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Abstract— This paper discusses a design problem of an adap-
tive robust output feedback controller for a class of uncertain
linear systems. The uncertainties under consideration satisfy the
matching condition and are bounded, but their upper bounds
are unknown. The proposed adaptive robust output feedback
controller consists of a fixed gain controller, an adjustable
parameter and a variable gain controller. In this paper, we
present a design method of an adaptive robust output feedback
control system. Finally, illustrative examples are presented to
show the efficiency of the proposed adaptive robust controller.

I. INTRODUCTION

Robustness of control systems to uncertainties has always
been the central issue in feedback control and therefore
for linear dynamical systems with unknown parameters, a
large number of design methods of robust state feedback
controllers have been presented[1], [2]. In particular, for the
state feedback controller of a linear system with structured
uncertainties, a connection between quadratic stabilization
and H∞ control has been established[3].

On the other hand, since not all the state are measurable
in practical systems because of technical, physical and/or
economic reasons, the control scheme may be designed via
observer-based controllers[4], [5] or output feedback one[6].
In Schmitendorf[4], a method for obtaining observer-based
robust controllers has been presented and they have shown
that using an estimate of the state reduces the magnitude of
the uncertainty bounds for which stability can be guaranteed.
We have also proposed an observer-based robust controller
which achieves not only robust stability but also reducing
the error between the plant output and the desired one for
linear systems with structured uncertainties[5]. In this work,
adopting 2-stage design approach, the design problem of
the observer-based controller can be reduced to constrained
convex optimization problem. Additionally, a design method
of an output feedback guaranteed cost controller has been
presented[7]. In the work of Moheimani and Petersen[7],
in order to obtain output feedback gain of the guaranteed
cost control, it is necessary to solve a set of cross-coupled
algebraic Riccati equations and algebraic Lyapunov equa-
tions. Besides, algorithms by Geromel[8] and Iwasaki[9] use
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linear matrix inequalities (LMI) methods to design static
output feedback controllers based on a set of Lyapunov
inequalities coupled by the constraint that one Lyapunov
matrix is the inverse of another. It is well known that in the
case of designing control schemes solely based on an output
feedback controller, it is difficult to find the output feedback
gain for linear systems even without uncertainties[6].

By the way, we have proposed a robust controller with
an adaptive compensation input improving transient behavior
for a class of uncertain linear systems[10]. The adaptive
compensation input is tuned on-line based on the informa-
tion about parameter uncertainties. Additionally, for linear
systems with matched uncertainties of which upper bounds
are unknown, some design methods of adaptive robust con-
trollers have been suggested[11], [12], [13]. These adaptive
robust controllers consist of a fixed gain controller and a
variable gain controller, and the variable gain controller
is tuned by updating laws so as to reduce the effect of
uncertainties. However, so far the design problem of adaptive
robust output feedback controllers for linear systems with
matched uncertainties of which upper bounds are unknown
has little been considered as far as we know.

From this viewpoint, this paper deals with a design
problem of an adaptive robust output feedback controller
for linear systems with uncertainties of which upper bounds
are unknown. The proposed adaptive robust output feedback
controller consists of a fixed gain controller and a variable
gain controller with an adjustable parameter. The fixed gain
controller is determined by using the nominal system, and
the adjustable parameter and the variable gain controller are
designed such that the effect of uncertainties is reduced. In
this paper, we show a design method of the proposed adaptive
robust output feedback controller.

This paper is organized as follows. In Sec. 2, we show the
notation used in this paper and introduce preparatory results.
In Sec. 3, we define the class of uncertain linear systems
under consideration, and introduce an adaptive robust output
feedback controller. Sec. 4 contains our main results and
a design method of the adaptive robust output feedback
controller is presented. Finally, illustrative examples are
included to illustrate the results developed in this paper.

II. PRELIMINALIES

In this section, we show notations, useful and well-known
lemmas which are used in this paper.

In the sequel, we use the following notation. For a matrix
A, the transpose of a matrix A and the inverse of one are
denoted by AT and A−1 respectively and He{A} means A+
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λmin {Z} In −Z ≤ 0 ⇒ λmin {Z} ξT ξ − γTZWγ = γT (λmin {Z} In −Z)FTFγ ≤ 0
λmax {Z} In −Z ≥ 0 ⇒ λmax {Z} ξT ξ − γTZWγ = γT (λmax {Z} In −Z)FTFγ ≥ 0

(3)

AT . Also, In represents n-dimensional identity matrix and
vec (A) denotes the column vector of the matrix A, i.e. the
operator “vec” vectorizes a matrix by stacking its columns.
For real symmetric matrices A and B, A > B (resp. A ≥ B)
means that A − B is positive (resp. nonnegative) definite
matrix. For a square matrix S, Trace{S} denotes its trace.
For a vector α ∈ <n, ||α|| denotes standard Euclidian norm
and for a matrix A, ||A|| represents a its induced norm.
The symbol “4=” means equality by definition. Besides, for
a symmetric matrix P , λmax {P} (resp. λmin {P}) represent
the maximal eigenvalue (resp. miminal eigenvalue)∗.

Furthermore, we show the following useful lemmas used
in this paper.

Lemma 1: For arbitrary vectors λ and ξ and the matri-
ces G and H which have the appropriate dimensions, the
following relation holds.

He

{

λTG∆(t)Hξ
}

≤2
∥

∥GTλ
∥

∥

∥

∥∆(t)Hξ
∥

∥

≤2δ∗
∥

∥GTλ
∥

∥

∥

∥Hξ
∥

∥ (1)

where ∆(t) ∈ <p×q is a time-varying matrix satisfying
∥

∥∆(t)
∥

∥ ≤ δ∗.
Proof: The above relation is easily obtained by

Schwartz’s inequality[14].
Lemma 2: For a vector γ ∈ <n and a symmetric positive

definite matrix Z ∈ <n×n and a symmetric nonnegative
definite matrix W = FTF ∈ <n×n (F ∈ <p×n), the
following relation holds.

λmin {Z}
∥

∥ξ
∥

∥

2
≤ γTZWγ ≤ λmax {Z}

∥

∥ξ
∥

∥

2 (2)

where ξ is a vector given by ξ = Fγ.
Proof: The inequalities λmin {Z} In − Z ≤ 0 and

λmax {Z} In − Z ≥ 0 are obvious. Additionally, one can
see from (3) that the above relation is fulfilled.

III. PROBLEM FORMULATION

Consider the uncertain linear system described by the
following state equation† (see Remark 1).

d

dt
x(t) = (A+B∆(t)C)x(t) +Bu(t)

y(t) = Cx(t)
(4)

where x(t) ∈ <n, u(t) ∈ <m and y(t) ∈ <l are the vectors
of the state, the control input and the measurement output,
respectively, and the matrices A,B and C denote the nominal
values of the system parameters. In (4), ∆(t) ∈ <m×l

represents unknown time-varying parameters. Besides, we
assume that the pair (A,B) is stabilizable and introduce the
following assumption.

BT = DC (5)

∗For a symmetric matrix P , eigenvalues of P are real number[14].
†i.e. uncertainties satisfy the matching condition[15].

where D ∈ <m×l is a known constant matrix.
In this paper, the unknown parameter ∆(t) ∈ <m×l is

supposed to be bounded, but its upper bound is unknown.
Namely, although there exists a positive constant δ∗ ∈ <1

satisfying the following relation, δ∗ is unknown.
∥

∥∆(t)
∥

∥ ≤ δ∗ (6)

Besides, the nominal system, ignoring the unknown pa-
rameters in (4), is given by

d

dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(7)

In this paper, the nominal system (7) is supposed to be
stabilizable via static output feedback control. Therefore,
there exist an output feedback control u(t) = Ky(t)

(

i.e.
a fixed gain matrix K ∈ <m×l

)

such that the following
closed-loop system is asymptotically stable.

d

dt
x(t) = AKx(t) (8)

where AK is a stable matrix given by AK
4
=A+BKC‡.

Now on the basis of the work of Oya and Hagino[10],
we introduce the error vectors e(t)

4
=x(t) − x(t) and

ey(t)
4
= y(t) − y(t). Beside, using the fixed gain matrix

K ∈ <m×l, we consider the following control input for the
uncertain linear system (4).

u(t)
4
=Ky(t) + ψ(y, ey, θ,L, t) (9)

where ψ(y, ey, θ,L, t) is a adaptive compensation input[10]
for the purpose of reducing the effect of uncertainties and
has the following form.

ψ(y, ey, θ,L, t)
4
= θ(t)L(y, ey, t)y(t) (10)

In (10), θ(t) ∈ <1 and L(y, ey, t) ∈ <m×l are an adjustable
parameter and a variable gain matrix, respectively, and are
determined such that the effect of uncertainties is reduced.
From (4) and (7) – (10), we have the following error system.

d

dt
e(t) = AKe(t) +B∆(t)Cx(t) + θ(t)L(y, ey, t)y(t)

ey(t) = Ce(t)
(11)

Note that the adjustable parameter θ(t) ∈ <1 is not
an estimate of the unknown upper bound δ∗ ∈ <1 for
uncertainties, and if asymptotical stability of the uncertain
error system (11) is ensured, then asymptotical stability of
the uncertain linear system (4) is also guaranteed, because
the nominal system (8) is asymptotically stable.

‡Note that the feedback gain matrix K ∈ <m×l is designed by using
the existing result, e.g. Kucera and Souza[6] or Benton et al[16].
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L(y, ey, t) =



















−

∥

∥Dey(t)
∥

∥D

λmin (S)
∥

∥y(t)
∥

∥

∥

∥Dey(t)
∥

∥

2 ey(t)yT (t) if Dey(t) 6= 0 and y(t) 6= 0

−

∥

∥Dey(t−)
∥

∥D

λmin (S)
∥

∥y(t−)
∥

∥

∥

∥Dey(t−)
∥

∥

2 ey(t−)yT (t−) if Dey(t) ≡ 0 or y(t) ≡ 0

d

dt
θ(t) =

1

ϑ

∥

∥Dey(t)
∥

∥

∥

∥y(t)
∥

∥

(13)

d

dt
V(e, θ, t) = eT (t)

[

He

{

AT
KS
}]

e(t) + 2eT (t)S {B∆(t)Cx(t) + θ(t)BL(y, ey, t)y(t)} − 2ϑ (ξ − θ)
d

dt
θ(t) (15)

d

dt
V(e, θ, t) ≤ eT (t)

[

He

{

AT
KS
}]

e(t) + 2δ∗
∥

∥DCSe(t)
∥

∥

∥

∥Cx(t)
∥

∥+ 2θ(t)eT (t)SCTDTL(y, ey, t)y(t)

− 2ϑ (ξ − θ(t))
d

dt
θ(t) (16)

d

dt
V(e, θ, t) ≤ eT (t)

[

He

{

AT
KS
}]

e(t) + 2ξ
∥

∥Dey(t)
∥

∥

∥

∥y(t)
∥

∥+ 2θ(t)eT (t)SCTDTL(y, ey, t)y(t)

− 2ϑ (ξ − θ(t))
d

dt
θ(t) (18)

d

dt
V(e, θ, t) ≤ eT (t)

[

He

{

AT
KS
}]

e(t) + 2ξ
∥

∥Dey(t)
∥

∥

∥

∥y(t)
∥

∥− 2ϑ (ξ − θ(t))
d

dt
θ(t)

+ 2θ(t)eT (t)SCTDT

(

−

∥

∥Dey(t)
∥

∥D

λmin (S)
∥

∥y(t)
∥

∥

∥

∥Dey(t)
∥

∥

2 ey(t)yT (t)

)

y(t)

≤ eT (t)
[

He

{

AT
KS
}]

e(t) + 2 (ξ − θ(t))
∥

∥Dey(t)
∥

∥

∥

∥y(t)
∥

∥− 2ϑ (ξ − θ(t))
d

dt
θ(t) (19)

From the above, our control objective in this paper is to
design the adaptive compensation input ψ(y, ey, θ,L, t) ∈
<m which stabilizes the uncertain error system (11). That
is to design the updating law of the adjustable parameter
θ(t) ∈ <1 and the variable gain matrix L(y, ey, t) ∈ <m×l.

Remark 1: In this paper, we consider the uncertain dy-
namical system (4) which has uncertainties in the state matrix
only. The proposed design scheme of the adaptive robust
controller derived in next section can also be applied to
the case that the uncertainties are included in both the sys-
tem matrix and the input matrix. By introducing additional
actuator dynamics and constituting an augmented system,
uncertainties in the input matrix are embedded in the system
matrix of the augmented system[17]. Therefore the same
design procedure can be applied.

IV. MAIN RESULTS

In this section, we show a design method of the variable
matrix L(y, ey, t) ∈ <m×l and the updating law of the
adjustable parameter θ(t) ∈ <1 such that the uncertain error
system (11) is asymptotically stable.

Now, we consider the nominal closed-loop system matrix
AK ∈ <n×n. Since the matrix AK is asymptotically stable,
there exist a symmetric positive definite matrix S ∈ <n×n

which satisfies the following Lyapunov equation.

AT
KS + SAK = −Q (12)

where Q ∈ <n×n is a symmetric positive definite matrix.
The following theorem gives a design method of the

variable gain matrix L(y, ey, t) ∈ <m×l and the updating
law of the adjustable parameter θ(t) ∈ <1 .

Theorem 1: Consider the uncertain error system (11) and
the variable gain matrix L(y, ey, t) ∈ <m×l and the updating
law of the adjustable parameter θ(t) ∈ <1.

Using the symmetric positive definite matrix S ∈ <n×n

satisfiyng the Lyapunov equation (12), the variable gain
matrix L(y, ey, t) ∈ <m×l and the updating law of the
adjustable parameter θ(t) ∈ <1 are determined by (13), and
then the asymptotical stability of the uncertain error system
(11) is guaranteed. In (13), t− = limε>0,ε→0(t − ε)[7] and
ϑ ∈ <1 is a positive scalar, and ϑ ∈ <1 and the initial value
of the time-varying parameter θ(t) ∈ <1, denoted by θ(0),
are chosen by the designer.

Proof: Using symmetric positive definite matrix S ∈
<n×n, we introduce the following quadratic function as a
Lyapunov function candidate.

V(e, θ, t)
4
= eT (t)Se(t) + ϑ (ξ − θ(t))

2 (14)

where ξ is an unknown constant stated below. The time
derivative of the function V(e, θ, t) along the trajectory of
the uncertain error system (11) is given by (15).

In the case of Dey(t) 6= 0 and y(t) 6= 0, using the
assumptions (5) and (6), we have the inequality (16). Besides,
for the upper bound of the term

∥

∥DCSx(t)
∥

∥ in (16), one can
see that the following inequality holds.

∥

∥DCSe(t)
∥

∥ ≤ λmax {S}
∥

∥DCe(t)
∥

∥

= λmax {S}
∥

∥Dey(t)
∥

∥ (17)

Thus, we obtain the inequality (18) for the time derivative
of the quadratic function V(e, θ, t) where ξ is unknown
positive constant given by ξ = δ∗ ×λmax {S}. Additionally,
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d

dt
V(e, θ, t) ≤ eT (t)

[

He

{

AT
KS
}]

e(t) + 2 (ξ − θ(t))
∥

∥Dey(t)
∥

∥

∥

∥y(t)
∥

∥− 2ϑ (ξ − θ(t))

(

1

ϑ

∥

∥Dey(t)
∥

∥

∥

∥y(t)
∥

∥

)

= eT (t)
[

He

{

AT
KS
}]

e(t) (20)

d

dt
x(t) =





−2 0 −6
0 0 1
3 0 −7



x(t) +





1
0
0



∆(t)

(

1 0 0
0 1 0

)

x(t) +





1
0
0



u(t)

y(t) =

(

1 0 0
0 1 0

)

x(t)

(24)

using Lemma 2 and the variable gain matrix (13) and after
some trivial algebraic manipulations, from the inequality (18)
we can further obtain the inequality (19) at the top of the
previous page. In addition, substituting the updating law (13)
of the adjustable parameter θ(t), we have the inequality (20).

Therefore we see from (12) and (20) that the following
relation for the quadratic function V(e, θ, t) is obtained.

d

dt
V(e, θ, t) ≤− eT (t)Qe(t)

< 0 for ∀e(t) 6= 0 (21)

In the above, we have proved the case of Dey(t) 6= 0
and y(t) 6= 0. Next, we consider the case of Dey(t) ≡ 0 or
y(t) ≡ 0. In this case, one can see from (17) and (18) that
the inequality (21) also holds.

Obviously, from the above discussion, the uncertain error
system (11) is ensured to be stable, because the quadratic
function V(e, θ, t) becomes a Lyapunov function of the error
system (11). Namely, asymptotical stability of the uncertain
linear system (4) is also guaranteed.

It follows that the result of the theorem is true. Thus the
proof of Theorem 1 is completed.

Remark 2: In this paper for the uncertain linear system
(4) satisfying the assumption (5) and (6), we have proposed
an adaptive robust output controller. The adjustable param-
eters L(y, ey, t) ∈ <m×l and θ(t) ∈ <1 are introduced
so as to reduce the effect of uncertainties. Although the
adjustable parameter θ(t) ∈ <1 cannot be an accurate esti-
mate of an unknown upper bound δ∗ ∈ <1 for uncertainties
∆(t) ∈ <m×l except for some particular cases, it might be
utilized for information about the upper bound on unknown
parameters. Besides, the adaptive action for the adjustable
parameter θ(t) ∈ <1 is kept small by making the weighting
parameter ϑ ∈ <1 in (13) sufficiently large.

Remark 3: For the uncertain linear system (4), we intro-
duce the assumption (5) for the input matrix B ∈ <n×m and
the measurement one C ∈ <l×n. The assumption (5) means
that the state variables which are affected by the control input
can be measured. For example, if the input matrix B and the
measurement matrix C are given by

BT =
(

1 0 0
)

, C =

(

1 0 0
0 1 0

)

(22)

then the matrix D ∈ <1×2 can be written as

D =
(

1 0
)

(23)

V. ILLUSTRATIVE EXAMPLES

In order to demonstrate the efficiency of the proposed
control scheme, we have run a simple example. The control
problem considered here is not necessary practical. However,
the simulation results stated below illustrate the distinct
feature of the proposed adaptive robust controller.

Consider the uncertain linear system with unknown pa-
rameter described by (24), i.e. D =

(

1 0
)

.
Firstly, adopting the LMI-based algorithm based on the

work of Benton et al.[16] (see Appendix), we design an
output feedback gain matrix K ∈ <1×2 for the nominal
system. We select the design parameter α such as α = 1.0,
then by solving the LMI problem (A.2), we obtain the
following solution and the gain matrix Ksf ∈ <1×3.

X =





156.09119 −25.61906 39.53988
−25.61906 8.92329 −11.16948

39.53988 −11.16948 21.33103





Y =
(

381.78499 −107.34119 −61.09239
)

Ksf =
(

3.633509 −39.507585 −30.286408
)

(25)

Besides, solving the LMI feasibility problem (A.3), we have

P =





193.92806 200.97939 −242.79069
200.97939 12181.43241 1956.35399

−242.79069 1956.35399 2345.6122





σ = 1.64710 × 104

(26)
Finally, in order to obtain the output feedback gain matrix
K ∈ <1×2, we solve the LMI minimization problem (A.4).
By solving the LMI minimization problem (A.4), the follow-
ing gain matrix can be obtained.

K =
(

−9.38536 −8.18176
)

(27)

And, λ ∈ <1 in (A.4) can be computed as λ = 155.02631.
In this example, we consider the following three cases for

the unknown parameter ∆(t) ∈ <1×2 and its unknown upper
bound δ∗ in (4).

• Case 1) : δ∗ = 1.0
∆(t) = δ∗ ×

(

5.09624 −8.60397
)

× 10−1

• Case 2) : δ∗ = 5.0
∆(t) = δ∗ ×

(

− sin(2πt) cos(5πt)
)

• Case 3) : δ∗ = 10.0

∆(t) =







δ∗ ×
(

−1 0
)

for 0 ≤ t ≤ 1.0
δ∗ ×

(

1 0
)

for 1.0 ≤ t ≤ 3.0
δ∗ ×

(

1 −1
)

for t > 3.0
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Furthermore, the design parameter ϑ ∈ <1 is chosen as ϑ =
1.0×106 and initial values for the uncertain system (24) and
the adjustable parameter θ(t) ∈ <1 are selected as x(0) =
(

1.00 0.00 −0.25
)T and θ(0) = 0.0, respectively.

The results of the simulation of this example are depicted
in Fig.1–6. In these figures, the time-histories of the state
variables x1(t), x2(t) and x3(t), the control input u(t),
elements of the variable gain matrix L(y, ey, t) ∈ <1×2

and the adjustable parameter θ(t) ∈ <1 are shown. From
Figs. 1–3, we find that the proposed adaptive robust output
feedback controller stabilize the uncertain system (24) in
spite of plant uncertainties. Furthermore, we see from Fig.
5 that the variable gain matrix L(y, ey, t) ∈ <1×2 is tuned
by the output y(t) and the output error ey(t). In addition,
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one can see from Fig.6 that the adjustable parameter θ(t) is
not an estimate of unknown upper bound δ∗ ∈ <1 for the
unknown parameter ∆(t) ∈ <1×2. Magnitude of adaptive
action on the adjustable parameter θ(t) ∈ <1 is affected
by choosing the design parameter ϑ ∈ <1. In this example,
since the design parameter ϑ is sufficiently large, magnitude
of adaptive action on the parameter θ(t) is selected small.

VI. CONCLUSIONS

In this paper, a design method of an adaptive robust
output feedback controller has been presented for a class
of linear systems with uncertainties of which upper bounds
are unknown. The uncertainties under consideration satisfy
the matching condition.
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A crucial feature of the proposed controller design is
that the information is not required on the upper bound
of matched uncertainties, and it is easy to design a robust
output feedback controller, which guarantees robust stability,
by deriving only the fixed gain controller for the nominal
system. Besides, the proposed adaptive robust controller is
adaptable when some assumptions are satisfied, and in the
case where only the output of the uncertain system are
available on control scheme, the proposed design method can
be used. Besides, it is obvious that the proposed adaptive
robust control scheme is more effective for linear systems
with unknown and/or large uncertainties.

The future research subject is an extension of the proposed
adaptive robust output feedback controller to such a broad
class of systems as uncertain large-scale systems, uncertain
time-delay systems and so on. Furthermore in future work,
we will examine the assumption (4) and the application to
practical systems. Additionally, we will consider the decision
method for the initial value of the time-varying parameter
θ(t) ∈ <1 and the design parameter ϑ ∈ <1, because the time
response of a controlled system will change substantially
according to the these parameters.
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APPENDIX

In this appendix, we show a LMI-based design algorithm
of the static output feedback controller for the nominal
system based on the work of Benton et al.[16].

Consider the following linear dynamical system.
d

dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(A.1)

where x(t) ∈ <n, u(t) ∈ <m and y(t) ∈ <l are the vectors
of the state, the control input and the measurement output,
respectively, and the matrices A,B and C denote the nominal
values of system parameters.

For the linear system (A.1), we consider the static output
feedback control u(t) = Ky(t). The following LMI-based
algorithm to derive the static output feedback gain matrix
K ∈ <m×l, has been developed by the existing result of
Benton et al.[16].

• A LMI-based algorithm
Step 1) Define Aα = A + αIn where α ∈ <1 is the

desired prescribed degree of stability, as described
in Anderson and Moore[18].

Step 2) Solve the following LMI problem

Minimize
X ,Y

[Trace {X}]

subject to X − In > 0

and He {AαX +BY} < 0 (A.2)

Step 3) By using the matices X ∈ <n×n and Y ∈ <m×n,
set the state feedback gain matrix such as Ksf =
YX−1.

Step 4) Solve the following LMI feasibility problem.

Find σ and P such that

P > In, He {P (Aα +BKsf )} < 0

He {PAα} − σCTC < 0 and σ > 0 (A.3)

Step 5) In order to derive an output feedback gain K ∈
<m×l, fix the matrix P ∈ <n×n and solve the
following LMI minimization problem.

Minimize
λ,K

[λ]

subject to

(

λ VT
K

VK Im×l

)

> 0

and He {P (Aα +BKC)} < 0 (A.4)

where VK = vec (K).
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