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Abstract— In this paper we consider state estimation carried
over a sensor network. A fusion center forms a local multi-hop
tree of sensors and gateways and fuses the data into a state
estimate. It is shown that the optimal estimator over a sensor
tree is given by a Kalman filter of certain structure. The number
of hops that the sensors use to communicate data with the fusion
center is optimized such that either the overall transmission
energy is minimized or the network lifetime is maximized.
In both cases the fusion center provides a specified level of
estimation accuracy. Some heuristic algorithms are proposed
which lead to suboptimal solutions in the energy minimization

problem, while an algorithm that leads to the global optimal
solution is proposed in the lifetime maximization problem. In
both cases, the algorithms are shown to have low computational
complexity. Examples are provided to demonstrate the theory
and algorithms.

I. INTRODUCTION

Wireless sensor networks have attracted much attention in

the past few years and this area of research brings together

researchers from computer science, communication, control,

etc. [1]. A typical wireless sensor network consists of a

large number of sensor nodes, some gateway nodes and

some base stations. Sensor nodes are usually battery powered

and have limited processing capabilities. They interact with

the physical world and collect information of interest, e.g,

temperature, humidity, pressure, air density, etc. Depending

on the Media Access Control (MAC) and routing protocols,

as well as the available resources (network bandwidth, node

energy, etc.), the collected data are transmitted to their final

destination, usually a fusion center, at appropriate times.

Sensor networks have a wide range of applications, including

environment and habitat monitoring, health care, home and

office automation and traffic control [2].

Although tremendous progress has been made in the past

few years in making sensor network an enabling technology,

many challenging problems remain to be solved, e.g, network

topology control and routing, collaborative signal collec-

tion and information processing, and synchronization [3].

In particular any practical design must fully consider the

constraints posed by the limited processing capability and

energy supply of each individual sensor.
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Fig. 1. Sensor Network with Gateways

We investigated such constraints in [4] by looking at

LQG control over a wireless sensor network. We presented a

sensor tree reconfiguration algorithm to meet a specified level

of control performance in such a way that the total energy

usage of the active sensor nodes is minimized. However,

when a sensor node is not a leaf node, it not only needs to

send a measurement data packet, but also needs to receive,

aggregate and forward data packets from its child nodes.

The fact that receiving a packet costs considerable amount

of energy [2], together with the recently proposed Wireless

HART protocol [5], motivates the current work. In addition to

the set of sensor nodes S = {S1, · · · , Sq} considered in [4],

we also assume a set of gateway nodes G = {G1, · · · , Gp} is

available (Fig. 1). Gateway nodes are already very popular

in Wireless HART applications. These gateway nodes act

as relay nodes, i.e., they do not take any measurements but

simply aggregate and forward any incoming data packets.

The gateways form the backbones of the network and execute

a known routing protocol.

The main contribution of this paper is that a collection of

efficient algorithms are proposed to determine which sensor

communicates to which gateway in such a way that either

the total transmission energy of the sensors is minimized or

the network lifetime is maximized. In both cases, a certain

specified level of estimation accuracy at the fusion center

is guaranteed. When the network path for the sensor data

is optimized, the resulting local sensor topology has the

structure of a tree for which the fusion center is the root.

When the plant is given by a linear system, the optimal

estimator is given by a Kalman filter with extra memory

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA14.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2344



due to the communication delays.

The rapid developments of wireless and sensor technolo-

gies enable drastic change of the architecture and embedded

intelligence in these systems. The theory and design tools for

these systems with spatially and temporally varying control

demands are not well developed, but there are a lot of current

research.

One way to deal with the problem of asynchronous

generation of sensor data is to use event-triggered control

instead of conventional time-triggered control [6], [7]. How

to efficiently encode control information for event-triggered

control over communication channels with severe bandwidth

limitations is discussed in [8].

Kalman filtering under certain information constraints,

such as decentralized implementation, has been extensively

studied [9]. Implementations for which the computations

are distributed among network nodes is considered in [10]–

[12]. Kalman filtering over lossy networks is considered in

[13], [14]. The interaction between Kalman filtering and

how data is routed on a network seems to be less studied.

Routing of data packets in networks are typically done

based on the distance to the receiver node [15]. Some

recent work addresses how to couple data routing with

the sensing task using information theoretic measures [16].

An heuristic algorithm for event detection and actuator

coordination is proposed in [17]. For control over wireless

sensor networks, the experienced delays and packet losses

are important parameters. Randomized routing protocols that

gives probabilistic guarantees on delay and loss are proposed

in [18], [19].

A robust control approach to control over multi-hop net-

works is discussed in [20]. A general cross-layer approach

to control and data routing seems to be an open and rather

difficult topic due to many practical constraints. Our ap-

proach is different in that we make the assumption that a

tree-structured sensor topology with certain properties can

be superimposed on the sensor network. The routing of

individual packets is not considered, but instead paths are

dynamically established between the sensor nodes and the

fusion center.

The rest of the paper is organized as follows. The energy

minimization and network lifetime maximization problems

are formulated in Section II. After the optimal estimation

for fixed number of hops between the sensors and the fusion

center is obtained in Section III, algorithms are presented

to solve the energy minimization and the network lifetime

maximization problems in Section IV and V respectively. An

example is given in Section VI to demonstrate the theory and

algorithms developed in the paper. Concluding remarks and

future work are given in Section VII in the end.

II. PROBLEM SET-UP

A. System and Sensor Network Models

Consider the following LTI system whose state dynamics

is given by

xk = Axk−1 + wk−1, (1)

where xk ∈ IRn is the state, wk ∈ IRn is the process noise

which is white Gaussian, zero-mean and with covariance

matrix Q ∈ IRn×n, Q ≥ 0.

A wireless sensor network is used to measure the state in

Eqn (1). The network consists of a fusion center, a set of

gateways G and a set of sensor nodes S. When Si takes a

measurement of the state in Eqn (1), it returns

yi
k = Hixk + vi

k, (2)

where yi
k ∈ IRoi is the measurement, vi

k ∈ IRoi is the

measurement noise which is white Gaussian, zero-mean

and with covariance matrix Πi ∈ IRoi×oi , Πi > 0. The

sensor measurements are sent to the fusion center via these

gateways. The fusion center then processes the received

measurements and computes the optimal state estimate.

We suppose that there is a non-zero single-hop commu-

nication delay, which is smaller than the sampling time of

the process. All sensors are synchronized in time, so the data

packet transmitted from Si to the fusion center is delayed one

sample when compared with its parent node. For example, in

Fig. 1, G3 is the parent node of S3 and the measurement from

S3 to fusion center is delayed one step compared with S1. We

assume perfect data communications, i.e., we do not consider

possible data packet drops introduced by the wireless links.

B. Sensor Energy Cost Model

We assume that the gateways are externally powered while

the sensor nodes are battery powered. Sensors spend energy

in many ways, i.e., sensing, idle listening, computing, packet

transmission and reception, etc. [2]. By appropriately design-

ing the MAC protocol (such as TDMA), packet transmission

dominates the total energy usage. Define ei as the energy

cost for Si sending a measurement packet to its parent node,

which typically grows rapidly with the distance to its parent

node 1. Almost all transceivers in sensor nodes nowadays

have an adjustable transmission power, so without loss of

generality, we assume that Si can send its measurements

to a subset of the gateways or to fusion center directly by

adjusting its transmission power.

C. Optimal Hop Selection Problem

Define the following quantities at the fusion center.

x̂k , E[xk|all measurements up to k],

Pk , E[(xk − x̂k)(xk − x̂k)′],

P∞ , lim
k→∞

Pk, if the limit exists.

Denote τi as the hop number between Si and fusion center,

then the delay of a measurement from Si to fusion center

is di = τi − 1. Without loss of generality, we assume the

transmission energy ei(τi) is decreasing in τi. For example,

in Fig. 1, S6 can send its measurements to fusion center,

G1, G4 or G8 with corresponding hop numbers 1, 2, 3 or 4

1An estimate of ei can be be computed based on the considered wireless
technology. A common model is that if the distance between Si and the
receiver is di, then ei = βi +αi(di)ni , where βi represents the static part
of the energy consumption and αi(di)ni the dynamic part. The path loss
exponent ni is typically between 2 and 6.
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and with decreasing transmission energy. On the other hand,

the steady state error covariance P∞ grows with increasing

delays of the measurements. Hence there is an apparent

tradeoff between τi and P∞. Let us define the network

lifetime to be the maximum time before any one of the

sensors stops working due to insufficient energy supply, and

we consider the following optimization problems

Problem 2.1: (Sensor Energy Minimization)

min
(τ1,··· ,τq)

q
∑

i=1

ei(τi)

subject to

P∞(τ1, · · · , τq) ≤ Pdesired

1 ≤ τi ≤ mi, i = 1, · · · , q.

Problem 2.2: (Network Lifetime Maximization)

max
(τ1,··· ,τq)

min
i

Ei

ei(τi)

subject to

P∞(τ1, · · · , τq) ≤ Pdesired

1 ≤ τi ≤ mi, i = 1, · · · , q,

where mi is the upper bound of the maximum number of

hops between Si and the fusion center, and Ei is the initial

energy level of Si.

Intuitively, the total transmission energy of the sensors

is minimized in Problem 2.1 and the network lifetime is

maximized in Problem 2.2. The first problem is motivated

from the case where the difference between sensor energy

levels is small, and the second one is motivated from the

case when the difference is large. For both problems, the

variables that the objective function is optimized over are

the hop numbers between Si’s and fusion center. We will

present solutions to both problems in the next few sections.

III. OPTIMAL ESTIMATION FOR FIXED τi

In order to solve Problems 2.1 and 2.2, we need to evaluate

P∞(τ1, · · · , τq) given (τ1, · · · , τq) so as to find the feasible

set to the problems. Let Sij
be a node that is j hops away

from fusion center and for X ∈ IRn×n, X ≥ 0, define

τmin , min{τ1, · · · , τq}

τmax , max{τ1, · · · , τq}

Γj , [H1j
; H2j

; · · · ], j = τmin, · · · , τmax

Ci , [Γ1; · · · ; Γi], i = τmin, · · · , τmax

Υj , diag{Π1j
, Π2j

, · · · }, j = τmin, · · · , τmax

Ri , diag{Υ1, · · · , Υi}, i = τmin, · · · , τmax

h(X) , AXA′ + Q,

gCi
(X) , AXA′ + Q − AXC′

i[CiXC′

i + Ri]
−1CiXA′.

Further define Yk−i+1
k as all measurements available at the

fusion center for time k−i+1 at time k, i = τmin, · · · , τmax.

For example, in Fig. 1, τmin = 1, τmax = 4 and

Yk
k = {y1

k},

Yk−1
k = {y1

k−1, y
2
k−1, y

3
k−1, y

4
k−1},

Yk−2
k = {y1

k−2, y
2
k−2, y

3
k−2, y

4
k−2, y

6
k−2}.

With these definitions, we have the following theorem

which shows how we can obtain the closed form solution

to P∞(τ1, · · · , τq).
Theorem 3.1: Given (τ1, · · · , τq), x̂k and Pk can be com-

puted as

x̂k = Aτmin−1(x̂k−τmin+1)

Pk = hτmin−1(Pk−τmin+1)

and

(x̂k−i+1, Pk−i+1) = KF(x̂k−i, Pk−i,Y
k−i+1
k , Ci, Q, Ri)

where i = τmin, · · · , τmax and KF denotes the standard

Kalman filter. If the limits exists, P∞ satisfies

P∞ = hτmin−1(P−

∞
− P−

∞
C′

τmin
Σ−1Cτmin

P−

∞
) (3)

where

Σ = Cτmin
P−

∞
C′

τmin
+ Rτmin

P−

∞
= gCτmin+1

· · · ◦ gCτmax−1
(P̄−

∞
)

and P̄−

∞
is the unique solution to gCτmax

(P̄−

∞
) = P̄−

∞
.

Proof: Similar to the proof for Theorem 4.1 in [4].

IV. OPTIMAL HOP SELECTION: MINIMIZING TOTAL

ENERGY

In this section, we provide solution to Problem 2.1.

When q and mi’s are small, we can find the global optimal

solution to Problem 2.1 via the following algorithm.

Global Optimal Search Algorithm

1 : For each i = 1, · · · , q

• for each τi = 1, · · · , mi

if P∞(τ1, · · · , τi) ≤ Pdesired,

record (τ1, · · · , τq) as well as
∑q

i=1 ei(τi).
2 : Return arg min

∑q

i=1 ei(τi).

Apparently, the Global Optimal Search Algorithm takes

time O(
∏q

i=1 mi). For large
∏q

i=1 mi, it then becomes

very inefficient, therefore we propose some local search

algorithms to approximate the optimal solution. Before we

present some classical local search algorithms, we provide

another efficient algorithm. It is also simpler to implement

than most local search algorithms [21].

The algorithm we propose is Greedy Efficiency Search

Algorithm. For simplicity, let us define E(τ) =
∑q

i=1 ei(τi)
as the total energy cost given τ . We also write E(τ) as

E(τ−i, τi) when we look at the hop number of Si.

Greedy Efficiency Search Algorithm

1 : τi := 1, i = 1, · · · , q

2 : For each i, if P∞(τ−i, τi + 1) ≤ Pdesired

• compute ∆(i) = ∆Ei

∆Pi
where

∆Ei = E(τ−i, τi) − E(τ−i, τi + 1)
∆Pi = P∞(τ−i, τi + 1) − P∞(τ−i, τi)

3 : Let s = arg max∆(i). Update τs := τs + 1.

4 : Repeat Step 2 until the incremental decrease of the

total energy is within a certain threshold.
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Remark 4.1: It is easy to verify that the solution from

the Greedy Efficiency Search Algorithm always satisfies the

accuracy constraint. And in every iteration, the total energy

decreases. It is also easy to note that if at certain iteration,

the global optimal solution is achieved, then the algorithm

stops and returns that optimal solution.
We provide another two classical search algorithms, i.e.,

the Randomized Greedy Search and the TABU Search, and

we compare the performances of the three algorithms in

Section VI.
Define N (τ) as the neighborhood solutions of τ . The size

of N (τ) determines the time complexity and the optimality

of the solution. Apparently, we need to pick up N (τ) of

reasonable size. For instance, we define

N (τ) = {τ ′ : 1 ≤ τ ′

i ≤ mi, |τ
′

i − τi| ≤ 1}

as the neighborhood solutions for the example in Section VI.

In the extreme case, if N (τ) = {τ ′ : 1 ≤ τ ′

i ≤ mi}, then

the Randomized Greedy Search algorithm is the same as

the Global Optimal Search Algorithm. The multiple seeds

version of the Randomized Greedy Search algorithm runs

by executing the one seed version a few times. Let E∗(t)
denotes the optimal solution found at each time t. The the

minimum of E∗(t) and the corresponding τ∗(t) is returned.

Randomized Greedy Search: One Seed

1 : τ∗ is randomly determined. E∗ := E(τ∗).
2 : While (stop criterion is not met)

• generate N (τ∗)
• for each τ ∈ N (τ∗)

- if E(τ) < E∗

τ∗ := τ, E∗ := E(τ)

As we can see, Randomized Greedy Search algorithm uses

a fixed structure of neighborhood solutions N (τ∗) at each

iteration. The TABU Search algorithm [22], [23], on the other

hand, uses a dynamic structure of neighborhood solutions. It

maintains a memory structure: once a potential solution is

visited, it is marked as “taboo” and is inserted into a tabu

list, T , so that the algorithm does not visit that solution

repeatedly. The length of T , the size of N (τ), as well as

the initial solution affect the performance of the algorithm.

There are various versions of TABU Search algorithms, and

we consider one version below.

TABU Search

1 : Select an initial τ . τ∗ := τ , E∗ := E(τ∗). Set the

iteration counter t := 0 and begin with T empty.

2 : Generate N (τ).
If N (τ) − T is empty, goto Step 4.

Otherwise, set t := t + 1 and select

sk(τ) ∈ N (τ) − T which has min E
(

sk(τ)
)

.

3 : Let τ := sk(τ). If E(τ) < E∗, let τ∗ := τ .

4 : If a chosen number of iterations has elapsed either

in total or since τ∗ was last updated, or if

N (τ) − T = ∅ upon reaching this step directly

from Step 2, stop; Otherwise, insert τ into T
and delete the oldest entry in T if it is full.

Return to Step 2.

V. OPTIMAL HOP SELECTION: MAXIMIZING LIFETIME

In this section, we study Problem 2.2. Unlike Problem 2.1,

where the global optimal solution cannot be found efficiently

in general, global optimal solution to Problem 2.2 can be

solved very efficiently via the following algorithm.

Max Lifetime Search Algorithm

1 : c := 1
2 : For i = 1, · · · , q

• let τi[c] = min{τi : ei(τi) ≤
Ei

c
}

if τi[c] > mi, goto Step 4.

3 : If P∞(τ1[c], · · · , τq[c]) ≤ Pdesired

• τ∗

i = τi[c]
• c := c + 1; goto Step 2.

else goto Step 4.

4 : Return τ∗.

Define l∗ as the maximum network lifetime, i.e.,

l∗ = max
(τ1,··· ,τq)

min
i

Ei

ei(τi)
.

Theorem 5.1: The Max Lifetime Search Algorithm returns

the optimal τ∗ and l∗ = c − 1 when the algorithm stops.

Proof: Let τ∗ be the optimal solution corresponding to l∗.

We divide the proof into two parts.

1) For any c < l∗,

P∞(τ1[c], · · · , τq[c]) ≤ Pdesired,

and τi[c] ≤ mi for all i = 1, · · · , q.

2) For any c > l∗, either

P∞(τ1[c], · · · , τq[c]) � Pdesired

or there exists at least one Si such that τi[c] > mi.

Once these two parts are proved, the optimality of the

algorithm follows as the algorithm stops exactly at c = l∗+1.

Proof for part 1): Since l∗ is optimal, τi[l
∗] ≤ mi for all

i = 1, · · · , mi, and τ∗ must be feasible, i.e.,

P∞(τ1[l
∗], · · · , τq[l

∗]) ≤ Pdesired.

Hence for any c < l∗,

τi[c] = min{τi : ei(τi) ≤
Ei

c
}

≤ min{τi : ei(τi) ≤
Ei

l∗
}

= τi[l
∗] ≤ mi.

The first inequality holds as ei(τi) is decreasing in τi. From

Lemma 1.1 in Appendix ,

P∞(τ1[c], · · · , τq[c]) ≤ P∞(τ1[c + 1], · · · , τq[c])

...

≤ P∞(τ1[l
∗], · · · , τq[c])

...

≤ P∞(τ1[l
∗], · · · , τq[l

∗])

≤ Pdesired
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Fig. 2. Dynamic Sensor Selection

which completes the proof for part 1).

Proof for Part 2): If c > l∗ and

P∞(τ1[c], · · · , τq[c]) ≤ Pdesired

and τi[c] ≤ mi for all Si, then τ [c] is a feasible solution and

c > l∗ violates the optimality assumption of l∗.

VI. EXAMPLE

In this section, we consider an example to demonstrate

the algorithms developed so far. As the Max Lifetime Search

Algorithm returns the optimal solution, we focus on the

algorithms for the energy minimization problem presented

in Section IV.

We consider the following system and sensor models.

xk = 0.9xk−1 + wk−1

yi
k = xk + vi

k, i = 1, 2, 3.

The following parameters are used throughout this section.

Q = 0.5, Π1 = Π2 = Π3 = 0.5

e1(τ1) = [5 3.8 2.6 1.5 1 0.4 0.1 0.08]

e2(τ2) = [5.0 4 2.8 1.8 1.2 0.5 0.15 0.12]

e3(τ3) = [4.5 3.3 2.1 1.2 0.5 0.24 0.05 0.04]

Assume the following performance specification is received

at the fusion center:

P∞ ≤ 1, 1 ≤ k ≤ 100,

P∞ ≤ 0.25, 101 ≤ k ≤ 200,

P∞ ≤ 1.5, 201 ≤ k ≤ 300,

P∞ ≤ 1, 301 ≤ k ≤ 500.

Define γ as the number of feasible solutions that each

algorithm visits during its execution. Table I- III show the

results when we run the different algorithms corresponding

to different Pdesired. Since in this example,
∏3

i=1 mi = 512,

we are able to compute the global optimal solution via

exhaustive search.

When Pdesired = 0.25, the Greedy Efficiency Search is

the best among all three algorithms which is also the same

TABLE I

PDESIRED = 0.25

Algorithms τ1 τ2 τ3 E(τ) P∞ γ

Global Optimal 8 1 1 9.58 0.1802 512
Greedy Search 1 1 8 10.04 0.1802 24

Greedy Efficiency 8 1 1 9.58 0.1802 26
TABU Search 1 1 8 10.04 0.1802 88

TABLE II

PDESIRED = 1

Algorithms τ1 τ2 τ3 E(τ) P∞ γ

Global Optimal 8 8 2 3.5 0.7419 512
Greedy Search 8 8 2 3.5 0.7419 136

Greedy Efficiency 8 2 8 4.12 0.7419 48
TABU Search 8 8 2 3.5 0.7419 182

as the global optimal solution, as shown in Table I. It also

visits the least number of feasible solutions before returning

the optimal solution. When Pdesired = 1, both Randomized

Greedy Search and TABU Search return the optimal solution

and are better than Greedy Efficiency Search, but at the

price of visiting much more feasible solutions. When we

further increase Pdesired to be 1.5, neither algorithm return the

optimal solution and the Greedy Efficiency Search algorithm

still visits the least number of feasible solutions.

In practice, we can run the three algorithms and take the

best solution of them. Fig. 2 shows the simulation result

of estimating xk using the estimation scheme presented in

Theorem 3.1. The left hand figures demonstrate the result

when a fixed topology is used (τ = [8 8 2]) in which case,

P∞ = 0.7419 and a constant energy consumption of 3.5

units per time is required. The right hand figures show that

the dynamic hop selection is used to adapt to performance

specification. As we can see, during 101 ≤ k ≤ 200, a new

topology is used (τ = [8 1 1]) and the energy consumption

is increased to 9.58 units per time, however, P∞ reduces to

0.1802 which satisfies the performance specification. Simi-

larly P∞ is required to be less than 1.5 when 201 ≤ k ≤ 300,

a different sensor topology (τ = [4 8 8]) is adopted which

only requires 1.66 units energy consumption per time.

By dynamically determine the sensor hop numbers, we

can therefore minimize the sensor energy consumption as

much as possible yet still guarantee a specified level of

performance.

TABLE III

PDESIRED = 1.5

Algorithms τ1 τ2 τ3 E(τ) P∞ γ

Global Optimal 8 8 4 1.4 1.3918 512
Greedy Search 4 8 8 1.66 1.3918 155

Greedy Efficiency 8 4 8 1.92 1.3918 54
TABU Search 4 8 8 1.66 1.3918 182
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VII. CONCLUSION AND FUTURE WORK

In this paper, we have considered the optimal sensor

hop selection problem for state estimation over a wireless

sensor network. Efficient algorithms are proposed to solve

the energy minimization and network lifetime maximization

problems. For both problems, a certain specified level of

system performance is guaranteed.

There are a few extensions of the current work that we

will pursue in the future which include closing the loop

based on the estimation scheme; experimentally evaluate the

algorithms developed in the paper; consider packet drops

issues in the communication link which is often seen due to

the nature of wireless communications.

Acknowledgement: The authors would like to thank Profes-
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local search methods.

APPENDIX

Lemma 1.1: For any 1 ≤ i ≤ q,

P∞([τ1, · · · , τi, · · · , τq]) ≤ P∞([τ1, · · · , τi + 1, · · · , τq]).

Proof: We give a proof for the following case (Fig. 3).

The extension to general case is straightforward. From The-

orem 3.1,

P∞([τ1 = 2, τ2 = 3]) = h
(

g̃(P̄−

∞
)
)

where g̃(X) = X − XH ′

2[H2XH ′

2 + Π2]
−1H2X and P̄−

∞

satisfies g[H1;H2](P̄
−

∞
) = P̄−

∞
. Similarly,

P∞([τ1 = 2, τ2 = 4]) = h
(

g̃(P−

∞
)
)

where P−

∞
= gH2

(P̄−

∞
). Therefore

P∞([τ1 = 2, τ2 = 4])

= h
(

g̃
(

gH2
(P̄−

∞
)
)

)

≥ h
(

g̃
(

g[H1;H2](P̄
−

∞
)
)

)

= h
(

g̃
(

P̄−

∞
)
)

= P∞([τ1 = 2, τ2 = 3])

where the inequality follows from Lemma 1.2.

Lemma 1.2: For any X ≥ Y ≥ 0, the following holds

1) h(X) ≥ h(Y ) and g̃(X) ≥ g̃(Y ).
2) g[H1;H2](X) ≤ gH2

(X).

Proof: For proof of part 1), see [13]. For proof of part

2), see [4].
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