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Abstract— This paper characterizes the stability of quantized
feedback systems which contains optimal dynamic quantizers
recently proposed by the authors. First, it is shown that the
separation property of the quantizer-controller design, which
is similar to the well-known separation property of the observer-
controller design, holds in the quantized feedback systems. Next,
based on this property, a necessary and sufficient condition for
the stability is derived, where the stability is characterized by
the poles/zeros of a linear feedback system to be quantized.
Finally, we present suboptimal dynamic quantizers for which
the resulting quantized feedback systems are always stable.

I. INTRODUCTION

The quantization, i.e., the map from a continuous-valued

signal set to a discrete-valued signal set, is one of the most

important topics also in the systems and control field. As

is seen, input/output signals of controlled plants have to

be quantized in various practical situations. In fact, digital

controllers are commonly used, and discrete-valued actuators

(e.g., on/off actuators) are often employed for industrial

plants and embedded systems. Furthermore, digital networks

are utilized for connecting controllers to plants.

This topic has been actively studied so far, e.g., [1]–[10].

The authors also have considered it and have obtained one of

the key results in [11], [12]. There, the following problem

is considered: when a plant and a controller are given for

the quantized feedback system in Fig. 1 (a), find a dynamic

quantizer such that the system in (a) optimally approximates

the usual (ideal) feedback system in Fig. 1 (b), in terms of

the input-output relation. To this problem, we have derived a

closed form solution, which clarifies an optimal structure and

the performance limitation of (a general class of) dynamic

quantizers. However, since the optimization problem is con-

sidered without taking stability into account, the resulting

quantized feedback system (a) are often unstable. Thus, it is

important to characterize the plant and controller for which

the optimally quantized system is stable.

This paper thus addresses the stability of the quantized

feedback systems including the optimal dynamic quantizers.

The main contributions of this paper are as follows.

First, it is proven that the quantized feedback system (a)

is stable if and only if the ideal feedback system (b) is stable

and the dynamic quantizer itself is stable. Similarly to the

well-known separation property of the observer-controller

design [13], this separation property plays an important

role in analysis and design of quantized feedback systems.

Second, based on this property, the stability of the optimally
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Fig. 1. Quantized and unquantized feedback systems.

quantized feedback system (a) is characterized by the poles

and zeros of the ideal feedback system (b). This will be

useful to capture the easiness/hardness for dynamic quan-

tization in terms of typical system characteristics. Finally,

as an alternative to the un-stabilizing quantizers, suboptimal

dynamic quantizers, which guarantee the stability of the

resulting feedback systems, are presented.

Notation: Let R, R+, and N be the real number field, the set

of positive real numbers, and the set of nonnegative integers,

respectively. We denote by 0 and I the zero matrix and the

identity matrix of appropriate dimensions, respectively. For

the matrix M , let abs(M ) denote the matrix composed of

the absolute value of each element. For the vector sequences

X := (x1, x2, . . . ) and Y := (y1, y2, . . . ), we denote by X−
Y the vector sequence (x1−y1, x2−y2, . . . ). For the vector

x, the matrix M , and the vector sequence X , the symbols

‖x‖, ‖M‖, and ‖X‖ express their ∞-norms. For the linear

time-invariant system S with the parameters (A,B, C,D), a

minimal realization is expressed by

Smr :

[

A B
C D

]

and the transfer function is denoted by S(z) with the shift

operator z. Finally, the linear system S is said to be stable if

the system poles of S are stable. So note that the following

statements are equivalent: (a) Smr is stable, (b) the system

poles of Smr are stable, and (c) the transmission poles of S
are stable.

II. OPTIMAL DYNAMIC QUANTIZERS FOR

DISCRETE-VALUED INPUT CONTROL

We briefly review the results in [11], [12], which motivates

us to analyze the stability of quantized feedback systems.
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A. Dynamic Quantizer Design Problem

Consider the feedback system ΣQ shown in Fig. 2 (a),

which is composed of the discrete-time linear system G and

the dynamic quantizer Q.

The system G is given by

G :







x(k + 1) = Ax(k) + B1r(k) + B2v(k),
z(k) = C1x(k) + D1r(k),
u(k) = C2x(k) + D2r(k)

(1)

where x ∈ R
n is the state, r ∈ R

p and v ∈ R
m are the

inputs, z ∈ R
l and u ∈ R

m are the outputs, k ∈ N is

the time, and A, B1, B2, C1, C2, D1, and D2 are constant

matrices of appropriate dimensions. The initial state is given

as x(0) = x0 for x0 ∈ R
n.

The dynamic quantizer Q is given in the following form:

Q :

{

ξ(k + 1) = Aξ(k) + B1u(k) + B2v(k),
v(k) = q(Cξ(k) + u(k))

(2)

where ξ ∈ R
N is the state of dimension N, u ∈ R

m

and v ∈ V
m := {0,±d,±2d, . . .}m are the input and

the output, respectively. Furthermore, A, B1, B2, and C

are constant matrices of appropriate dimensions, and the

function q : R
m → V

m is the static quantizer which is

the nearest type toward −∞1. The set V is the discrete

set on which each output takes values, and d ∈ R+ is

the quantization interval which specifies V. The initial state

is given as ξ(0) = 0 for guaranteeing that Q is drift-free,

i.e., v(k) = 0 for u(k) = 0 (k = 0, 1, . . . ). Note that the

input-output relation of Q is invariant under the (linear) state

transformation and the minimal realization.

It is remarked that ΣQ is a generalized version of the quan-

tized feedback system in Fig. 1 (a). In fact, ΣQ is equivalent

to the system in Fig. 1 (a) by regarding the part indicated by

the dotted line frame in Fig. 1 (a) as G. Thus the discussion

in this paper holds not only for the feedback system in Fig. 1

(a) but also for various types of systems including Q.

Then the design problem of Q is formulated as follows.

For the system ΣQ, let ZQ(x0, R) denote the controlled

output sequence (z(1), z(2), . . . , z(∞)) for the initial state

x0 and the reference input R := (r0, r1, . . . ) ∈ ℓp
∞, and

let zQ(k, x0, R) be the output at time k. We consider the

feedback system Σ in Fig. 2 (b) as an ideal system, for which

the symbols Z(x0, R) and z(k, x0, R) are similarly defined.

Problem 1: For the system ΣQ, find a dynamic quantizer

Q (i.e., find N, A, B1, B2, and C) minimizing

E(Q) := sup
(x0,R)∈Rn×ℓ

p

∞

‖ZQ(x0, R) − Z(x0, R)‖. (3)

In Problem 1, the performance index E(Q) corresponds

to the difference between the system ΣQ in Fig. 2 (a) and

the ideal system Σ in Fig. 2 (b), in terms of the input-output

relation. In other words, if E(Q) is small, the input-output

relation of the ideal system Σ is almost preserved in ΣQ.

This provides us a practical method of control systems

design with discrete-valued signal constraints. For example,

1For µ ∈ Rm, q(µ) equals to the smallest vector (in the sense of the sum
of the all elements) of the optimal solutions to minv∈Vm(v−µ)⊤(v−µ).
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Fig. 2. General expressions of quantized and unquantized feedback systems.

consider the feedback system in Fig. 1 (a), and suppose that

P is a linear plant which has to be actuated by discrete-

valued signal. Then ΣQ would have good performance for

• a controller K achieving desirable performance in the

ideal system in Fig. 1 (b),

• a dynamic quantizer Q such that E(Q) is small.

So, with a solution to Problem 1, controllers designed by the

conventional theory can be applied to the quantized systems.

B. A Closed Form Solution

We next show a solution to Problem 1, derived in [12].

Let us introduce the system Σ′ in Fig. 2 (c). This is defined

by adding a new external input to Σ, and its impulse response

matrices from s to z are given by C1Ã
kB2 (k = 0, 1, . . . ) for

Ã := A + B2C2. Then the following result is obtained [12].

Lemma 1: For the system ΣQ, assume that

(A1) rank D2 = m (D2 is full row rank),

(A2) l = m and there exists an integer k ∈ N such

that C1Ã
0B2 = C1Ã

1B2 = · · · = C1Ã
k−1B2 = 0

holds and C1Ã
kB2 is nonsingular.

Then a solution to Problem 1 is given by

Q∗ : (N, A, B1, B2, C)

:= (n, Ã, −B2, B2, −(C1Ã
τB2)

−1C1Ã
τ+1), (4)

and the minimum value of E(Q) is given by

min
Q

E(Q) = E(Q∗) = ‖C1Ã
τB2‖

d

2
(5)

where τ is the value of k satisfying the condition in (A2).
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Lemma 1 provides an analytical solution to Problem 1.

The performance of Q∗ is remarkable as follows.

Example 1: Consider the system ΣQ∗ for the feedback

system in Fig. 1 (a). Here, P and K are the discrete-time

plant and controller obtained from the continuous-time ones

Pc :















ẋP (t)=

[

0 1
2 1

]

xP (t) +

[

0
1

]

v(t),

z(t) =C11xP (t),
y(t) = [1 0]xP (t),

Kc :







ẋK(t) =

[

−9 1
−37.2 −6

]

xK(t)+

[

0
1

]

r(t)+

[

9
27.9

]

y(t),

u(t) =−[12 7]xK(t) + r(t)

and the zero-order hold with the sampling period h := 0.1.

For Q∗, the quantization interval is given by d := 2.

Fig. 3 shows the simulation result on the time responses

of the system ΣQ∗ for the output matrix

C11 := [1 2], (6)

where x0 := [0.1 −0.5 0 0]⊤ (x := [x⊤
P x⊤

K ]⊤) and r(k) ≡
0. In addition, the output response of Σ in Fig. 2 (b) (Fig. 1

(b)) is also shown by the thin line in the third figure, where

x0 and r are set to the same values. Though the discrete-

valued signal is applied to P in ΣQ∗ , we see that the output

behavior of ΣQ∗ is almost same as that of Σ.

Meanwhile, such a good result is not always obtained.

Example 2: Consider again ΣQ∗ in Example 1, and sup-

pose that C11 is given as follows (instead of (6)):

C11 := [1 −1]. (7)

The simulation result is illustrated in Fig. 4 in the same fash-

ion. Although a similar result is obtained for the output z,

it is observed that u and v diverge. This suggests that ΣQ∗

becomes unstable and Q∗ cannot be always applied to ΣQ.

So the following question arises.

Problem 2: For what G is the optimally quantized system

ΣQ∗ stable?

This question is fairly basic but still open. The main

purpose of this paper is to address this stability problem.

Remark 1: Problem 1 generally has multiple solutions,

while if m= l=1, Q∗ is the unique solution except for the

similar Q with respect to the input-output relation. In this

sense, Q∗ is the most fundamental solution to Problem 1.

III. STABILITY ANALYSIS

This section presents a solution to Problem 2.

For simplicity of notation, it is assumed that Q is min-

imally realized. So (A, [B1 B2], C) is controllable and

observable. The same assumption is made for Q∗.

A. Stability Notion and Separation Property

The following stability notion is considered.

Definition 1: (i) The quantized feedback system ΣQ is

said to be stable if the state (x, ξ) is bounded for every initial

state x0 ∈ R
n and input sequence R ∈ ℓp

∞ (note ξ(0) = 0).
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Fig. 3. Responses of ΣQ∗ for C11 := [1 2].
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Fig. 4. Responses of ΣQ∗ for C11 := [1 −1].

(ii) The dynamic quantizer Q is said to be stable if the state

ξ is bounded for every input sequence U ∈ ℓm
∞.

For the system ΣQ, the boundedness of the state is

considered as a stability criterion. Such a notion is quite

natural for quantized systems. In fact, since the signal v takes

values on a uniform lattice V
m, it is not necessarily possible

for ΣQ to be asymptotically stable with any Q. As for the

quantizer Q, a similar stability notion is introduced.

Now, let us characterize the stability of ΣQ.

To express the quantization error of the static quantizer q
in (2), we introduce the new variable w ∈ [−d/2, d/2]m:

w(k) := q(Cξ(k)+u(k)) − (Cξ(k)+u(k)). (8)
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With this variable, Q is represent as

Q :

{

ξ(k+1) = (A+B2C)ξ(k) + (B1+B2)u(k)+B2w(k),
v(k) = Cξ(k)+u(k) + w(k), (9)

and ΣQ is illustrated as Fig. 5 (a), where H is the linear

system given by

H :

[

A + B2C I B2

C 0 I

]

. (10)

Then if the condition

B1 = −B2 (11)

holds ((11) holds for Q∗), ΣQ is regarded as the cascade

connection of the linear systems Σ′ and

Hws :

[

A + B2C B2

C I

]

(12)

as shown in Fig. 5 (b), where Hws corresponds to the system

H with u ≡ 0 (the input and output of Hws are w and s).

Although w depends on ξ and u as seen in (8), the following

result is obtained (the proof is given in Appendix I).

Theorem 1: For the system ΣQ, assume (A1) and (11).

Then the following statements hold.

(i) ΣQ is stable if and only if Σ′ and Q are stable.

(ii) Q is stable if and only if Hws is stable.

In (i), the stability of ΣQ is characterized by the stability of

its two components Σ′ and Q (see Fig. 5 (b)). By considering

that a controller is contained in Σ′ (i.e., G) as a design

object, this implies that a kind of separation property of

the quantizer-controller design holds. As well as the well-

known separation property of the observer-controller design

[13], this property is fundamental and useful in analysis and

design of the quantized feedback systems. On the other hand,

in (ii), the stability of Q is characterized by the stability of

the linear system Hws. Thus, using (i) and (ii), we can check

the stability of ΣQ by calculating the system poles of Σ′ and

of Hws. Note that the stability notion for the linear systems

Σ′ and Hws is defined in the end of Section I.

Although a solution to Problem 2 is provided by Theo-

rem 1 with Q := Q∗, it cannot clarify the relation between

the stability of ΣQ∗ and some system property of G. So, in

the next subsection, we derive a simple stability condition.

B. Stability Condition for Optimal Dynamic Quantizers

In this section, under (A1) and (A2), the stability of Q∗

is characterized by a system property of G. The outline is

shown in Fig. 6, where the relation between Q and Q∗ and

Theorem 1 (ii) are indicated by (a) and (b).

By applying (4) to (12), the system Hws for Q := Q∗ is

given by

H∗
ws :

[

Ã − B2(C1Ã
τB2)

−1C1Ã
τ+1 B2

−(C1Ã
τB2)

−1C1Ã
τ+1 I

]

, (13)

which gives the relations (c) and (d) in Fig. 6. Then the

inverse of the system H∗
ws is expressed as

H∗
inv :

[

Ã B2

(C1Ã
τB2)

−1C1Ã
τ+1 I

]

, (14)

Q

H

+ + 

w 

G

z r 

uv 

B1+B2

s 

(a) System ΣQ.

w + + 

G

z 

 
r 

Σ'

 

Q

u v 

s 
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(b) System ΣQ with (11).

Fig. 5. Equivalent expression.

for which we have the following relation:

H∗
inv(z) =

(

∞
∑

k=0

(C1Ã
τB2)

−1C1Ã
τ+1ÃkB2

z
k+1

)

+ I

= (C1Ã
τB2)

−1
z

τ+1

(

∞
∑

k=0

C1Ã
kB2

z
k+1

)

= (C1Ã
τB2)

−1
z

τ+1Σ′
sz(z)

where Σ′
sz is the system Σ′ with r ≡ 0, and H∗

inv(z) and

Σ′
sz(z) express their transfer functions. So, as shown by (e)

and (f) in Fig. 6, it follows that H∗
ws is equal to the inverse of

the system (C1Ã
τB2)

−1
z

τ+1Σ′
sz(z). More specifically, the

transmission poles of H∗
ws are composed of both “0” and

the transmission zeros of Σ′
sz, and the transmission zeros of

H∗
ws are equal to the transmission poles of Σ′

sz . Furthermore,

the transmission poles/zeros of Hws are equal to its system

poles/zeros, since Q (i.e., Hws) is a minimal realization.

Therefore, a stability condition for Q∗ is obtained as follows.

Theorem 2: For the system ΣQ, assume (A1) and (A2).

Then Q∗ is stable if and only if the all transmission zeros

of Σ′
sz (i.e., the all transmission zeros of G) are stable.

From Theorem 2, it turns out that the stability of Q∗ is

characterized by the transmission zeros of Σ′
sz , i.e., of G

(note that the zeros are feedback invariant). This can be

verified in Examples 1 and 2, where Σ′
sz in Example 1 has

the stable zeros {0.39±0.26i, 0.95}, while Σ′
sz in Example 2

has the stable and unstable zeros {0.39 ± 0.26i, 1.10}.

Theorems 1 and 2 provide a stability condition for ΣQ∗ based

on system properties of G.

In addition to Theorem 2, two interesting observations are

obtained from the above discussion.

First, in the quantized feedback system ΣQ∗ , Q∗ plays a

role to cancel the transmission poles and zeros of Σ′ and to

reduce the signal transfer level from the static quantization
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General or Optimal

Q ←−−−−− (a) −−−−−−→ Q∗

↑ ↑
| |

Stability (b) (d) Stability

Equivalent | | Equivalent

↓ General or Optimal ↓
Hws ←−−−−− (c) −−−−−−→ H∗

ws

↑
|

(e) Inverse

|
Equal ↓

(C1Ã
τB2)

−1
z

τ+1Σ′
sz(z) ←−−− (f) −−−→ H∗

inv

Fig. 6. Relation between Q∗ and Σ′ (a unity feedback system with G).

error w to the output z. In fact, if ΣQ∗ is regarded as the

cascade connection of Σ′ and H∗
ws as shown in Fig. 5 (b),

the relations (e) and (f) in Fig. 6 imply that the pole-zero

cancellation occurs between Σ′
sz and H∗

ws, i.e., between

subsystems of Σ′ and Q∗. Then the transfer function from

w to z is equal to C1Ã
τB2/z

τ+1.

Second, Theorem 2, together with Lemma 1, captures the

easiness/hardness for dynamic quantization in terms of the

zeros of G. This is explained as follows. Assume m = l = 1,

which guarantees that Q∗ is a unique solution to Problem 1

(see Remark 1). Then Theorem 2 and Lemma 1 imply that

if G has no unstable transmission zero

min
Q:stable

E(Q) = min
Q

E(Q) = ‖abs(C1Ã
τB2)‖

d

2
(15)

holds; otherwise

min
Q:stable

E(Q) > min
Q

E(Q) = ‖abs(C1Ã
τB2)‖

d

2
(16)

holds, where minQ:stable E(Q) expresses the minimum value

of E(Q) with respect to stable Q, and the inequality is

obtained from the uniqueness of Q∗. Thus, similarly to

the well-known performance limitation of feedback control

(see, e.g. [13]), the achievable performance by the dynamic

quantizers is limited by the presence of unstable zeros.

Finally, this section is concluded with our answer to

Problem 2.

Theorem 3: For the system ΣQ, assume (A1) and (A2).

Then ΣQ∗ is stable if and only if the all system poles and

transmission zeros of Σ′
sz are stable.

IV. SUBOPTIMAL DYNAMIC QUANTIZERS WITH

STABILITY CONSIDERATION

Throughout the discussion in Section III, it turns out that

the following problem has to be considered especially for G
with an unstable transmission zero.

Problem 3: For the system ΣQ, find a stable dynamic

quantizer Q minimizing E(Q).
Unlike Problem 1, Problem 3 must be difficult to analyt-

ically solve, because a good special structure of Problem 1

[12], which gives Lemma 1, is lost by the introduction of

the stability specification. So we present here an alternative

solution under (A1) and (A2).

The performance index E(Q) can be expressed as

E(Q) =






























∥

∥

∥

∥

∥

∞
∑

k=0

abs

(

[C1 0]

[

Ã B2C

0 A+B2C

]k [

B2

B2

]

)∥

∥

∥

∥

∥

d

2

if [C1 0]

[

Ã B2C

0 A+B2C

]k[

0
B1+B2

]

=0 (∀k∈N),

∞ otherwise (17)

under (A1) (cf. [12], [14]). If Q satisfies

(C1) N = n, A = Ã, B1 = −B2, and B2 = B2,

the first case in (17) holds and the main component of E(Q)
is represented as

[C1 0]

[

Ã B2C

0 A+B2C

]k[

B2

B2

]

= C1(Ã + B2C)kB2

=







0 if 0 ≤ k ≤ τ − 1,

C1Ã
τB2 if k = τ,

C1(Ã + B2C)kB2 if τ + 1 ≤ k.

(18)

In addition to (C1), if Q (in particular, C) satisfies

(C2) the all controllable poles of the pair (Ã+B2C, B2)
are stable and the all (transmission) poles of

W :

[

Ã+B2C B2

C1 0

]

are zero,

thenQ is stable (Theorem 1) and the following relation holds:

C1(Ã + B2C)kB2 = 0 if ν ≤ k (19)

where ν∈{τ+1, τ+2, . . . , n} is the number of the poles of

W which are set to zero. Note that there exists a C satisfying

(C2). From (17)–(19), the following result is obtained.

Lemma 2: Let Q◦ denote a minimal realization of Q sat-

isfying (C1) and (C2). Then Q◦ is stable, and its performance

is given by

E(Q◦)=

∥

∥

∥

∥

∥

abs(C1Ã
τB2)+

ν−1
∑

k=τ+1

abs(C1(Ã+B2C)kB2)

∥

∥

∥

∥

∥

d

2
(20)

where ν is a finite number determined by the selection of C.

Lemma 2 provides a stable Q for which E(Q) < ∞. So

it follows that Problem 3 is feasible for every G.

The performance E(Q◦) consists of two components.

In the norm of (20), the first term, i.e., abs(C1Ã
τB2),

corresponds to the minimum value of E(Q) shown in (5),

and the other term corresponds to the degradation.

If G has no unstable zero, E(Q◦) = E(Q∗) holds by

setting C as (4). Then Q◦ is an optimal solution to Problem 3.

Meanwhile, if G has an unstable zero, Q◦ is not always an

optimal solution. However, it can be shown that Q◦ is a

suboptimal solution, as follows.

For R(Q◦) := ‖
∑ν−1

k=τ+1 abs(C1(Ã + B2C)kB2)‖(d/2),
the following inequality holds:

min
Q

E(Q) ≤ min
Q:stable

E(Q) ≤ E(Q◦) ≤ min
Q

E(Q)+R(Q◦).

(21)
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Then if G is a discrete-time model given from the

continuous-time system (Ac, [Bc
1 Bc

2], [(C
c
1)

⊤ (Cc
2)⊤]⊤,

[(Dc
1)

⊤ (Dc
2)

⊤]⊤) and the sampling period h (i.e., A :=

eAch, B2 :=
∫ h

0
eActdtBc

2, C1 := Cc
1), we have R(Q◦) ≤

µ‖
∫ h

0 eActdt‖ for a constant µ ∈ R+ which does not

depend on h (the proof is omitted). So R(Q◦) is bounded

by a monotone decreasing function with respect to h, and

limh→0 R(Q◦) = 0. Therefore, for a sufficiently small h,

(21) implies minQ:stable E(Q) ≃ E(Q◦). In this sense, Q◦

is a sub-optimal solution to Problem 3.

Example 3: Recall Example 2. In stead of Q∗, let us ap-

ply Q◦ to ΣQ, where C is chosen such that the (transmission)

poles of W are {0, 0}. Note that the system poles and the

transmission zeros of Σ′
sw are {0.239, 0.923±0.237i, 0.827}

and {1.10, 0.39 ± 0.26i}, and the controllable poles of the

pair (Ã+B2C, B2) are {0, 0, 0.39± 0.26i}.

Fig. 7 shows the simulation result of the system ΣQ◦ under

the same condition as Example 2. In addition, the output

response of the ideal system Σ is also shown in the same way.

Although u and v diverge in Example 2, they range practical

values by virtue of Q◦. In addition, it can be observed that

the output behavior of ΣQ◦ approximates that of Σ. Thus the

proposed suboptimal dynamic quantizer Q◦ is useful.
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APPENDIX I

Due to the limited space, we only prove (ii) of Theorem 1.

In a similar way, (i) can be proven.

(→) The contrapositive is shown as follows. If Hws is not

stable, there exists a vector ζ ∈ (−d/2, d/2)m such that

lim
k→∞

‖(A + B2C)k−1
B2ζ‖ = ∞. (22)

For such a vector ζ, if the ℓ∞-input sequence

u(k) =

{

−ζ if k = 0,
q(Cξ(k)) − Cξ(k) if k ≥ 1

(23)

is applied to Q, the output is given by

v(k) =

{

q(−ζ) if k = 0,
q(q(Cξ(k))) if k ≥ 1

(24)

from (1), (2), and (11). Since ξ(0) = 0, q(−ζ) = 0, and

q(q(Cξ(k))) = q(Cξ(k)), it follows that ξ(k) = (A +
B2C)k−1

B2ζ. This and (22) imply limk→∞ ‖ξ(k)‖ = ∞,

which proves that Q is not stable.

(←) Consider Q in (9), and suppose that w is an inde-

pendent external input to which the input sequence W :=
{w1, w2, . . . } ∈ ℓm

∞ is applied (namely, we ignore the

relation (8)). Then the following statement holds:

(a) Hws is stable if and only if ξ is bounded for every

(U, W ) ∈ U × W1 := ℓm
∞ × ℓm

∞.

On the other hand, Definition 1 (ii) implies that

(b) Q is stable if and only if ξ is bounded for every (U, W ) ∈
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Fig. 7. Responses of ΣQ◦ for C11 := [1 −1].

U × W2

where W2 is the set of the signals (w(0), w(1), . . . ) ∈ ℓm
∞

that are generated in Q for every U ∈ U. Thus, since U ×
W2 ⊆ U × W1, (a) and (b) imply (←).
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