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Abstract— This paper studies global instability in swing
equations of multimachine power systems. Global instability
is related to the undesirable phenomenon of power system,
implying that most of all generators in a system coherently lose
synchronism with the remaining generators of the system. By
analyzing a power system with the loop transmission network,
we analytically show that global instability can occur as a result
of the interplay between network topology of the system and
local dynamics of generators in the system. This suggests a
possibility of control for global instability by varying network
topology of the system.

I. INTRODUCTION

Coupled swing dynamics in a population of synchronous
machines are of vital importance for power system stability.
Transient stability is concerned with the ability of power
system to maintain synchronism when subjected to a severe
disturbance [1], [2]. Loss of transient stability is recognized
as one cause of large blackouts such as the September 2003
blackout in Italy [3], [4]. Transient stability is mainly gov-
erned by mechanical characteristics of synchronous machines
and is mathematically investigated by nonlinear coupled
pendulum-like models, called the classical models or swing
equations [1], [2]. Analysis of nonlinear dynamics in the
swing equations, e.g. [5], [6], [7], [8], is hence inevitable for
prevention of not only the loss of transient stability but also
large blackouts.

We study global instability in swing equations of multima-
chine power systems. Global instability is related to the unde-
sirable phenomenon of power system, implying that most of
all generators in a system coherently lose synchronism with
the remaining generators of the system. The goal of this study
is to delineate a dynamical mechanism to cause blackouts in
large-scale power grids. Blackouts spreading into a large-
scale grid are brought about a sequence of outages [4].
This is partly discussed in [9] with a hybrid dynamical
system. A large-scale grid usually consists of strongly inner-
connected grids, called subgrids, which are coupled with
weak transmission networks. The instability studied here
can describe one event in multiple outages, in particular,
immediate outage of one subgrid. Then it is possible to model
the sequence of subgrid outages as that of global instability.
This study is hence expected to explain how the sequence
of subgrid outages is dynamically organized and cause large
blackouts.

This paper is devoted to analysis of swing equations that
represent coupled swing dynamics of a simple power system
with the loop topology in Sec. II and the New England test
system [10], [11] in Sec. III. Global instability appears in
the swing equations for both power systems. In particular, we
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point out for the loop system that incoherent bounded swings
of generators lead to their coherent loss of synchronism,
namely, global instability. This is motivated by [12], [13],
[14] on dynamics of molecular conformation. Sec. II explores
a mechanism of occurrence of global instability for the
loop system. By mode decomposition and analysis of energy
transfer, for a class of disturbances to the loop system, a pla-
nar dynamical system is developed that represents collective
dynamics for the loop system. This planar system allows one
to use phase-plane analysis to investigate global instability.
We indeed show that the occurrence of global instability can
be predicted by the planar system. The prediction is based
on structurally unstable homoclinic orbits that capture both
characteristics of the loop topology and generator dynamics.
We hence show that global instability can occur as a result
of the interplay between network topology of the system and
local dynamics of generators in the system. Sec. IV discusses
by using the phase-plane analysis a possibility of control for
avoiding global instability.

II. ANALYSIS OF SIMPLE LOOP SYSTEM

We analyze a system of swing equations for simple
power system in Fig. 1. The power system has the loop
topology that is normally adopted in real systems, because
the topology makes it easy to deliver electric power. Suppose
that δi is the rotor angle of generator i ∈ {1, . . . , N}
with respect to the infinite bus, and that ωi is the rotor
speed deviation of generator i relative to the system angular
frequency (2π × 50Hz or 60Hz), then swing dynamics of
generator i are represented by the following system of swing
equations:

δ̇i = ωi,

ω̇i = pm − b sin δi + bint{sin(δi−1 − δi)

− sin(δi − δi+1)}.







(1)

δ̇i denotes the time (t) differentiation of δi. The boundary
conditions for the loop system are δ0(t) = δN (t) and
δN+1(t) = δ1(t). The parameters pm, b, and bint are
constant. pm is the mechanical input power to generator i, b

generators bus
infiniteidenticalN

Fig. 1. Simple power system with the loop topology (N = 16). The blue
circle stands for synchronous machine supplying electric power. The loop
system includes N generators, encompassed by the dotted box, and they
operate onto the infinite bus [1]. The transmission lines joining infinite bus
and generator are much longer than those joining generators in the loop
system. It is assumed for modeling that the power system is loss-less
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the critical transmission power between infinite bus and gen-
erator i, and bint the critical transmission power between gen-
erators i and i + 1. The system (1) is a mathematical model
for the loop system, under the assumption that transformer
inductance and synchronous reactance are negligible. The
system (1) is also a N degree of freedom Hamiltonian system
with well-known Hamiltonian H(δ1, . . . , δN , ω1, , . . . , ωN ):

H ,

N
∑

i=1

1

2
ω2

i −
N

∑

i=1

{pmδi + b cos δi

+ bint cos(δi−1 − δi)}.
(2)

The contents in Sec. II are given in [15] with their detailed
derivation.

A. Global Instability

Coupled swing dynamics represented by the system (1)
are investigated. The parameters for numerical simulations
are in per unit system and are given as follows: pm = 0.009,
b = 0.01, bint = 1, and N = 20. The parameter setting has
no particular object of real power systems. pm/bint = 0.01
and b/bint = 0.009 are much smaller than unity, and we here
analyze coupled swing dynamics in the case of strong local
transmissions and weak long ones.

Numerical simulations show global instability in the sys-
tem (1) that is caused by a local disturbance. The local
disturbance is given by

(δi(0), ωi(0)) =

{

(−1.15, 0) for i = N/2,
(

sin−1 pm

b
, 0

)

for i 6= N/2,
(3)

where i = 1, . . . , N . Physically, generator N/2 is locally
disturbed, while the other generators are at their steady
states. Fig. 2 shows sequence of rotor angle δi for coupled
swing dynamics by the local disturbance. At the initial
time in Fig. 2(a), generator N/2 is disturbed, and its initial
angle δN/2(0) is denoted by the lower red mark. After this,
rotor angles of N generators oscillate around their steady
states in Figs. 2(b)–(h). These oscillations are incoherent
and bounded, although it is not easy to confirm this in
Fig. 2. However, they start to show coherent growing in
Figs. 2(i)–(p). Finally, they grow unbounded in Figs. 2(q)–(t).
The unbounded growing implies that all the generators lose
synchronism with the infinite bus. The result hence shows
that after a local disturbance, incoherent bounded swings of
generators lead to their coherent unbounded growing, that is,
global instability.

B. Mechanism

A mechanism of the occurrence of global instability in
Fig. 2 is next investigated. To do so we use two concepts:
collective dynamics and a partially linearized system for the
system (1).

1) Preliminaries: First, inspired by [12], we define the
collective-phase variable δ and its time derivative ω as

δ ,
1

N

N
∑

i=1

δi, ω , δ̇ =
1

N

N
∑

i=1

ωi. (4)

Collective dynamics of the loop system are represented by

δ̇ = ω, ω̇ = pm −
b

N

N
∑

i=1

sin δi. (5)

Fig. 3 shows transient behaviors of collective-phase δ and
trajectories of coupled swing dynamics on δ–ω plane for
local disturbances. The red line for the initial condition

(a) t=0 (b) t=1 (c) t=2 (d) t=3

(e) t=50 (f) t=150 (g) t=250 (h) t=350

(i) t=400 (j) t=410 (k) t=420 (l) t=430

(m) t=440 (n) t=450 (o) t=460 (p) t=470

(q) t=480 (r) t=490 (s) t=500 (t) t=510

Fig. 2. Sequence of rotor angle δi(t) for coupled swing dynamics by the
local disturbance. The red marks on blue circle denote the rotor angles of
N generators with respect to the infinite bus. The result is obtained with
numerical integration of eqs. (1).
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Fig. 3. Collective dynamics of coupled swings for the local disturbances
δN/2(0) = −0.5 and −1.15. The results are obtained for eqs. (1).

δN/2(0) = −1.15 corresponds to the instability shown in
Fig. 2. The blue line is for δN/2(0) = −0.5. The two boxes
(�) denote the equilibrium points of the following system
for local dynamics of each generator:

δ̇ = ω, ω̇ = pm − b sin δ. (6)

The system has the saddle point (π − sin−1(pm/b), 0) con-
nected to itself by a homoclinic orbit Γ0, denoted by the
solid line in Fig. 3(b). For the red trajectory in Fig. 3(b),
the intermediate oscillations in Figs. 2(b)–(h) appear as a
trapped motion inside Γ0, and the final coherent growing in
Figs. 2(i)–(t) appears as a divergence motion beyond Γ0. The
dynamical picture will play an important role in developing
a planar dynamical system for predicting the occurrence of
global instability.

Second, we introduce the following system of swing
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Fig. 4. Collective dynamics of coupled swings for the local disturbances
δN/2(0) = −1.1 and −1.18. The results are obtained for numerical
integrations of eqs. (7).

equations with linear coupling:

δ̇i = ωi,
ω̇i = pm − b sin δi + bint{(δi−1 − δi)

−(δi − δi+1)}.







(7)

The system corresponds to the discrete sine-Gordon equation
system [16], [17], [18] with constant external force pm. This
linearized system shows global instability similar to that in
the original system (1). Fig. 4 shows transient behaviors
of collective-phase δ and trajectories of coupled swings on
δ − ω plane for local disturbances. The blue line is for
δN/2(0) = −1.1, and the red line is for δN/2(0) = −1.18.
The red lines show behaviors similar to those in Fig. 3 and
indeed correspond to global instability in the system (7). We
thus explore a mechanism of global instability in the original
system (1) through detailed analysis of the system (7) in what
follows.

2) Mode Decomposition: Coupled swings represented by
the system (7) can be decomposed into a superposition of
eigen-oscillations of the loop system. Under pm = b =
0, mode of swings in the system (7) is exactly derived.
Mode decomposition is based on [17], [16]. Each swing
is represented as a superposition of eigen-modes with finite
number of eigen-frequencies. The bases {eij}

N
i,j=1 of eigen-

modes and eigen-frequencies {Ωj}
N
j=1 are given by

eij ,

√

2

N
cos

(

2πij

N
+

π

4

)

,

Ωj , 2
√

|bint|

∣

∣

∣

∣

sin
πj

N

∣

∣

∣

∣

.















(8)

Any disturbance, i.e., any set of initial conditions
(δi(0), ωi(0)) for the system (7) with pm = b = 0 is
represented as a superposition of eigen-modes. By keeping
the fact that pm/bint and b/bint are much smaller than unity,
it is expected that understanding coupled swings caused by
disturbances of eigen-modes leads to clarifying the mecha-
nism.

Figure 5 shows trajectories of coupled swing dynamics
for 1st (j = 1) mode disturbance. The mode disturbance is
given by

(δi(0), ωi(0)) =
(

sin−1 pm

b
+ cei,1, 0

)

. (9)

c is the strength of mode disturbance. The disturbance
implies that at initial time, the loop system is globally
perturbed by inner-area 1st mode oscillation. The left box
(�) in Fig. 5 denotes the initial condition of 1st mode
disturbance on δ–ω plane. The trajectories with c = 2.5 and
2.6 show behaviors similar to that in Fig. 4(b), and they are
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2.6

Fig. 5. Collective dynamics of
coupled swings for the 1st mode
disturbances with different strengths
c = 2.4, 2.5, 2.6. The results are
obtained for eqs. (7).
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Fig. 6. Time evolution of collective-
phase δ (solid line) and mode energy
(colored lines). The results are ob-
tained for eqs. (7). There is other
mode energy that does not appear
in Figs. (b)–(d), because they are of
order 10−3.

indeed global instabilities caused by 1st mode disturbances
in the system (7).

The decomposition using eij and Ωj provides important
observations of global instability. By mode transformation
and action-angle variable one, it is proved that collective
dynamics in the system (5) are equivalent to dynamics of
non-oscillatory N -th (ΩN = 0) mode. It is also proved that
initial energy of modes is localized at the non-oscillatory
mode under a coherent solution δi(t) = δ∗(t) (i = 1, . . . , N)
that well captures the coherent growing in Figs. 2(i)–(t). It
is therefore stated that global instability occurs while initial
energy is transferred to the non-oscillatory mode.

3) Energy Analysis: The relationship between instability
and energy transfer of modes is next investigated. Fig. 6
shows time evolution of collective-phase δ and mode energy.
n-th mode energy is defined as the energy contained by n-th
mode oscillation with angular frequency Ωn: see [15] for the
detailed derivation. The figures are for (a) mode energy in
local disturbance at δN/2(0) = −1.15, (b) 1st mode energy
in 1st mode disturbance at c = 2.5, (c) 2nd mode energy in
2nd mode disturbance at c = 2.6, and (d) 10th mode energy
in 10th mode disturbance at c = 2.6. It should be noted that
there is other mode energy that does not appear in Figs. 6(b)–
(d), because they are of order 10−3. The figures indicate
that there is no dominant energy transfer between oscillatory
modes when the collective-phase δ starts to diverge, namely,
global instability appears.

Figure 7 shows time evolution of initial energy in the sys-
tem (7). The figure is for (a) local disturbance at δN/2(0) =
−1.15, (b) 1st mode disturbance at c = 2.5, (c) 2nd mode
one at c = 2.6, and (d) 10th mode one at c = 2.6. ALL
denotes the value of initial energy, namely, the Hamiltonian
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Fig. 7. Time evolution of energy of the system (7). ALL denotes the value
of initial energy, and DC the energy of non-oscillatory (dc) mode. OSC
stands for the sum of energy of N − 1 oscillatory modes, and ON-SITE
denotes the sum of energy of on-site potential.

H , and DC the energy of non-oscillatory (dc) mode. OSC
stands for the sum of energy of N − 1 oscillatory modes,
and ON-SITE denotes the sum of energy of on-site potential

−
∑N

i=1
(pmδi + b cos δi). The figures indicate that when

global instability occurs, the energy of on-site potential is
transferred to the non-oscillatory mode. From the above anal-
ysis, it is said that the disturbance to single n-th oscillatory
mode triggers a unidirectional transfer of initial energy to
the non-oscillatory mode.

4) Phase-Plane Analysis: For single n-th mode distur-
bance, the above analysis enables us to develop the follow-
ing planar system that represents global dynamics of non-
oscillatory N -th mode excited by n-th mode oscillation:

δ̇ = ω,

ω̇ = pm −
b

N

N
∑

i=1

J0(einc) sin δ −
b

N
e(t, δ).







(10)

J0(·) denotes the Bessel function, and e(t, δ) the time- and
state-dependent forcing term. Without the forcing term e,

if pm < b
∑N

i=1
J0(einc)/N , then the system (10) has one

homoclinic orbit Γc. Fig. 8 shows Γc for n = 1, namely, 1st
mode disturbance and trajectories of coupled swing dynamics
in Fig. 5. If the initial condition (�) exists inside Γc in
Fig. 8(a), then any instability does not occur. If the initial
condition (�) exists outside Γc in Fig. 8(c), then instability
occurs. The trajectory near Γc in Fig. 8(b) is qualitatively
different for each of Figs. 8(a) and (c).

The instability in Fig. 5 is governed by global dynamics
of non-oscillatory mode with homoclinic orbit Γc. The
intermediate (long) oscillatory swing at c = 2.5 corresponds
to wandering-like motion near the homoclinic orbit Γc of
the system (10). Γc here depends on the parameters pm and
b for operating condition of generators and {ein}

N
i=1 for

eigen-mode of the loop system. It is hence said that global
instability can occur as a result of the interplay between node
dynamics and network topology.

C. Remarks

Coherently-synchronized rotational states are presented in
[19] for a damped and driven phase model with inertia effect.
The phase model is close to the system (1), and the difference
is that the phase model has all-to-all coupling structure. The
coherent growing in Fig. 2 coincides with the coherent states
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Fig. 8. Homoclinic orbit Γc and in-
stability occurrence. The results are
obtained for eqs. (7).

of phase model with uniform constant force. It is also shown
in [19] that incoherent oscillatory and coherent synchronized
rotational states (attractors) coexist in some parameter range.
This paper hence addresses the system (1) under a parameter
setting of coexisting states and dynamics of transition from
incoherent oscillatory state to coherent rotational one.

The above analysis in Sec. II-B is based on the partially
linearized system (7). Under some assumptions, the analysis
based on mode decomposition is numerically applicable to
the original system (1) and shows that the instability in the
system (1) can be predicted by the same way as that in the
system (7).

The mechanism of instability as unidirectional energy
transfer in Sec. II-B would be valid for local disturbances.
The prediction above is for mode disturbances, and hence
it is not known whether the prediction is possible for the
case of local disturbances. Fig. 6 shows that every mode
is excited by the local disturbance, and that there is no
dominant energy transfer among the N−1 modes. By taking
all the excited modes into account and tracing the same way
of derivation of the system (10), the prediction based on
homoclinic orbit would be possible for local disturbances.
It is not easy to derive a system similar to the system (10),
because multiple mode oscillations affect global dynamics of
the non-oscillatory mode.

The above mechanism is not general in eqs. (7), because
targeted energy transfer [20], [21] by resonances occurs in
the case of weak coupling and can induce conformation
change of coupled oscillators [13], [14]. They show phe-
nomena similar to the observed instability in this section
and clarify their mechanisms analytically. The difference of
mechanisms between [13], [14] and the present result may
stem from local dynamics of each oscillator, more precisely,
local dynamics under the Morse potential [13], the twin-

well potential [14], and the sin-shape potential Vlocal(δi) ,
−pmδi − b cos δi.

III. ANALYSIS OF THE NEW ENGLAND TEST SYSTEM

We next analyze a system of swing equations in the New
England test system in Fig. 9. The test system is widely used
for stability studies of power systems. The details of the test
system are presented in [11].

A. Swing Equations

It is assumed that bus 39, onto which machine 1 operates,
is the infinite bus. Swing dynamics of generators 2–10 in the
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs

ω̇i = −Diωi + Pmi − GiiE
2
i −

10
∑

j=1,j 6=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},















(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π× 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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is release from resonance for collective dynamics of the
systems or dynamics of non-oscillatory mode of the systems.

B. Control Strategies

We discuss how to prevent or avoid the global instability
for the loop system. A key mechanism for control appears
at the contact between the phase-plane analysis in Sec. II
and the above internal resonance. Sec. II showed that the
homoclinic orbit Γc in the planar system (10) enables us to
predict the instability. Again the above internal resonance
suggests that the occurrence is release from resonance for
collective dynamics. Therefore we can regard the region
encompassed by Γc as a capture region in resonance band for
states of collective dynamics. This suggests how to prevent
or avoid the occurrence of instability: by some control inputs,
we push the collective motion (δ(t), ω(t)) into the capture
region or we enlarge the capture region. A mechanism of
the control is by external inputs to avoid the unidirectional
energy transfer to the non-oscillatory mode.

There are parameters available as the control inputs of the
planar system (10). They are the mechanical input power
pm, the critical power b between infinite bus and generator,
and the base {ein}

N
i=1 of n-th oscillatory mode. The critical

power bint between generators also becomes a candidate of
the control inputs, because it indirectly affects the oscillatory
modes. Here, the base {ein}

N
i=1 and the critical power bint

are effective control inputs. Shedding of generators and lines
by protective relays varies the parameters {ein}

N
i=1 and bint

in the loop system, in other words, the network topology.
The facility shedding is one of normal control schemes of
power systems. The control of {ein}

N
i=1, namely, control of

oscillatory modes is that it avoids the unidirectional energy
transfer to non-oscillatory mode governing coupled swing
dynamics.

V. CONCLUSIONS

This paper analyzed global instability in the swing equa-
tions of multimachine power systems. For the loop system,
we show that global instability can occur as a result of the
interplay between network topology of the system and local
dynamics of components in the system. Global instability is
related to multi-swing transient instability [2], [25] since the
collective motion shows the exit from the separatrix, but the
dynamical mechanism is more complicated. The dynamical
mechanism gives an analytical explanation of multi-swing
instability, which has been recognized as a result of super-
position of a slow interarea swing mode and a local-plant
swing mode causing a large excursion of rotor angle beyond
the first swing [26]. For the loop system, we also point
out that linear incoherent bounded swings produce coherent
unbounded growing. This scenario for transient instability
should be considered in details, because it is hard to identify
any critical group of generators in the transient regime, and
is hence hard to predict the instability. We next developed a
planar dynamical system that can predict the occurrence of
instability for the loop system. The prediction is based on
structurally unstable homoclinic orbits in the planar system
and is similar to traditional methods for single machine-
infinite bus system such as energy function methods [11],
[2]. Lastly, we discussed a possibility of control of oscillatory
modes for the loop system to avoid global instability. The
concept of control itself is applicable to various dynamical
network models in engineering and science.
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