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Asymptotic Solution of Linear-Quadratic Control Problem with
Intermediate Points and Small Parameter in Performance Index

Galina A. Kurina, Elena V. Smirnova

Abstract— The asymptotic expansion of the solution of a
linear-quadratic optimal control problem for a descriptor
system with intermediate points and a small parameter in a
performance index has been constructed as series of non-
negative integer powers of a small parameter. The estimates
have been obtained for the proximity of the asymptotic
approximate solutions to the exact one. The nice property is
proved, namely, the values of the minimized functional do not
increase when higher-order approximations to the optimal
control are used. The numerical example is given in order to
illustrate the proposed method.

I. INTRODUCTION

N this paper, we study a linear—quadratic optimal control
problem (1)-(3) from the second section. The presence of
a small parameter in the cost (1) indicates the different
significances of the addends. We will assume that
admissible controls u(-) in the perturbed problem are

piecewise continuous functions ensuring the solvability of a
state equation with a given condition for the state variable,
trajectories x(-) of a state equation are piecewise continuous

functions satisfying the state equation almost everywhere
such that Ex(-) are continuous.

We will construct the asymptotic expansion of the
solution of the considered perturbed problem in the form of
series of non-negative integer powers of a small parameter
by substituting the postulated asymptotic expansions into the
problem condition and then defining a series of optimal
control problems in order to find the expansions terms. Such
method for the construction of asymptotic solutions for
optimal control problems was essentially developed in [1]
for singularly perturbed continuous optimal control
problems without restrictions for the values of the control.
This method has been called the "direct scheme." Further
applications of the direct scheme and the survey of the
publications, devoted to optimal control problems with a
small parameter, are presented in [2].
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The numerical example will be given in order to illustrate
the proposed method.

We indicate some works concerning the optimal control
problems with intermediate points in the performance index.
The paper [3] deals with the necessary control optimality
condition for nonlinear optimal control problems consisting
in the approaching of the object to fixed points in the given
order, when resources are limited and a state equation is
resolved with respect to the derivative. The integral part in
the performance index is absent in this case. Some problems
with intermediate points and with a state equation resolved
with respect to the derivative, when the control is one-
dimensional, are considered in [4]. In the last paper, the
problem for determining of the volume of water, containing
in a lake, is described. This problem is reduced to a problem
with intermediate points. The necessary and sufficient
control optimality conditions in the Pontryagin’s maximum
principle form are given in [5] for some linear-quadratic
optimal control problems for descriptor systems with
intermediate points. The methods for finding an optimal
control, which are used in [5], are different from the
methods in [4].

II. PROBLEM FORMULATION

Let us consider the problem P, of the following form

o0 =1 (3(0) =1 E Gy B =) )+

e ¥ *
£ zl<x(t,j =&, B G Bt~ €,)) + (1)
z
1 T (x(t)] [W(t) N (t)J (x(t)J .
+— j , % dt — min,
2 0 u@®) )\ S@" R@))\u(@)
d
AEOD _ a0+ B + 10, @)
Ex(0)=x". (3)

Here<- , > denotes the inner product in appropriate spaces,
te[0T], Iz
j=1L...,N+1are fixed, x(t)e X, u(t)eU; X, U are

E, A@), Gy,
R(t)e L(U); the

and R(z) are

O=ty <ty <...<ty<T, tya=T, t
real finite-dimensional Euclidean spaces;
W) e L(X);, B(r), S@)elLlU,X);

operators Gj, j=L.. ,N+1, W(@),
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> G;>0; the
SO R@) /

elements x° € ImE and fj eX, j=1...,

symmetric, R(¢z) >0, [ W) S(t)j >0

N +1, are given,
G j and E are independent of ¢, but the other operators

and the function f() with values in X depend

continuously on #; the superscript * denotes an adjoint
operator. For the definiteness, we will suppose that a small
parameter & is positive and all functions are continuous to
the right in the points of the discontinuity. When #=0 and
t =T we assume the continuity to the right and to the left,
respectively. The co-ordinate representation is used nowhere
in this paper.

The argument ¢ is further dropped almost everywhere,
and the given relations are meant pointwise for all # €[0,7T].

The asymptotic expansion of the solution of the problem
(1)-(3) will be constructed using the direct scheme. We will
seek a solution of the perturbed problem (1)-(3) in the series
form

u@)="% &luj@), x()= % &/x;@). (4)
j=0 j=0

We substitute the relations (4) into (1)-(3), expand the
right-hand sides of (1) and (2) in series in powers of &, and
then equate the coefficients of like powers of € in (2) and
(3). Then the functional to be minimized may be written in
the form
Jew,x)= % &J;, (5)

j>0

and relations (2), (3) yield the equations for the terms of the
decomposition (4).
We will determine a series of optimal control problems in
order to find the coefficients in (4).

Further, P and Q denote the orthogonal projectors of the

space X onto KerE and KerE *respectively.

Assumption 1°.
QA(t)P: KerE — KerE" (6)
PW()P PS(t)
SO*P  R@)

The operator

has the inverse operator and [ J> 0 for all

e[0,7].

III. FORMALISM OF ASYMPTOTIC EXPANSIONS
CONSTRUCTION

When &£=0, we obtain from (1)-(3) the degenerate
problem
Py Jy :%<x0(T)_§N+1=FN+1(x0(T)_§N+1)>+

(7
+?(%<x09 Wx0>+<x09 Su()>+%<Ru0, UO>)df —> min,
0
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d(E.
MzAx0+Buo+f, (8)
Exy(0)=x". 9)
Here and further, we denote the operator £ *G_ JE by Fj,
=1..,.N+1.
We can obtain the degenerate problem if we substitute the

relations (4) into (1)-(3) and equate the coefficients of £°.
The solution of the linear-quadratic optimal control
problem F, can be found from (8), (9) and from the

following relations

d
E*%:WxO—A*V/0+Su0, (10)
E™wo(T)=~Fn41(x0(D)~Enip)s (11)
0=-S"x)+B"w)—Ruy (12)

(see e.g. [6]).
Substituting the relations (4) into (2) and (3) then

equating coefficients with &/, we obtain the initial values
problems for x;
dt
We write down the coefficient J; from (5).

J1 = (x(T) = En s Fyx (1)) +

N
+%Zl<x0(tj)_6&ja Fj(xo(lj)—fj)>+
Jj=

T
+ I(<xl, WXO + Su0> + <Ru0 + S*Xo, u1>)dt
0

We transform the last expression, substituting the relation
for Wxq + Suy, obtained from (10), and the relation for
Rug + S*xo , obtained from (12). Using (13), (11), we get

Ji = {(Fy 1 (o(T) = En ), X (T)) +

N
F I (o) = &) Fi(xg(t) =€) +

j=1

N
o =12 (0= Fixott) =€)

Jj=1
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So, the coefficient J; is known after the problem £, has
been solved.
The coefficient J, from (5) has the following form:

2 =3 (D), Py (D) +(x(T), Fyiy (oo (T) = ) +
N
+ 20, Fy(xo(t)=&) +

1

(14

xl, Su1>+%<Rul, u1>+

J
T

+J‘(% X1, W)C]
0

+<x2, Wx, +Su0>+<Ru0 +S*x0, u2> )dt.

We realize the transformations in the relation (14) for J,,
as for J;. Taking into consideration (10)-(12) and (13) for
j =2, we obtain the different form for J,, which will be
denoted further by J- 1(uy,x7).

To determine the pair of functions (u;,x;), we consider

the linear-quadratic control problem with intermediate
points of the form

B J1(“1=x1)— L (D), Fyx (1) +

N
F 2 )) Fy () =6)))+

J=
T

+ I(%<x1’ le> +<x1» S”1> +%<Ru1, u1> )dt — min,
0

d(Ex;)

= Axl + Bul, EX] (0) =0.
Further, in order to determine the pair of the functions
eXe) for k2 2, we define the following problems

Py ijk(uk,xk)=%<xk(T), Fyxp (T))+

M=

#D (rp ()), Fyegy () +

j=1

T
+I(%<xk’ka>+<xk,Suk>+%<Ruk,uk>)dt—>min,
0

d(ijk):Axk+Buk, Ex; (0)=0. (15)

The solution of the problem P, can be found from (15)
and from the following relations
« dyy

r ka A*l//k +Suk, t?ﬁtj, (16)

E" (i (t;=0)=wy(t;+0)) = =F;(xp 1 (t;) = & j 1) a7
j=1...,N,

E*y (T) = —Fy % (T), (18)

0=-S"x; +B "y —Ruy, (19)
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& k=1,

where £ ;4 ={0 i1

Theorem 1. The coefficient J,;_; from (5) is known

after problem P,_; has been solved. The performance index

J %y ,x;) in the problem P, (k>1) is the transformed

expression for the coefficient J,; .

Proof. The theorem statement has already been proved for
k =1. Let us suppose that it is true for 1<k <n.
The coefficient J,, from (5) has the form

N n-1

Ton = 20T (X () F oo (1) +
j=1 m=1

(X (), F (et ) =€)+

+(x0, (1), Fy 31 (xo (T) = Eyyy)) +

n-1
+ Z o (0 Fyva32om (1) + 2 (00 (1), Py, (1) +
+j( <x Wx> <xn,Sun>+%<Run,un>+
+ ) n—m> WXy + Sty )+ n—m,S* m T Ru,, )| |dt.
o)

Using (10), (16), (12), (19), (13), we get the following

equalities
T n-1
IZ(<x2n m,me+Sum> <u2n m>S X, +Ru >)dt:
o m=0

N+ln-l '

* d ES
-3y (<x2n_m,E Y y 4 (//m>+
dt
j=1m=0 11
. N+l =l . (
+<u2n7maB l//m>)dt:Z Z <x2n7m’E l//m> +
j=1 m=0 fj-1

T A
+ j <_%+Ax2nm +Bu2nfm Wm >dt =

/ 1

N+1 n-1 . t

Z Z<x2n7m(t)’E l//m(t)> =

j=1 m=0 Lj-1

N n-1 .

=2 2 (om0 E Wt =0~y (1 +0)) ¢

=1 m=0

\

n—1
+ Z <x2n m (T)7 E Ym (T)>

m=0
From here, taking into account (17), (11), (18), we reduce
the expression for J,, to the following form
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N
T (0 Fyaawa M)+ 3 (e (1)), F i () +

j=1
T
[ Qo)+ g s, )+ (R i,
0

which is coincident with J, WUy, xy,).

We write down the coefficient

Tt =(x0, (D), Fy (o (T) = Enay)) +

n—-1
+ Z<xm(T)’FN+1x2nflfm(T)> +

m=l1

J2n—1 from (5)

N n=2 N
+33 (nt)). g o 1))+ )

(22t ), Fy (o) =) +
j=lm=1 =

—

! N
+ 5/§]<xn4 (), F iy a(2))) +

T n-1

*
+[ X (<x2n_1_m, Wx,, + Sum> + <u2n_1_m, S x,, + Rum>j dt.
0m=0

Realizing the transformations which are similar to the
transformations for J,, , we get

N
Jono1 = % z <xn—1(tj), ijn—l(tj)>-
Jj=1

So, the coefficient J,,_; is known after the problem P,_,

has been solved.

The theorem 1 is proved.

It should be noted that Theorem 1 is valid without the
assumption on the invertibility of the operator (6).

IV. ESTIMATES OF APPROXIMATE SOLUTION

Let us assume that the solutions (u;,x;) have been
found for the problems P, j= 0,...,n. We shall estimate
the approximate solution of the perturbed problem P, :

n n
(=Y elu;(t), %,(0)="Y &x;).
Jj=0 J=0
It is not difficult to see that the function X, (¢) is a solution
of the problem (2), (3) when u(¢) =u,, (¢).
We will denote the solution of the problem P, by

(us, x4). It satisfies the following system

AEAD w0+ BOW 0+ 0, 20)
Ex,(0)=x", 1)

E* % =W (0)x. (1) = AW p () + SO (1), 1#1;,(22)
E*(p(t; =0) =y (t;+0)) == F;(xu(£,) = &), (23)

j=1...,N,

E'W(T) = =Fy 1 (6(T) = &), (24)

WeC16.4

0==8(1)" x. (1) + B(t) w (1) = R(O)ux (¢). (25)
It should be noted that it is simpler to find the solutions of

the problems P; than the problem P, solution. In

particular, if W =0, §$=0,and Fy,; =0, we have the
problem for finding w ;(f) and u;(#) which does not
depend on x; (¥).

Further, we introduce the notations

Ax(t) = x, () =X, (1), Aut) =u. () =1, (1),

2 (26)
Ay )=y (t)—y, ),

n .
where (1) = Z ey j(8), w;(#) 1is the conjugate variable
j=0

for the problem P; .

In view of (20) — (25), (8), (12), (15) — (19), we have for
Ax, Au, Ay the system

@ = AAx+ BAu, 27)
EAx(0) =0, (28)
*dj—;//:WAx—A*At//+SAu, t#1;, (29)
E* (At ~0) = Ap(t; +0) =—eFAx(t)) — " Fyg, (1), (30)
j=1...,N,
E*Ay(T) = —Fy Ax(T), (31)
0=-S"Ax+B*Ay — RAu. (32)

If Assumption 1° holds then the operator, having the
QAP 0 OB
matrix representation| PWP —PA*Q PS |, is invertible
-S*P B'Q -R
(see, for example, [7]). (The invertibility of the last operator
means that the system following from the control optimality
condition, has index one. The general conditions ensuring
index one for this system, are given in [6].) In view of [7]
(Theorem 5.1), the system (27), (29), (32) provides an
explicit non-negative differential Hamiltonian system for the
pair (Ex, ({ —Q)y) which is of the form

d( EAx E E, EAx
a\(1-0)ay) \Ey -Ef \1-0)ay

where E, =E5 >0, E3=E3 >0.
The relations (30), (31) are equivalent to the following
equalities:
(1= QA (t; =0) = (I - Q)Aw(t; +0) =
=—&(l - 0)G EAx(t;) — e"1 (I - )G Ex, (¢ ),
(I~ Q)AW(T) = ~(I -~ 0)Gy , EAX(T). (35)
Analogously to the theorem 2.3 proof from [5], we can
establish the unique solvability of the boundary value

(34)
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problem (33), (28), (34), (35) for all £>0. From here and
from (32), it follows that the estimates
1A [ [ Ay @) ||, | Au(t) || < ce™, (36)
where a constant ¢ does not depend on ¢ and ¢, take place
forall €[0,T] and sufficiently small & > 0.
We will transform the difference
A =J,(ty,x,)—J s (U, Xs).
Using (1), (26), (36), we have
AT = 0> ) (%, (T) = X (T), Fy oy (e (1) =€)+
N ~
+szl<xn(r,~)—x*<tj),F-(x*<rj>—§,->>+
j=
T
+ (<X, =X, Wy +Suy >+ <, =1y, 8™ x4 + Ruy, >)dL.
0

Further, in view of (22), (25), (2), (24), (23), (3), we
obtain

A = O(* V) 4+ (3,(T) = xe(T), Fyy 1 (xe(T) = Exy 1)) +

N ~
+ gzl<x,,(tj) —x(t)). Fy (uelt)) = £)) +
iz

N+l 1)
+ (<}n—x*,E*0Z/+A*1//>+<L7n—u*,B*(//>Jdt=

J= g

= O(* ") (3, (T) = (T, Fyy 1 (s (T) — E ) +

N
+EZ<En(tj)_X*(t_/‘)aF/‘(X*(tj)—éj»+
Jj=l1
N+1 .
+ Z(< E()NCn([) _X*(t)),l//([) >|t.;-71 +
Jj=1
i
d X s ~
# [t (B =) +AG, = x0) + By~ > di) =
g
-

= 0(* ") 4 (3, (T) = xu(T), Fy 1 (6e(T) = Ey ) +

N
8 (%t = xe(t)), Fy (o)) = £7)) +
Jj=1
N+1
+ Z< E(R,(t;) = x:(t))w(t; —0) =y (t; +0) >=
Jj=1

= 02D (3, (T) = (1), Fy 1 (xe(T) — Epy 1)) +

N
+gz<;n(tj)_x*(tj)’Fj(x*(tj)—fj»+
j=1
N *
+ z< (En(t/) _x*(tj))7E (l//([/ _0)_1//(t] +0)) S+
Jj=1
+<Xx,(T) —X*(T),E*(//(T) S= 0(82(n+1)).

So, we have proved

Theorem 2. The following estimates

WeC16.4

[ 2 (€)= X (O) |1, ||t ()~ (2) || < 6™,
J o), %) =T o (s, x4 ) < ce2D |

where a constant ¢ does not depend on ¢ and &, are true
for all # €[0,7T] and sufficiently small & > 0.

It follows from this theorem that {u, (¢)} is a minimizing

sequence for the considered functional (1).
Further, we will prove that the sequence {J, (u;,X;)} is

decreasing for fixed ¢ .

Theorem 3. For sufficiently small ¢ >0, we have
Jg(ﬁi’;i) < Jg(ﬁi_l,;i_l), i= 1,...,1’1.

If u; # 0 then (37) is a strict inequality.

(37

Proof. If u; =0, (37) is obvious. Let us consider the case
when u; #0. Expanding J, (u,x,)(s=i-1,1) in series
(5) and using Theorem 1, we obtain that the first 2i terms in
expansions  J,(4;_1,Xx;_;) and J,(u;,x;) are identical.
The pair (u;,x;) is a solution of the linear-quadratic
problem P;, the performance index of which is a
transformed expression for J,;. Hence, the value of this
coefficient J,;, corresponding to the decomposition of
J.(u;,x;), is strictly less than the respective value for
J . (;_1,X;_1). Therefore, (37) is true for sufficiently small
e>0.

V. ILLUSTRATIVE EXAMPLE

As the obtained results are new for problems with a state
equation resolved with respect to the derivative, we consider
the problem P, of minimizing the functional

J o (u,x) = %(x1 (3)-30)2 +§((x1 (1)+1000)? +
+(x1(2)=1000) + (x5 (1) = 200)% + (x5 (2) +400)%) +
13 5
+—Iu dt
2 0
on trajectories of the system
x1(0) = 60,

x5(0) =10,
whene =0.1.

X1 =Xp, (38)

).C2 =u,

Taking into account the method developed in this paper
we find the solutions of the problems Fyand P, .

Then we obtain the zero and first order approximations
(ug,xo) and (uy,x;) for the solution of the problem P, .
The exact and approximate solutions are given in Fig.1 for
x1, in Fig.2 for x, and in Fig. 3 for u.
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Fig.2. The graphs of exact
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Fig.3. The graphs of exact and approximate solutions for © = ().

Using the solutions of the system (38) when u =u( and
Jo(ug,xg) and  J,(up,xp)

accordingly. The obtained results and the optimal value of
the performance index are given in Table I.

u=u), we evaluate

WeC16.4
TABLEI
VALUES OF PERFORMANCE INDEX
PERFORMANCE INDEX VALUE
J, (g, x0) 111058.45
J (i), %) 110141.9986
J o (%0 ) 110127.4015

VI. CONCLUSION

So, we have constructed the asymptotic solution for the
problem (1)-(3) using the direct scheme method.

The estimates have been obtained for the proximity of the
asymptotic approximate solutions to the exact one in terms
of the control, the trajectory and the functional.

Using the direct scheme method we have proved the nice
property, that the values of the minimized functional do not
increase when higher-order approximations for the optimal
control are utilized. The direct scheme method advantage is
also the possibility to apply standard programs for solving
optimal control problems in order to find the terms of
asymptotic expansions.
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