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Abstract— The problem of rejection of a sinusoidal disturbance
of known frequency, acting at the output of a discrete-time
complex-valued linear stable plant with unknown dynamics, is
considered. It is assumed that output signal is contaminated
with wideband measurement noise. The paper presents conver-
gence and tracking analysis of a new narrow-band disturbance
elimination scheme described recently. It is shown that the
proposed adaptive feedback regulator converges locally in the
mean to the optimal (minimum-variance) regulator. It is also
shown that it has very good robustness properties.

Index Terms: Adaptive control, system identification, distur-

bance rejection.

I. INTRODUCTION

Consider the problem of reduction of a narrow-band distur-

bance at the output of a discrete-time complex-valued system

governed by

y(t) = Ko(q
−1)u(t − 1) + d(t) + v(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized time, q−1

is the backward shift operator, y(t) denotes the corrupted

complex-valued system output, Ko(q
−1) denotes unknown

transfer function of a linear single-input single-output stable

plant, d(t) given by

d(t) = a(t)ejωot (2)

is a complex-valued sinusoidal disturbance (cisoid) of known

frequency ωo and unknown, slowly varying amplitude a(t),
v(t) is a wideband measurement noise and, finally, u(t)
denotes the input (controlled) signal.

In this study we will assume that no reference signal is

available, i.e. one has access to the output signal only. We

will look for a feedback controller allowing for cancellation,

or near-cancellation, of the sinusoidal disturbance, i.e. con-

troller generating the complex-valued feedback signal u(t)
that minimizes system output in the mean-squared sense:

E[ | y(t) |2 ] 7−→ min.

The need for vibration control arises in many electro-

mechanical systems, where narrow-band disturbances are

usually generated by rotating machinery and their suppres-

sion is necessary to maintain high quality of the underlying

technological process [1]. Similar problems are encountered

in active noise control systems, where the unwanted sound

is attenuated by a noise-canceling speaker emitting a sound

wave with the same amplitude but opposite polarity [2]. Both

types of applications fall into a more general narrow-band

disturbance rejection category.

The problem of narrow-band disturbance rejection was con-

sidered by many authors under different methodologies (in-

ternal model principle, phase-locked loop approach) – see

e.g. the recent work of Bodson and co-workers [3], [4], and

Landau and co-workers [5], [6]; a good overview of different

approaches can be found e.g. in a tutorial paper [6].

An entirely new approach to cancellation of narrow-band

disturbances, based on coefficient fixing and automatic gain

tuning, was recently proposed and analyzed in [7]. Suppose

that the measurement noise in (1) obeys

(A1) {v(t)} is a zero-mean circular white sequence

with variance σ2
v .

and that the coefficient a(t) in (2) evolves according to the

random-walk (RW) model

a(t) = a(t − 1) + w(t) (3)

where the sequence of one-step changes obeys

(A2) {w(t)}, independent of {v(t)}, is a zero-mean

circular white sequence with variance σ2
w.

Additionally, suppose that the unknown plant is stable and

has nonzero gain at the frequency ωo:

(A3) Ko(q
−1) =

∑
∞

i=0
fiq

−i,
∑

∞

i=0
| fi| < ∞,

Ko(e
−jωo) 6= 0 .

Under (A1)–(A3) the minimum variance control rule, i.e.

the rule that minimizes the steady-state mean-squared output

error E∞[|y(t)|2] = limt7→∞ E[|y(t)|2] has the form [7]

d̂(t + 1|t) = ejωo [ d̂(t|t − 1) + µoy(t) ]

u(t) = − d̂(t + 1|t)
ko

(4)

where µo is the real-valued adaptation gain given in the form

µo = − ξ/2 +
√

ξ2/4 + ξ , ξ = σ2

w/σ2

v (5)

and ko = Ko(e
−jωo) is the true plant gain.

The derivation of (4) was based on the following steady-state

approximation

Ko(q
−1)u(t − 1) ∼= kou(t − 1) (6)

which holds for a narrow-band signal u(t).1

1Vaguely speaking, to cancel sinusoidal disturbance d(t), one should
generate such sinusoidal signal u(t) that after passing through the plant
will have the same amplitude as d(t), but opposite polarity. Hence, the
narrow-band assumption made on u(t) is certainly justified.
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When the plant’s gain is unknown, one can replace it with

the “nominal” gain kn = Kn(e−jωo) 6= 0, where Kn(q−1)
denotes nominal (assumed) transfer function. This results in

the algorithm

d̂(t + 1|t) = ejωo [ d̂(t|t − 1) + µy(t) ]

u(t) = − d̂(t + 1|t)
kn

. (7)

Interestingly, even though in general the assumed plant’s gain

differs from the true one, i.e. β = ko/kn 6= 1, when the

adaptation gain satisfies

µβ = µo (8)

the mean-squared output error yielded by (7) is identical with

that observed for the optimal algorithm (4). This means that,

for a proper choice of µ, the modeling bias is automatically

compensated by feedback.

Note that, according to (8), in the presence of phase modeling

errors (Imβ 6= 0), the optimal adaptation gain µ = µo/β
is complex-valued. The gain µ can be optimized on-line

using the recursive prediction error (RPE) approach. The

resulting self-tuning disturbance rejection regulator can be

summarized as follows

z(t) = ejωo [ (1 − | µ̂(t − 1)| )z(t − 1)

− | µ̂(t − 1)|
µ̂(t − 1)

y(t − 1) ] (9)

r(t) = ρr(t − 1) + | z(t)|2

µ̂(t) = µ̂(t − 1) − z∗(t)y(t)

r(t)

d̂(t + 1| t) = ejωo [ d̂(t| t − 1) + µ̂(t)y(t) ]

u(t) = − d̂(t + 1| t)
kn

(10)

where z(t) is the local estimate of the sensitivity derivative

∂y(t;µ)/∂µ, ∗ denotes complex conjugation and ρ, (0 < ρ <
1) is the user-dependent forgetting constant that determines

the effective width of the local analysis interval, equal to

1/(1 − ρ) samples – see [7] for more details.

For practical reasons that will be explained later, (9) can be

replaced with

z(t) = ejωo [ (1 − cµ)z(t − 1) − cµ

µ̂(t − 1)
y(t − 1) ] (11)

where cµ is a small positive constant.

Both the original algorithm (9)–(10), and its modified version

(10)–(11), were tested in [7] in several simulation exper-

iments, showing satisfactory convergence and robustness

properties. The main purpose of the current submission is

to provide theoretical explanation of this experimentally

observed behavior. We will show that, under assumptions

(A1)–(A3), the proposed regulator converges (locally) in the

mean to the optimal regulator, i.e. that

E∞[µ̂(t)] ∼= µo

β
. (12)

Our analysis will also shed light on the role played by design

variables ρ and cµ.

Of course, most of the signals and systems encountered in

practice are real-valued. Even though the algorithms studied

in this paper are not ready-for-use solutions applicable to

the real case – such solutions are presented in a companion

paper [8] – all qualitative conclusions of the analysis carried

out below remain valid for real-valued algorithms.

II. TRACKING ANALYSIS

In this section we will study tracking properties of the

algorithm (10)–(11). Our analysis will be based on exam-

ining properties of a stochastic differential equation (SDE)

associated with the disturbance rejection algorithm. Since

strict mathematical conditions, under which such SDE-based

approach is applicable, are not specified (one of the prereq-

uisites is stochastic stability of the analyzed system, which

is a difficult problem to resolve on its own), the “theoreti-

cal” results derived below must be carefully experimentally

verified. This will be done in Section IV.

To avoid unnecessary complications, we will examine track-

ing properties of the simplified (gradient) version of the

algorithm (10)–(11), given in the form

µ̂(t) = µ̂(t − 1) − αy(t)z∗(t) (13)

where α > 0 denotes a small gain. Later on we will

extend results of our analysis to the normalized case, where

the constant gain is replaced with recursively computed

normalizing factor 1/r(t).
It is known that tracking behavior of constant-gain (finite-

memory) estimation algorithms, such as (13), can be studied

by examining properties of the associated difference equa-

tions. Denote by {y(t;µ)} and {z(t; µ)} stationary processes

that “settle down” in the closed-loop system for a constant

value of µ: µ̂(t) ≡ µ ∈ Ωs, where Ωs is the stability region.

Furthermore, let µ⋆ be the stable “equilibrium” point of (13)

obeying

f(µ⋆) = 0 (14)

Re[f ′(µ⋆)] > 0 (15)

where

f(µ) = E[y(t; µ)z∗(t; µ)]

and f ′(µ) = ∂f(µ)/∂µ. The (symbolic) differentiation with

respect to a complex variable is defined as [11]

∂

∂µ
=

1

2

[
∂

∂Re[µ]
− j

∂

∂Im[µ]

]
.

According to [9], [10], when the coefficient α is suffi-

ciently small the evolution of the estimation error µ̂(t)−µ⋆

can be approximately described by the following linearized

stochastic differential equation (provided that tracking is

satisfactory, i.e. µ̂(t) remains close to µ⋆)

dXs = −αf ′(µ⋆)Xsds + α
√

g(µ⋆) dWs (16)

Xs
∼= µ̂(t) − µ⋆ for s = t

where

g(µ) =
∞∑

τ=−∞

E [ y(τ ; µ)z∗(τ ; µ)y∗(0;µ)z(0;µ) ] (17)
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(the series being assumed convergent) and {Ws} denotes a

standard complex-valued Wiener process.

A. Equilibrium point

We will show that the equilibrium point of (13) obeys (8),

i.e. µ⋆ = µo/β. For two jointly stationary processes {x(t)}
and {y(t)} define Rxy(τ) = E[x(t)y∗(t − τ)]. Note that

f(µ) = Ryz(0;µ). Using the steady-state approximation (6)

one arrives at

y(t) = (1 − µβ)ejωoy(t − 1) + ejωotw(t)

+ v(t) − ejωov(t − 1) (18)

(for the sake of brevity the dependence on µ is temporarily

dropped). Combining (11) with (18) one obtains

E[y(t)z∗(t)] = E
{[

(1 − µβ)ejωoy(t − 1)

+ ejωotw(t) + v(t) − ejωov(t − 1)
]

×
[
(1 − cµ)e−jωoz∗(t − 1) − cµ

µ∗
e−jωoy∗(t − 1)

]}

which, after elimination of cross terms that are zero due to

orthogonality, leads to the following recursive relationship

Ryz(0) = (1 − cµ)(1 − µβ)Ryz(0)

− cµ

µ∗
(1 − µβ)Ryy(0) +

cµ

µ∗
Rvy(0) . (19)

In an analogous way the relationship

E[y(t)y∗(t)] = E
{[

(1 − µβ)ejωoy(t − 1)

+ ejωotw(t) + v(t) − ejωov(t − 1)
]

×
[
(1 − µ∗β∗)e−jωoy∗(t − 1) + e−jωotw∗(t)

+ v∗(t) − e−jωov∗(t − 1)
]}

implies

Ryy(0) = |1 − µβ|2Ryy(0) + σ2

w + 2σ2

v

− (1 − µβ)Ryv(0) − (1 − µ∗β∗)Rvy(0) . (20)

Note that Ryv(0) = Rvy(0) = σ2
v . Solving (19) and (20)

with respect to Ryy(0) and Ryz(0) one obtains

Ryy(0) =
σ2

w + |µβ|2σ2
v

1 − | 1 − µβ|2 + σ2

v (21)

Ryz(0) = − cµ[(1 − µβ)Ryy(0) − σ2
v ]

[1 − (1 − cµ)(1 − µβ)]µ∗
. (22)

The equilibrium point µ⋆ can be determined by solving

f(µ⋆) = Ryz(0;µ⋆) = 0 or equivalently

(1 − µ⋆β)Ryy(0;µ⋆) = σ2

v . (23)

Let x⋆ = 1 − µ⋆β. Equation (23) can be rewritten in the

form [cf. (21)]

x⋆

[
ξ + | 1 − x⋆|2

1 − |x⋆|2
+ 1

]
= 1 . (24)

Since, according to (24), x⋆ must be a real number, one

finally obtains

x⋆ = 1 + ξ/2 ±
√

ξ2/4 + ξ , µ⋆β = −ξ/2 ±
√

ξ2/4 + ξ .

To guarantee stability of the closed-loop system one must

require that µ⋆β > 0 which leads to [cf. (5)] µ⋆β = µo.

Since

µ⋆ = arg min
µ∈C

Ryy(0;µ) (25)

the equilibrium point established above corresponds to the

optimal (minimum-variance) control strategy.

B. Local stability

To prove stability of the equilibrium point we have to

verify (15). Note that Ryz(0;µ) = − N(µ)/D(µ)
where N(µ) = cµ[(1 − µβ)Ryy(0) − σ2

v ] and D(µ) =
[1 − (1 − cµ)(1 − µβ)]µ∗. According to (23) it holds that

N(µ⋆) = 0. Additionally, since [cf. (25)] R′

yy(0;µ⋆) = 0,

one obtains N ′(µ⋆) = −cµβRyy(0;µ⋆). Combining these

results one arrives at

f ′(µ⋆) = R′

yz(0;µ⋆) = − N ′(µ⋆)

D(µ⋆)

=
cµµoRyy(0;µ⋆)

|µ⋆|2[1 − (1 − cµ)(1 − µo)]
> 0 (26)

which proves that µ⋆ is a stable equilibrium point.

C. Results for the normalized algorithm

Consider the normalized algorithm (10) where

µ̂(t) = µ̂(t − 1) − y(t)z∗(t)

r(t)

r(t) = ρr(t − 1) + |z(t)|2 . (27)

Let γ = 1− ρ. For constant µ and for ρ sufficiently close to

1 it holds that r(t) ∼= h(µ)/γ where h(µ) = E[|z(t;µ)|2] =
Rzz(0;µ). Hence, the normalized algorithm can be analyzed

analogously as the gradient algorithm (13) provided that the

gain α is set to γR−1
zz (0;µ⋆). Note that this modification

does not affect qualitative results reported in the previous

subsections – similarly as before, µ⋆ = µo/β is the only

stable equilibrium point of (27). The stochastic differential

equation associated with (27) has the form

dXs = − γh−1(µ⋆)f
′(µ⋆)Xsds

+ γh−1(µ⋆)
√

g(µ⋆) dWs . (28)

To evaluate h(µ⋆) = Rzz(0;µ⋆) note that E[z(t)z∗(t)] =
E{[(1 − cµ)z(t − 1) − cµ/µ y(t − 1)] [(1 − cµ)z∗(t − 1) −
cµ/µ∗ y∗(t − 1)]}, and hence

Rzz(0) = (1 − cµ)2Rzz(0) − cµ(1 − cµ)

µ∗
Rzy(0)

− cµ(1 − cµ)

µ
Ryz(0) +

c2
µ

|µ|2 Ryy(0) .

Since Rzy(0;µ⋆) = Ryz(0;µ⋆) = 0 one obtains

h(µ⋆) = Rzz(0;µ⋆) = R∗

zz(0;µ⋆) =
cµRyy(0;µ⋆)

|µ⋆|2(2 − cµ)
. (29)

D. Variability

To study stochastic variability of µ̂(t) − µ⋆ we have to

evaluate g(µ⋆) in (16). To make computations easier we will

assume that both noise sources are Gaussian
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(A4) The noise sequences {v(t)} and {w(t)} are

normally distributed.

Note that under (A1), (A2) and (A4) the processes {y(t)}
and {z(t)} are also zero-mean and Gaussian. Therefore it

holds that [11]

η(τ ;µ⋆) = E[ y(τ ; µ⋆)z
∗(τ, µ⋆)y

∗(0;µ⋆)z(0;µ⋆) ]

= I1(τ) + I2(τ) + I3(τ)

where

I1(τ) = E[ y(τ ; µ⋆)z
∗(τ, µ⋆) ] E[ y∗(0;µ⋆)z(0;µ⋆) ]

= |Ryz(0;µ⋆)|2

I2(τ) = E[ y(τ ;µ⋆)y
∗(0, µ⋆) ] E[ z∗(τ ; µ⋆)z(0;µ⋆) ]

= Ryy(τ ; µ⋆)R
∗

zz(τ ;µ⋆)

I3(τ) = E[ y(τ ;µ⋆)z(0, µ⋆) ] E[ z∗(τ ; µ⋆)y
∗(0;µ⋆) ]

= Ryz∗(τ ;µ⋆)Rz∗y(τ ;µ⋆) .

Since Ryz(0;µ⋆) = 0, it holds that I1(τ) ≡ 0. Moreover,

since the processes {v(t)} and {w(t)} were assumed to be

circular white, one obtains Rvv∗(τ) = Rww∗(τ) = 0, ∀τ ,

which entails Ryz∗(τ ;µ⋆) = Rz∗y(τ ; µ⋆) = 0, ∀τ and leads

to I3(τ) ≡ 0.

We will show that

Ryy(τ ;µ⋆) = 0 , ∀τ 6= 0 . (30)

Actually, note that

E[y(t)y∗(t − 1)] = E
{[

(1 − µβ)ejωoy(t − 1) + w(t)

+ v(t) − ejωov(t − 1)
]

y∗(t − 1)
}

which leads to Ryy(1) = ejωo [(1 − µβ)Ryy(0) − Rvy(0)].
In an analogous way one can show that Ryy(τ) =
ejωo(1 − µβ)Ryy(τ − 1) , ∀τ > 1. Since [cf. (23)]

Ryy(1;µ⋆) = ejωo [(1 − µ⋆β)Ryy(0;µ⋆) − σ2
v ] = 0, one

obtains Ryy(τ ; µ⋆) = R∗

yy(−τ ; µ⋆) = 0, ∀τ 6= 0, which is

identical with (30).

Using (30) one arrives at

I2(τ) =

{
Ryy(0;µ⋆)Rzz(0;µ⋆) τ = 0

0 τ 6= 0
.

Finally, after combining all results presented above, one gets

g(µ⋆) =
∞∑

τ=−∞

η(τ ; µ⋆) = Ryy(0;µ⋆)Rzz(0;µ⋆) . (31)

Derivation of (31) in the non-Gaussian case, i.e. under (A1)–

(A2) only, is also possible, but much more tedious.

III. TRACKING ANALYSIS

A. Algorithm (10)–(11)

Since the properties of the closed-loop system depend on

the value of µ̂(t)β, rather than on the value of µ̂(t), we

will introduce a new variable Ys = βXs. Multiplying both

sides of (28) with β one arrives at the following differential

equation

dYs = − γh−1(µ⋆)f
′(µ⋆)Ysds

+ γβh−1(µ⋆)
√

g(µ⋆) dWs (32)

which can be used to study the evolution of µ̂(t)β in the

neighborhood of the equilibrium point µ⋆β = µo.

Using (26), (29) and (31) one can rewrite (32) in the form

dYs = −bYsds + c dWs (33)

where

b = γh−1(µ⋆)f
′(µ⋆) = γµo

2 − cµ

1 − (1 − cµ)(1 − µo)
(34)

c = γβh−1(µ⋆)
√

g(µ⋆) = γ|µ⋆|β
√

(2 − cµ)/cµ . (35)

Note that neither b nor |c| = γµo

√
(2 − cµ)/cµ depend on

β, which means that tracking properties of the modified RPE

algorithm (12) are independent of the modeling error. Based

on (33)–(35) one can rationalize the choice of γ and cµ.

1) Selection of γ: Denote by E∞[|µ̂(t)β − µo|2] ∼=
E∞[|Ys|2] the variance of fluctuations of µ̂(t)β around µo.

Solving the Lyapunov equation associated with (33) one

obtains E∞[|Ys|2] = |c|2/(2b), which leads to

q∞ = E∞[|µ̂(t)β − µo|2]
∼= γµo

1 − (1 − cµ)(1 − µo)

2cµ

. (36)

Quite clearly, to make the steady-state fluctuations of µ̂(t)β
small one should keep the coefficient γ sufficiently close

to 0. On the other hand, as shown in [9], the closer that γ
becomes to 0, the longer it takes for the algorithm to readjust

the adaptation gain µ̂(t) when the plant changes. Hence

selection of γ is a classical variance/bias compromise, typical

of identification of nonstationary systems [12]: for “small”

values of γ the estimation algorithm is “slow” (yields large

tracking bias) but “accurate” (yields small tracking variance),

whereas for “large” values of γ it is “fast” but “inaccurate”.

2) Selection of cµ: According to [9], the constant cµ should

be chosen so as to minimize the following measure of the

tracking capability of the algorithm:

J(cµ) =
b2

|c|2 =
(2 − cµ)cµ

[1 − (1 − cµ)(1 − µo)]2
.

Straightforward calculations lead to

co
µ = arg min

cµ

J(cµ) = µo . (37)

Note that in the case where
√

ξ ≪ 1 (slow rate of amplitude

variation) it holds that µo
∼=

√
ξ = σw/σv [cf. (5)]. Then, for

cµ = µo, one obtains: b = γ, |c| ∼= γ
√

2µo and q∞ ∼= γµo.

B. Algorithm (9)–(10)

Careful examination of all results derived in Section II leads

to the conclusion that the differential equation associated

with the original RPE algorithm (9)–(11) is identical with

(33), provided that the coefficient cµ, appearing in (34)–(35),

is replaced with µ⋆ = µo/|β|. Note that after such substitu-

tion the coefficients b and |c| depend on β. This means that
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cµ 0.005 0.01 0.05 0.1

K1(q−1) 0.010 0.010 0.010 0.010

K2(q−1) 0.010 0.010 0.011 0.011

K3(q−1) 0.011 0.011 0.013 0.016

TABLE I

STEADY-STATE MEAN VALUES OF µ̂(t)β FOR THREE PLANTS AND

DIFFERENT CHOICES OF cµ

tracking characteristics of (9), such as the rate of adaptation

or steady-state accuracy, depend not only on the user-defined

tuning parameters (γ) but also on modeling errors (β), which

are unknown. From the practical viewpoint this is certainly

an undesirable feature of the original RPE algorithm, making

it less attractive than the modified algorithm (11).

IV. SIMULATION RESULTS

A. Equilibrium point

Table I shows the mean steady-state values of |µ̂(t)β| for

three first-order plants and different choices of cµ. The

plants were described by the following transfer functions:

K1(q
−1) = 1 (inertionless), K2(q

−1) = 0.5/(1 − 0.5q−1)
(small inertia) and

K3(q
−1) =

0.0952

1 − 0.9048q−1
(38)

(large inertia). The last model was adopted from the paper of

Guo and Bodson [4], and corresponds to a continuous-time

plant with transfer function G(s) = 1/(1 + 0.01s), sampled

at the rate of 1 kHz. In all cases the same modeling error

was introduced: |β| = 1.5, Argβ = 60o. The algorithm (10)–

(11) was used with ρ = 0.999. The disturbance and noise

settings were equal to σv = 0.1, σw = 0.001, ω0 = 0.1
and d(0) = 1. Under such conditions the optimal value of

µ is equal to µo
∼= 0.01. The values shown in Table I were

obtained by combined ensemble averaging (50 realizations of

{v(t)} and {w(t)}) and time averaging (100000 time-steps).

For each realization, the first 25000 samples were discarded

to ensure that only the steady-state values are averaged.

Table I shows that for inertial plants the steady-state values

of µ̂(t)β differ from µo. Since all theoretical results were

derived using the inertionless system approximation (6), this

discrepancy is not a surprise . The amount of bias depends

on the inertia of the controlled plant and can be decreased

by lowering the value of cµ. It is marginal for the optimal

choice of cµ (cµ = µo = 0.01) but may be substantial when

the adopted value of cµ is too large.

B. Variability

Dependence of the steady-state variance of µ̂(t)β on γ =
1 − ρ was measured – in an analogous way as described in

the previous subsection and under the same disturbance and

noise conditions – for the Guo & Bodson’s plant K3(q
−1).

Figure 1 shows results obtained for β = 1 (no modeling

error) and for β = 4. Similarly as in the previous experiment,

the constant cµ was set to 0.01. Note good correspondence

10
−5

10
−4

10
−3

10
−8

10
−7

10
−6

10
−5

10
−4

γ

V
a
r[

µ
(t

)β
]

Fig. 1. Dependence of the steady-state variance of µ̂(t)β on γ for the
Guo & Bodson’s plant K3(q−1). Solid lines - experimental results, dotted
lines - theoretical predictions. Circles - β = 1, squares - β = 4.

between experimental and theoretical curves in the consid-

ered range of RPE gains. The obtained results are practically

insensitive to inertia of the controlled plant and to modeling

errors.

For γ > 0.003 the bursting type of behavior can be

occasionally observed. Hence, in this range of γ, averaging

does not yield representative results. The intensity of bursts

grows with γ. Bursts arise in a classical scenario. Too large

values of µ̂(t) cause temporal instability of the system.

However, since rapid growth of the output signal speeds up

convergence of µ̂(t) to µo/β, the closed-loop stability is

quickly regained. Since bursts are practically inacceptable,

some sort of safety jacketing is needed – see [7] for more

details.

The discrepancy between experiment and theory, observed

for “large” values of γ, can be easily explained. First, the

stochastic differential equation, which led to (36), is an

asymptotic description of the closed-loop system, valid only

for sufficiently small values of γ. Second, since γ is the

“adaptation rate of the adaptation rate µ”, it should take much

smaller values than µ̂(t). Such recommendation is consistent

with the rule saying that adaptation time constants of a

hierarchical multi-layer adaptive system should gradually

increase from the bottom (the lowest adaptation level) to

the top (the highest adaptation level). Note that in the case

considered the inequality γ ≪ µo is satisfied when γ ≤
0.001 (assuming that the term “much smaller” is interpreted

as “at least 10 times smaller”).

C. Transient performance

The objective of this simulation experiment was to demon-

strate the ability of the proposed algorithm to cope with

sudden plant changes. The Guo & Bodson’s plant K3(q
−1)

was switched at the instant t = 15000 to the plant described

by K4(q
−1) = 0.3/(1− 0.8q−1). The noise and disturbance

settings were the same as in the previous examples. Fig. 2

shows the averaged results of 100 simulation runs, obtained

for the algorithm (10)–(11) equipped with cµ = 0.01 and

ρ = 0.999. The nominal plant gain was fixed at kn = 1. The

corresponding modeling errors were equal to: |β| = 0.707,
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Fig. 2. Mean transient behavior of the disturbance rejection algorithm
(average results of 100 simulation runs). Solid lines – ensemble averages
of the estimated values, dotted lines – optimal steady-state values.

Argβ = −42.2˚ for t < 15000 and |β| = 1.34, Argβ =
−21.4˚ for t ≥ 15000.

During the first 500 time-steps the quantities z(t), r(t) and

µ̂(t) were not evaluated – they were kept at their starting

values z(0) = 0, r(0) = 100, µ̂(0) = 0.02 and not

updated. Then, at the instant t = 501, the adaptation lock

was released.

According to Fig. 2 the algorithm converges in the mean to

settings that are close to the optimal steady-state settings. It

deals favorably with an abrupt plant change. Just after the

change, the magnitude of the adaptation gain µ̂(t) temporar-

ily increases to quickly compensate large initial modeling

errors; later on it gradually decays to settle down around its

optimal steady-state value. Note very quick response to phase

errors and (usually) much slower response to magnitude

errors – the effect caused by diverse sensitivity of system

output to two types of modeling errors.

The mean transient response is shorter than 50 samples, i.e.

it lasts for less than one period of the disturbance (To =
2π/ωo

∼= 63).

D. Tracking under nonstandard conditions

To enable theoretical analysis we have assumed that the am-

plitude of the sinusoidal disturbance evolves according to the

random-walk model. The aim of our last numerical example

was to demonstrate that the proposed gain-tuning mechanism

works correctly also under “nonstandard” conditions. The

Guo & Bodson’s plant K3(q
−1) was subject to a sinusoidal

disturbance with a sinusoidally varying amplitude

a(t) = 1 + 0.15 sin(2πt/10000) .

Although the theoretical value of the optimal adaptation gain

is not known in this case, one has the right to expect that

µo should be time-varying – it should take smaller values

when a(t) varies slowly (i.e. when the absolute value of

the derivative a′(t) is small), and larger when a(t) varies

faster. This is confirmed by the results summarized in Table

II, where the algorithm (10)–(11), with adaptively tuned

µ, is confronted with the algorithm (7) equipped with a

constant gain. Since the algorithm (7) cannot compensate

modeling errors, to make the comparison fair the true plant

gain was assumed to be known (β = 1). Note that the

adaptive algorithm yields better performance than any variant

of the constant-gain algorithm. This clearly demonstrates

robustness of the proposed solution.

µ 0.01 0.02 0.03 0.04

E[|y(t)|2] 0.01059 0.01022 0.01020 0.01022

µ 0.05 0.06 0.07 Adaptive

E[|y(t)|2] 0.01026 0.01031 0.01036 0.01018

TABLE II

STEADY-STATE PERFORMANCE OF A CONSTANT-GAIN DISTURBANCE

REJECTION ALGORITHM (FOR SEVERAL VALUES OF µ) AND OF ITS

ADAPTIVE VERSION.

V. CONCLUSION

Tracking properties of an (earlier proposed) adaptive vibra-

tion controller can be studied by examining the stochastic

differential equation associated with the closed-loop system.

Using this technique we have shown that the analyzed

control scheme converges locally in the mean to the optimal

regulator. Additionally, we have formulated several useful

“rule of thumb” design guides allowing one to increase

robustness and statistical efficiency of vibration control.
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