative noise is perceived

to affect the spectral content but not the total energy of

underlying signals.

The effect of additive independent noise on the statistics

of a process is also additive, e.g., covariances of the process

are transformed according to

Âdµa
: R(ℓ) 7→ R(ℓ) +Ra(ℓ),

where Ra(ℓ) denotes the corresponding covariances of the

noise process. Similarly, multiplicative noise transforms the

process statistics by pointwise multiplication (Schur product)

as follows

M̂dµm
: R(ℓ) 7→ R(ℓ) · Rm(ℓ).

More generally, M̂dµm
: R 7→ R • Rm for statistics with

respect to an arbitrary kernel G(θ), where • denotes point-

wise multiplication of the vectors R, Rm.

Consistent with the intuition that noise masks differences

between two power spectra, it is reasonable to seek a metric

topology, where distances between power spectra are non-

increasing when they are transformed by any of the above

two transformations. More precisely, we seek a notion of

distance δ(·, ·) on M with the following properties:

Axiom i) δ(·, ·) is a metric on M.

Axiom ii) For any dµa ∈ M, Adµa
is contractive on M with

respect to the metric δ(·, ·).

Axiom iii) For any dµm ∈ M with
∫

I
dµm ≤ 1, Mdµm

is

contractive on M with respect to the metric δ(·, ·).

The property of a map being contractive refers to the

requirement that the distance between two power spectra

does not increase when the transformation is applied.

An important property for the sought topology of power

spectra is that small changes in the power spectra are re-

flected in corresponding changes in statistics. More precisely,

any topology induces a notion of convergence, and the

question is whether this topology is compatible with the

topology in the vector-space where statistics take their values.

Continuity of statistics to changes in the power spectra

is necessary for quantifying spectral uncertainty based on

statistics. The property we require is referred to as weak∗

continuity and is abstracted in the following statement.

Axiom iv) Let dµ ∈ M and a sequence dµk ∈ M for k ∈ N.

Then δ(dµk, dµ) → 0 as k → ∞, if and only if
∫

I

Gdµk →

∫

I

Gdµ as k → ∞,

for any G ∈ Cperio((−π, π]).

III. CONTRAST WITH INFORMATION GEOMETRY

The search for natural metrics between density functions

can be traced back to several towering figures in the his-

tory of statistics, probability and information theory. A.N.

Kolmogorov was “always interested in finding information

distances” between probability distributions and, according

to Chentsov [4, page 992] (ref. [1]), he independently arrived

at and discussed the relevance of the Bhattacharyya [3]

distance

dB(dµ0, dµ1) := 1 −

∫

√

µ0(dx)µ1(dx) (1)

as a measure of unlikeness of two measures dµ0, dµ1. Also

according to Chentsov, A.N. Kolmogorov emphasized in his

notes the importance of the total variation

dTV(dµ0, dµ1) :=

∫

|µ0(dx) − µ1(dx)|

as a metric. Naturally, both suggestions reveal great intuition

and foresight. The total variation admits the following inter-

pretation (cf. [8]) that will turn out to be particularly relevant

in our context. Assuming that dµ0, dµ1 are power spectra, the

total variation represents the least “energy” of perturbations

for dµ0 and dµ1 that render the two indistinguishable, i.e.,

dTV(dµ0, dµ1) = min{

∫

dν0 +

∫

dν1 : dν0, dν1 ∈ M,

and dµ0 + dν0 = dµ1 + dν1} (2)

On the other hand the Bhattacharyya distance turned out

to have deep connections with Fisher information, the

Kullback-Leibler divergence, and the Cramér-Rao inequality.

These connections underlie a body of work known as Infor-

mation Geometry which begun in the work of Fisher and

Rao [12], [5], [2]. At the heart of the subject is the Fisher

information metric on probability spaces and the closely

related spherical Fisher-Bhattacharyya-Rao metric

dFBR(dµ0, dµ1) := arccos

∫

√

µ0(dx)µ1(dx). (3)

This latter metric is precisely the geodesic distance between

two distributions in the geometry of the Fisher metric. One of

the fundamental results of the subject is Chentsov’s theorem.

This states that stochastic maps are contractive with respect

to the Fisher information metric and moreover, that this is

the unique (up to constant multiple) Riemannian metric with

this property [5]. Stochastic maps represent the most general

class of linear maps which map probability distributions to

the same. Stochastic maps model coarse graining of the

outcome of sampling, and thus, form a semi-group. Thus,

it is natural to require that any natural notion of distance
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between probability distributions must be monotonic with

respect to the action of stochastic maps.

An alternative justification for the Fisher information

metric is based on the Kullback-Leibler divergence

dKL(dµ0, dµ1) :=

∫

dµ0

dµ1
log(

dµ0

dµ1
)dµ1 =

∫

log(
dµ0

dµ1
)dµ0

between probability distributions. The Kullback-Leibler di-

vergence is not a metric, but quantifies in a very precise

sense the difficulty in distinguishing the two distributions

[13]. In fact, it may be seen to quantify, in source coding

for discrete finite probability distributions, the increase in

the average word-length when a code is optimized for one

distribution and used instead for encoding symbols generated

according to the other. The distance between infinitesimal

perturbations, measured using dKL, is precisely the Fisher

information metric. It is quite remarkable that both lines of

reasoning, degradation of coding efficiency and ability to

discriminate on one hand and contractive-ness of stochastic

maps on the other, lead to the same geometry on probability

spaces.

Turning again to power spectra, we observe that dTV

can be used as a metric and has a natural interpretation as

explained earlier. The metric dFBR on the other hand can

also be used, if suitably modified to account for scaling, but

lacks an intrinsic interpretation. A variety of other metrics

can also be placed on M. In particular, [6], [7] presented a

metric for power spectra that quantifies the degradation of

predictive error variance –in analogy with the latter argument

that led to the Fisher metric. More precisely, a one-step

optimal linear predictor for an underlying random process

is obtained based on one power spectrum and then the

predictor is applied to a random process with a different

spectrum. The degradation of predictive error variance, when

the perturbations are infinitesimal, gives rise to a Riemannian

metric. In this metric, the geodesic distance between two

power spectra is

dpredictive(dµ0, dµ1) :=

√

∫

(log
dµ0

dµ1
)2dθ − (

∫

log
dµ0

dµ1
dθ)2,

(4)

which effectively depends on the ratio of the corresponding

spectral densities. A similar rationale can be based on

smoothing instead of prediction (see [6], [7]), and this also

leads to expressions that weigh in ratios of the corresponding

spectral density functions.

A possible justification for such metrics, that weigh in

only the ratio of the corresponding density functions, can

be sought in interpreting the effect of linear filtering as a

kind of processing that needs to be addressed in the axioms.

More specifically, the power spectrum at the output of a

linear filter relates to the power spectrum of the input via

multiplication by the modulus square of the transfer function.

Thus, a metric that respects such “processing” ought to be

contractive (and possibly invariant). However, it turns out that

such a property is incompatible with the spectral properties

that we would like to have, and in particular it is incompatible

with the ability of the metric to localize a measure based on

its statistics (cf. Axiom iv)). This incompatibility is shown

next.

Consider transformations on M that correspond to pro-

cessing by a linear filter:

Fh : dµ 7→ |h|2dµ

for any h ∈ H∞. Here, h is thought of as the transfer

function of the filter, µ the power spectrum of the input,

and |h|2dµ the power spectrum of the output.

Proposition 1: Assume that δ(·, ·) is a weak∗ continuous

metric on M. Then there exists h ∈ H∞ such that Fh is not

contractive with respect to δ(·, ·).
It is important to point out that none of the above is

weak∗ continuous metrics. In particular, the metric in (4) is

impervious to spectral lines as only the absolutely continuous

part of the spectra play any role. Similarly, (2) and (3) cannot

localize distributions either, based on their moments, because

they also lack a needed weak∗ continuity. Thus, in this paper,

we follow a line of reasoning analogous to the axiomatic

framework of the Chentsov theorem, but for power spectra,

requiring the metric to satisfy Axioms i)-iv).

IV. THE MONGE-KANTOROVICH PROBLEM

A natural class of metrics on measures are transport

metrics based on the ideas of Monge and Kantorovich. The

Monge-Kantorovich distance represents a cost of moving a

nonnegative measure dµ0 ∈ M(X) to another nonnegative

measure dµ1 ∈M(X), given that there is an associated cost

c(x, y) of moving mass from the point x to the point y. The

theory may be formulated for rather general spaces X , but in

this paper we restrict our attention to compact metric spaces

X . Every possible way of moving the measure dµ0 to dµ1

corresponds to a transference plan π ∈ M(X ×X), which

satisfies
∫

y∈X

dπ(x, y) = dµ0 and

∫

x∈X

dπ(x, y) = dµ1,

or more rigorously, that

π[A×X ] = µ0(A) and π[X ×B] = µ1(B) (5)

whenever A,B ⊂ X are measurable. Such a plan exists

only if the measures dµ0 and dµ1 has the same mass, i.e.

µ0(X) = µ1(X). Denote by Π(dµ0, dµ1) the set of all such

transference plans, i.e.

Π(dµ0, dµ1) = {π ∈M(X ×X) : (5) holds for all A,B} .

To each such transference plan, the associated cost is

I[π] =

∫

X×X

c(x, y)π(x, y)

and consequently, the minimal transportation cost is

Tc(dµ0, dµ1) := min {I(π) : π ∈ Π(dµ0, dµ1)} . (6)

The optimal transportation problem admits a dual formu-

lation, referred to as the Kantorovich duality (see [15]):
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Theorem 2: Let c be a lower semi-continous (cost) func-

tion, let

Φc := {(φ, ψ) ∈ L1(dµ0)×L
1(dµ1) : φ(x)+ψ(y) ≤ c(x, y)},

and let

J (φ, ψ) =

∫

X

φdµ0 + ψdµ1.

Then

Tc(dµ0, dµ1) = sup
(φ,ψ)∈Φc

J (φ, ψ).

Lemma 3: Let c be a lower semi-continous (cost) function

with c(x, x) = 0 for x ∈ X . Then Adµa
is contractive with

respect to Tc.

Monge-Kantorovich distances are not metrics, in general,

but they readily give rise to the so-called Wasserstein metrics.

This is explained next.

Theorem 4: Assume that the (cost) function c(·, ·) is of the

form c(x, y) = d(x, y)p where d is a metric and p ∈ (0,∞).
Then the Wasserstein distance

Wp(dµ0, dµ1) = Tc(dµ0, dµ1)
min(1, 1

p
)

is a metric on the subspace of M(X) with fixed mass and

metrizes the weak∗ topology.

V. METRICS BASED ON TRANSPORTATION

The Monge-Kantorovich theory deals with measures of

equal mass. As we have just seen, it provides metrics that

have some of the properties that we seek to satisfy. The

purpose of this section is to develop a metric based on similar

principles, that applies to measures of possibly unequal mass.

Given nonnegative measures dµ0 and dµ1 on I, we pos-

tulate that these are perturbations of the two measures dν0
and dν1, respectively, with equal mass. Then, the cost of

transporting dµ0 and dµ1 to one another can be thought of

as the cost of transporting dν0 and dν1 to one another plus

the size of the respective perturbations. Thus we define

T̃c,κ(dµ0, dµ1) := inf
ν0(I)=ν1(I)

Tc(dν0, dν1)+κ

2
∑

i=1

dTV(dµi, dνi),

(7)

where κ is a suitable parameter that weighs the relative

contribution of perturbation and transportation. Define

c(x, y) = |(x− y)mod2π|
p (8)

where (x)mod2π is the element in the equivalence class x+
2πZ which belongs to (−π, π]. The main result of the section

is the following theorem.

Theorem 5: Let κ > 0 and c(x, y) defined as in (8), where

p ∈ (0,∞). Then

δp,κ(dµ0, dµ1) :=
(

T̃c,κ(dµ0, dµ1)
)min(1, 1

p
)

is a metric on M which satisfies Axiom i) - iv).

The proof uses the fact that (7) has an equivalent formu-

lation as a transportation problem, and a corresponding dual

stated below.

Theorem 6: Let c be a lower semi-continuous (cost) func-

tion, let

Φc,κ :=
{

(φ, ψ) ∈ L1(dµ0) × L1(dµ1) : φ(x) ≤ κ,

ψ(y) ≤ κ , φ(x) + ψ(y) ≤ c(x, y)
}

,

and let

J (φ, ψ) =

∫

I

φdµ0 + ψdµ1.

Then

T̃c,κ(dµ0, dµ1) = sup
(φ,ψ)∈Φc,κ

J (φ, ψ). (9)

Remark 7: Definition (7) does not provide a direct way

to compute T̃c,κ(dµ0, dµ1), whereas the dual formulation in

Theorem 6 is amenable to numerical implementation. Indeed,

(9) is a linear optimization problem which can be computed

using standard methods.

Lemma 8: Let c(x, y) be a function of |x − y|. Then for

any dµm ∈ M with
∫

I
dµm ≤ 1, Mdµm

is contractive on M

with respect to T̃c,κ.

Now we sketch the proof of Theorem 5. The complete

proof can be found in [9]. In view of Theorem 6, T̃c,κ can

be viewed as the cost of a transportation problem with cost

function of the form dp, where d is a metric. Therefore,

Axiom i) and Axiom iv) follows from Theorem 4. From

this formulation, Axiom ii) follows from Lemma 3. Finally

Axiom iii) follows from Lemma 8.

Remark 9: It is interesting to note that for the case p = 1

δ1,κ(dµ0, dµ1) = max
‖g‖∞ ≤ κ

‖g‖L ≤ 1

∫

g(dµ0 − dµ1),

where ‖g‖L = sup |g(x)−g(y)|
|x−y| denotes the Lipschitz norm.

Furthermore, in general, for any p,

1

κ
δ1,κ(dµ0, dµ1) → dTV(dµ0, dµ1) as κ→ 0.

VI. EXAMPLE

Next, we present an example that highlights the relevance

of the proposed metrics in spectral analysis. The example

compares how different distance measures perform on spec-

tra which contain spectral lines. The distance measures we

consider, besides the transportation distance (here δ1,1), are

the prediction metric and the Itakura-Saito distance.

We consider a random process yk = cos(kθ + φ) + wk
which consists of a sinusoidal component and a zero-mean,

unit-variance, white-noise component wk . Here, θ is taken

as a constant, whereas φ is assumed random, independent of

wk, and uniformly distributed on (−π, π]. Figure 1 shows

three samples of such a random process for respective

values of θ ∈ {1, 1.2, 2}, along with their respective power

spectra (periodogram). Based on a set of 500 independent

simulations, Table I shows the average distance of the re-

spective power spectra when measured using i) the transport

distance, ii) the prediction distance [7], and iii) the Itakura-

Saito distance (see e.g., [10]). Comparison of these values

reveals that only the transportation-based metric can reliably

distinguish between spectral lines.
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Fig. 1. Stochastic process yk in time and frequency domain for θ = 1, 1.2,
and 2
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Fig. 2. Relative distances between line spectra

The schematic in Figure 2 compares the relative distances

in these three cases with the smallest value normalized to

one. The respective distances for the case of the prediction

metric are relatively insensitive to the actual location of the

spectral line, as in the limit of a long observation record

all three distances ought to be equal to one. Recall that the

prediction metric does not detect deterministic components.

On the other hand the Itakura-Saito distance gives a rather

distorted view of reality. In the transportation metric the

respective distances are consistent with “physical” location

of the spectral lines. Further, the consistency in the ability to

discriminate between such spectra is dramatically different in

the three cases. Consider the proportion of the simulations for

which the distance between the first two spectra (θ = 1, 1.2)
is smaller than any of the other distances (θ = 1.2, 2 or

θ = 1, 2). For the transport distance in all 500 iterations the

distance between the first two power spectra with lines at

TABLE I

COMPARISON OF DISTANCE MEASURES ON SPECTRAL LINES + NOISE

Distance between line spectra at

θ1 = 1 θ2 = 1.2 θ1 = 1

θ2 = 1.2 θ3 = 2 θ3 = 2

Transportation: δ1,1 0.3077 0.8832 1.0690
Predictive: dpr 1.8428 1.8390 1.8517

Itakura Saito: dIS 22.7279 472.6690 134.1707

{1, 1.2} was smaller than the distance between the other

two possibilities. On the other hand, the corresponding

percentages for the prediction distance and for the Itakura-

Saito distance were 34.4% and 33.8%, respectively. Thus,

the transportation correctly identifies the two spectra that are

intuitively closest (i.e., having spectral lines closest to each

other), whereas the other distance measures succeed about

one third of the times (practically a random pick).

To be fair, neither the prediction metric nor the Itakura-

Saito distance were designed, or claimed, to have such

discrimination capabilities. As the sample size tends to

infinity power spectra computed via the periodogram method

converge to the true spectrum in weak∗, and since the

transportation distance is weak∗-continuous, transportation

distances converge to their true values. On the other hand,

this is not the case for either of the other two distances.

VII. CONCLUDING REMARKS

Our aim has been to identify natural notions of distance

and to develop a quantitative theory for spectral uncertainty

that allows localization of power spectra based on estimated

statistics and, at the same time, share certain natural proper-

ties with regard to how noise affects distance between power

spectra. We presented an axiomatic framework that attempts

to capture these intuitive notions and we developed a family

of metrics that satisfy the stated requirements.

While there are many possible metrics with the required

properties, we have chosen to base our approach on the

concept of transportation. The resulting metrics appear to

have certain additional qualities. More specifically, from

experience, it appears that geodesics (in e.g., the Wasserstein

2-metric) match “formants” between the two end points in a

more natural way. Such a property may be useful in speech

processing (cf., see [11]). It is interesting to speculate on

what type of additional requirements/axioms may lead to a

unique metric. Finally, we remark that there is a need for

analogous metrics for comparing multivariable spectra.
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