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Abstract— As a way to reduce the on-line computational
burden, explicit solution to the problem of optimal control
for some classes of hybrid systems can be found by refor-
mulating the problem as multi-parametric MILP problems.
The main contribution of this paper is the introduction of an
approximation algorithm for solving a general class of mp-
MILP problems. The algorithm wisely selects those binary
sequences which make important improvement in the objective
function if considered. It is shown that considerable reduction
in computational complexity could be achieved by introduction
of adjustable level of suboptimality. So a family of suboptimal
controllers would be obtained for which the level of error and
complexity can be adjusted by a tuning parameter. Several
important theoretical results about approximate solutions to
the mp-MILP problem are presented. It is shown that no part
of the parameter space is lost during the approximation. Also it
is proved that the error in the achieved approximate solutions
is monotonically increasing function of the tuning parameter.
The reduced complexity achieved by the proposed approach is
clarified through an illustrative example.

I. INTRODUCTION

In explicit approach to predictive control of hybrid systems

a family of MILP problems can be reformulated as a multi-

parametric MILP problem. As a known fact the optimizer

function for the mp-MILP problem is a piecewise affine func-

tion of the parameter vector over many polyhedral regions

in the parameter space [1]. So the explicit solution contains

the critical regions in the parameter space and corresponding

feedback gains and these can be stored in a look-up table.

So the on-line computation is reduced to distinguishing the

optimizer corresponding to the current value of parameters

and picking it up from the look-up table.

The main drawback of the current state-of-the-art multi-

parametric mixed-integer programming approaches is their

computational complexity when facing real world problems.

Both complexity of the exact solution and complexity of the

procedures to find the exact solutions get prohibitive when

the number of variables in the problem grows. This urges

the research for development of approximation methods to

solve these problems.

The main goal of this paper is to introduce an approxima-

tion algorithm for special class of multi-parametric mixed-

integer linear programming problems and also to show how

this algorithm can be used to design suboptimal controllers

for hybrid systems. Parameters in this class are assumed to
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appear linearly in the constraint-defining inequalities. Also

without loss of generality we assume the integer variables to

be binary variables.

The paper is organized as follows. In the next section

exact mp-MILP approaches are reviewed. The approximation

algorithm for mp-MILP is described in section 3 as well

as several theorems about optimality and complexity in

the approximation approach. Section 4 contains a detailed

illustrative example which further clarifies the proposed

algorithm. Section 5 concludes the paper.

II. MULTI-PARAMETRIC MILP ALGORITHMS

In general, the parameters in an mp-MILP problem might

appear in different parts of the problem. Since solution to

parametric problems in their full generality is intractable,

special classes of parametric problems are usually consid-

ered.

Here we assume that the parameter vector θ appears

linearly in the right-hand side of the constraints as follows:

z(θ) = min
Ur,Ub

CrUr + CbUb (1a)

s.t. GrUr + GbUb ≤ W + Eθ (1b)

θmin(s) ≤ θ(s) ≤ θmax(s), s = 1, . . . , nθ (1c)

Ur ∈ DUr
, Ub ∈ {0, 1}nb where Ur, Ub and θ are vectors of

real and binary variables and parameters respectively. DUr
is

a polyhedron in Rn which denotes the region of interest for

Ur and θmin and θmax are the vectors of lower and upper

bounds on θ. The number of variables are denoted by nr,

nb and nθ. The vectors Cr, Cb and W and the matrices Gr,

Gb and E have constant values with proper dimensions.

This family of problems is known as the right-hand side

problems in the context of parametric programming [2]. In

[3] the mp-MILP problem is solved by parametric branch and

bound which explores the feasible region by solving relaxed

mp-LP problems at each node of the tree.

In a more recent approach the problem is solved using

a three-part procedure [4]. The feasible region is searched

by successively solving a multi-parametric LP subproblem

and an MILP subproblem. Since the proposed approximation

algorithm is based on the mp-MILP approach from [4], the

algorithm is briefly reviewed here.

Three parts in the exact mp-MILP procedure are ini-

tialization, mp-LP subproblem and MILP subproblem. The

following MILP problem is solved in the initialization phase

to find an initial feasible integer vector Ūb:

min
Ur,Ub,θ

CrUr + CbUb (2a)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA08.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2129



s.t. GrUr + GbUb ≤ W + Eθ (2b)

θmin(s) ≤ θ(s) ≤ θmax(s), s = 1, . . . , nθ (2c)

Ur ∈ DUr
, Ub ∈ {0, 1}nb . Here θ is considered as a

vector of optimization variables. The obtained binary vector

is denoted by Ūb. If this problem is infeasible, the procedure

stops since the original parametric problem (1) is also

infeasible.

In the mp-LP part of the procedure, the binary vector Ub

is fixed to Ūb and the space of real variables is partitioned

by solving the following mp-LP problem:

ẑ(θ) = min
Ur

CrUr + CbŪb (3a)

s.t. GrUr + GbŪb ≤ W + Eθ (3b)

θmin(s) ≤ θ(s) ≤ θmax(s), s = 1, . . . , nθ (3c)

Ur ∈ DUr
. The optimizer and the optimal objective function

for the mp-LP problem (3) are piecewise affine functions of

parameter vector over polyhedral regions (which are called

critical regions) as is reported in [5]. So the result of (3) is

a set of linear parametric profiles ẑ(θ)i, a set of parametric

optimizers Ur∗(θ)
i which are affine function of the vector

of parameters and corresponding critical regions, CRi. Note

that all of the optimizers Ur∗(θ)
i correspond to the binary

vector Ub = Ūb. Also note that ẑ(θ)i s shape an upper bound

for the optimal objective function.

In the third part of the algorithm an MILP problem is

solved in each critical region CRi to determine if there

exists a feasible binary vector Ub yielding a lower objective

function:

min
Ur,Ub,θ

CrUr + CbUb (4a)

s.t. GrUr + GbUb ≤ W + Eθ (4b)

CrUr + CbUb ≤ ẑ(θ)i (4c)
∑

j∈Jik

(Ub)
ik
j −

∑

j∈Lik

(Ub)
ik
j ≤

∣

∣J ik
∣

∣ − 1, (4d)

k = 1, . . . ,Ki, θ ∈ CRi, Ur ∈ DUr
, Ub ∈ {0, 1}nb . Note

that the set of constraints (4d) on the elements of vector

Ub is used to exclude already analyzed binary solutions

from all binary candidates for the critical region CRi [6].

Here, Ki is the number of binary solutions that have already

been analyzed in CRi and for each analyzed binary solution

(Ub)
ik, the sets J ik and Lik are defined as follows:

J ik = {j
∣

∣(Ub)
ik
j = 1} (5)

Lik = {j
∣

∣(Ub)
ik
j = 0} (6)

We use
∣

∣J ik
∣

∣ to denote the cardinality of the set J ik.

If the MILP subproblem (4) is feasible the new candidate

binary vector Ūb is passed to the mp-LP part of the algorithm.

This time the mp-LP is solved inside a region CRi and the

result is further partitioning of CRi into M smaller critical

regions and their corresponding profiles ẑ(θ)i
m for m =

1, . . . ,M . In the next step the obtained parametric profiles

for the region CRi should be compared with the original

profile ẑ(θ)i. Note that both sets of profiles are parametric

profiles and the comparison should also be performed in

a parametric manner. This in turn might provide smaller

partitions. The upper bound in each region should be updated

whenever a better bound is found.

The algorithm converges whenever infeasibility occurs for

MILP subproblems in all critical regions. This means that

no better values of the objective function can be found for

the regions.

The region of parameters for which the problem is feasible

is in general non-convex or even disconnected. Furthermore

the optimizer and objective function, though affine in each

CRi, are in general discontinuous over the whole set of

parameters.

III. APPROXIMATION ALGORITHM FOR MP-MILP

PROBLEM

Different approximation approaches might be proposed for

the exact algorithm. One possibility is to use an approxi-

mation algorithm for the mp-LP subproblem as is reported

in [7]. Alternatively the approximation methods could be

utilized in the MILP subproblem as is selected in the current

paper.

A. Basic algorithm

The proposed approach here is to neglect all feasible

solutions in the MILP subproblem that do not provide

important improvement. The idea is intuitively simple: in

each critical region we continue solving the mp-LP problems

only if there exists a binary feasible solution which improves

the current upper bound of the objective function more than

a pre-defined value µ.

For any value of µ we denote the critical regions obtained

by approximation algorithm by CR(µ)i and the number

of these critical regions by nR(µ). Also we denote the

approximate parametric solution by z(θ, µ) and parametric

upper bound in region CR(µ)i (which are obtained during

the approximation algorithm) by ẑ(θ, µ)i.

The approximation algorithm for the mp-MILP can be

summarized as follows:

Algorithm 1: Approximation Algorithm for the mp-

MILP

Step 0: Initialize the approximate solution z(θ, µ) with

∞, the critical region CR(µ)i with initial description of

parameter space like θmin(s) ≤ θ(s) ≤ θmax(s), s =
1, . . . , nθ.

Solve the MILP optimization problem (2). If the problem

is not feasible, stop. The original mp-MILP problem is also

infeasible. If (2) is feasible, choose the binary part of the

solution as the initial Ūb.

Step 1: (mp-LP subproblem) For each critical region with

an associated binary vector Ūb:

1-1 - Solve the mp-LP problem (3) to find a set of critical

regions CR(µ)i and their corresponding parametric solution

ẑ(θ, µ)i.

1-2 - For each critical region CR(µ)i, compare the para-

metric solution ẑ(θ, µ)i and z(θ, µ). If ẑ(θ, µ)i ≤ z(θ, µ),
update the approximate solution for the region CR(µ)i.
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Step 2: (MILP subproblem) for each critical region solve

the following problem.

min
Ur,Ub,θ

CrUr + CbUb (7a)

s.t. GrUr + GbUb ≤ W + Eθ (7b)

CrUr + CbUb ≤ z(θ, µ) − µ (7c)

∑

j∈Jik

(Ub)
ik
j −

∑

j∈Lik

(Ub)
ik
j ≤

∣

∣J ik
∣

∣ − 1, (7d)

k = 1, . . . ,Ki, θ ∈ CR(µ)i, Ur ∈ DUr
, Ub ∈ {0, 1}nb .

If the problem is infeasible the algorithm terminates in the

current CR(µ)i. if not, return to step 1 with new binary

solution Ūb and critical region CR(µ)i. ¤

This algorithm speeds up the infeasibility in critical re-

gions which in turn stops further partitioning those regions

by mp-LP part of the procedure. Compared with the exact

solution, the result would be a solution with fewer critical

regions and thus simpler optimizers.

In the sequel some important properties of the proposed

approach are introduced. The first property is about feasible

region for approximate solutions which is stated below.

Theorem 1. Assume that the exact multi-parametric MILP

problem is feasible for a subset of parameter space like FRθ.

Then FRθ is also the feasible region for the approximate

parametric solutions z(θ, µ) for any µ ≥ 0.

Proof. Assume that θ0 belongs to the feasible region of the

exact mp-MILP solution, FRθ. This means that there exists

a pair of real and binary vector (Ur∗(θ0), (Ub∗(θ0)) which

minimizes the mp-MILP problem for θ = θ0.

Now consider the approximation algorithm. The z(θ, µ)
has been initialized with ∞. If a feasible solution (for a

critical region containing θ0 ) obtained in the initial MILP

problem and first run of mp-LP problem, the theorem has

been proved.

Otherwise the MILP problem in the approximation algo-

rithm should run with z(θ, µ)i = ∞. So for any value of µ,

(Ur∗(θ0), (Ub∗(θ0)) is a feasible solution for the problem (7).

This implies that the next run of mp-LP will result a feasible

solution for the region containing θ0. ¤

The theorem simply means that for any µ ≥ 0:

nR(µ)
⋃

i=1

CR(µ)i = FRθ (8)

This implies an important fact: no part of the feasible region

of the parameter space is lost in the proposed approxima-

tion algorithm. Obviously a good approximation procedure

should not exclude some parts of the feasible region, since

this limits the applicability of the approximation algorithm.

We have already discussed the exact solution of the mp-

MILP problem z∗(θ) and the approximate solution z(θ, µ).
To investigate the optimality aspects of the algorithm we

need to define two other parametric profiles. The first one

is the parametric profile zrelaxed(θ) which is defined to be

the solution of mp-LP problem obtained by relaxation of the

integrality condition on the binary variables in the mp-MILP

problem. Considering the mp-MILP problem (1), we have:

zrelaxed(θ) = min
Ur,Ub

CrUr + CbUb (9a)

s.t. GrUr + GbUb ≤ W + Eθ (9b)

θmin(s) ≤ θ(s) ≤ θmax(s), s = 1, . . . , nθ (9c)

Ur ∈ DUr
, Ub ∈ [0, 1]nb .

The second parametric function which should be defined is

zcover(θ) which is a parametric solution of mp-MILP which

covers the FRθ and could be obtained using the following

algorithm. This algorithm aims at finding a feasible solution

for mp-MILP with reduced level of complexity with respect

to the exact algorithm. It will be shown later that this profile

is an upper bound for all approximate profiles which has

been introduced by the proposed approach.

Algorithm 2: Finding a feasible Solution for the mp-

MILP problem

Step 0: Initialize the feasible solution zcover(θ) with ∞,

the critical region CRi with initial parameter space like

θmin(s) ≤ θ(s) ≤ θmax(s), s = 1, . . . , nθ.

Solve the MILP optimization problem (2). If the problem

is not feasible, stop. The original mp-MILP problem is also

infeasible. If (2) is feasible pick up the binary part of the

solution as the initial Ūb.

Step 1: (mp-LP subproblem) for each critical region with

an associated binary vector Ūb:

Solve the mp-LP problem (3) to find a set of critical

regions CRi and their corresponding upper bound zcover(θ).
Step 2: (MILP subproblem) for each critical region if

zcover(θ) is still ∞, solve the problem (4). If the problem

is infeasible the algorithm terminates in the current CRi. if

not, return to step 1 with new binary solution Ūb and critical

region CRi. ¤

The algorithm simply tries to find a feasible bounded

solution without improving the optimality. By choosing a

sufficiently large value for the tuning parameter µ in algo-

rithm 1, the algorithm 1 behaves exactly as the algorithm

2, i.e. it just considers the problem of finding a feasible

bounded solution. Hence the zcover(θ) is the z(θ, µ) for

sufficiently large values of µ. Quantitative description of

sufficiently large here, will be mentioned later in Theorem

4.

Note that zcover(θ) has been found with certain level of

complexity (solving several mp-LP and MILP subproblems).

An important open problem is to find a feasible solution for

mp-MILP problem with minimum degree of computational

complexity.

The following theorem states that introduced parametric

profiles form an ordered set of profiles over FRθ.

Theorem 2. Consider the mp-MILP problem (1) and corre-

sponding four parametric functions. Then:

∀µ ≥ 0,∀θ ∈ FRθ :

zrelaxed(θ) ≤ z∗(θ) ≤ z(θ, µ) ≤ zcover(θ) (10)

The proof is dropped here for the sake of brevity. ¤
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Fig. 1. Typical behavior of computational complexity in approximate
solutions

Fig. 2. Typical behavior of error in approximate solutions

Note that the above theorem introduces an upper bound

and a lower bound for two main parametric solution i.e. z∗(θ)
and z(θ, µ). Finding these bounds requires less computations

and this motivates to use these bounds to over-estimate the

error in the approximate profile z(θ, µ) as is discussed later.

The next theorem states monotonicity property of the error

in the approximate profiles when the tuning parameter µ is

changing.

Theorem 3. Consider that two tuning parameters µ1 and

µ2 have been used to obtain approximate parametric profiles

z(θ, µ1) and z(θ, µ2) respectively. Then:

µ1 ≤ µ2 ⇒ z(θ, µ1) ≤ z(θ, µ2),∀θ ∈ FRθ (11)

Again the proof is not mentioned here and will be reported

elsewhere. ¤

Theorem 3 states that the approximate parametric profiles

obtained by different values of µ form an ordered set of

profiles over feasible region of the parameter space. An

approximate profile with a larger value of µ is located above

the other profile which is found by a smaller µ and so is

worse for all values of the parameter vector.

Generally speaking the error and computational com-

plexity of approximate parametric solutions are monotonic

functions of tuning parameter µ as have been visualized in

Figs. 1 and 2. Also note that the algorithm will be continued

until whole of the feasible region is covered by the critical

regions of the approximation algorithm. This fact determines

a lower bound on the number of critical regions and when

occurs the number of CRis won’t decrease any more by

increasing µ and the approximation saturates.

In the sequel further topics about optimality and complex-

ity of the approximation algorithm are discussed.

B. Measures of Suboptimality

Generally speaking the level of approximation can be

controlled by the tuning parameter µ. Small values of µ result

in small level of approximation and partial decrease in the

number of regions. Large values of µ, up to some extent

result in fewer regions and higher level of approximation.

The approximation procedure saturates for large values of µ

as will be expressed later.

In fact the designer can make a trade-off between optimal-

ity of the solution obtained from the approximation algorithm

and the on-line and off-line computational complexity which

affects practically important factors like storage memory and

required computation time. Illustrative example mentioned in

the following makes the mentioned trade-off more sensible.

For investigation of suboptimality level which is intro-

duced due to the proposed approximation algorithm, some

measures of suboptimality have to be defined as criteria. Here

two measures are defined. First we introduce an upper bound

for introduced suboptimality. This bound (which is shown to

be a function of parameter µ ) could be seen as a priori

measure of suboptimality. With a known tolerable level of

suboptimality, one can use this measure to select a suitable

value for µ before running the approximation algorithm.

Secondly another function is introduced which is actually

a posteriori measure of suboptimality. This measure could be

computed after running the algorithm to analyze the achieved

approximate parametric profile.

Before stating the upper bound theorem, we need to prove

the following auxiliary lemma.

Lemma 1. Consider the approximate parametric profile

z(θ, µ0) obtained from proposed algorithm with fixed tuning

parameter µ0 and the exact solution of mp-MILP problem

z∗(θ), then:

z(θ, µ0) − z∗(θ) ≤ µ0,∀θ ∈ FRθ (12)

Proof. The fact that the approximate profile z(θ, µ0) is the

result of algorithm 1, implies that with this profile the MILP

subproblem (7) is infeasible in all critical regions. Now for

a proof based on contradiction suppose that there exists a

parameter value like θ with z(θ, µ0) − z∗(θ) > µ0. This

means that the the following inequality holds for the real

and binary parts of z∗(θ) (i.e. Ur∗(θ) and Ub∗(θ)):

CrUr∗(θ) + CbUb∗(θ) < z(θ, µ0) − µ0 (13)

This in turn implies that the MILP subproblem in (7) is

feasible and this contradicts the first assumption which has

been made. ¤

Based on the previous lemma, the upper bound on the

error in the approximate profiles is introduced in the fol-

lowing theorem. Here the saturation of the upper bound is

considered.

Theorem 4. Consider the approximate parametric profile

z(θ, µ) and the exact solution of the mp-MILP problem z∗(θ),
then:

z(θ, µ) − z∗(θ) ≤ SF1(µ), ∀θ ∈ FRθ (14)

where:

SF1(µ) = min{µ, µsat} (15)

and

µsat = max
θ

[zcover(θ) − zrelaxed(θ)] (16)

Proof. Lemma 1 proves that the error is always less than µ.

Here it should be proved that for µ > µsat a better upper
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bound for error in the approximate profile can be provided.

This can be easily seen from aforementioned fact about four

parametric profiles: we have z(θ, µ) ≤ zcover(θ) and also

−z∗(θ) ≤ −zrelaxed(θ). Summing up these inequalities and

taking max(.) of the result yields the µsat relation. ¤

As mentioned earlier, SF1(µ) could be used to select

proper value of the tuning parameter µ for a specified level

of error in the approximate parametric profile.

The second measure of suboptimality for the approxima-

tion algorithm is defined as follows:

SF2(µ) =

∫

FRθ

|z∗(θ) − z(θ, µ)| dθ

∫

FRθ

|z∗(θ)| dθ
(17)

The numerator of SF2 is the volume between two parametric

profiles z∗(θ) and z(θ, µ). The denominator is simply the

volume defined by the optimal profile z∗(θ).

The value of SF2 for the exact solution (µ = 0) is

zero as is expected and it means no suboptimality in the

exact solution of the mp-MILP problem. Note that SF2 is a

posteriori criterion for the approximation level and could be

used to analyze the quality of an approximate solution after

running the algorithm.

C. Achieved complexity reduction

Decrease in the computational complexity in the approx-

imation algorithm is achieved by reduced number of mp-

LP and MILP problems which should be solved in original

exact algorithm. These values can be treated as measures for

complexity of the algorithm. The number of critical regions

in the obtained parametric profile can be treated as a measure

for complexity of the solution.

The following theorem states that these measures of com-

plexity are monotonic decreasing functions of the tuning

parameter µ.

Theorem 5. Assume two approximate parametric profiles

z(θ, µ1) and z(θ, µ2) have been obtained during the pro-

posed approach with nR(µ1) and nR(µ2) critical regions

respectively . Also assume that the number of mp-LP and

MILP subproblems which have to be solved for these profiles

be nmpLP (µ1), nMILP (µ1), nmpLP (µ2) and nMILP (µ2)
respectively. Then:

µ1 ≤ µ2 ⇒ nR(µ1) ≥ nR(µ2),
nmpLP (µ1) ≥ nmpLP (µ2),
nMILP (µ1) ≥ nMILP (µ2)

(18)

As expected this theorem states that among all approxi-

mate solutions the exact solution of the mp-MILP problem

z∗(θ) = z(θ, µ = 0) has the highest number of regions and

requires highest number of mp-LP and MILP subproblems

to be solved. It can also be shown that the reduction in the

computational complexity will be saturated at some point and

can not be improved when the approximate profile reaches

zcover(θ). The proofs are omitted here for the sake of brevity.

IV. AN ILLUSTRATIVE EXAMPLE

A typical case study for hybrid systems is selected here to

highlight the power of the proposed approximate mp-MILP

algorithm in obtaining low-complexity controllers. The con-

trol problem of a piece-wise affine system is considered

and it is assumed that the system has linear second order

dynamics in different regions of the state space as described

below.

Region 1: x1 ≥ x2 and x1 ≥ −x2.

Region 2: x1 < x2 and x1 ≥ −x2.

Region 3: x1 < x2 and x1 < x2.

Region 4: x1 ≥ x2 and x1 < x2.

Corresponding second order dynamics for different regions

are assumed as follows:

H1(s) = s+1
s2+5s+10 , H2(s) = s+2

s2+13s+5 ,

H3(s) = s+2.5
s2+15s+8 , H4(s) = s+5

s2+3s+3
The continuous subsystems are discretized with the sam-

pling time 100 msec. The control action and the state vector

elements are assumed to be subject to hard constraints

as |u| ≤ 1.5 and |xi| ≤ 5 (i = 1, 2). Here the MLD

framework is selected to model this system [8]. The modeling

procedure is straight forward and an MLD model with 5

binary variables and 2 state variables and 1 input is obtained

as follows.

x[k + 1] = Ax[k] + B1u[k] + B2δ[k] + B3z[k]
E2δ[k] + E3z[k] ≤ E1u[k] + E4x[k] + E5

(19)

where the state, input and output of the system are denoted

by x, u and y and binary and auxiliary variables by δ and z

respectively.

The control task is assumed to be the regulation of the

state vector toward the origin while fulfilling the input and

state constraints. To do this with predictive control strategy

we assume that the following objective function has to be

minimized at each time instant and the first element of

control input sequence obtained in the optimization is applied

to the system.

J({U}N−1
0 , x(0 |t )) =

N−1
∑

k=0

‖u(k |t ) − ue‖
1
Q1

+

‖δ(k|t) − δe‖
1
Q3

+ ‖z(k|t) − ze‖
1
Q3

+ ‖x(k|t) − xe‖
1
Q4

(20)

where N is the control horizon, {U}N−1
0 denotes the

optimization variables over control horizon, x(0 |t ) is the

measured state vector at time t and xe, ue, ze and δe are

steady state values for state, input and auxiliary variables.

The problem can be reformulated as an mp-MILP problem

using standard optimization techniques and with N = 3 as

control horizon the result is an mp-MILP problem with 15

binary variables, 30 real variables and 2 parameters. For

solving mp-LP subproblems the MPT toolbox [9] and for

MILP subproblems the CPLEX [10] have been used.

Now the result of exact solution to the current mp-MILP

problem is the partitioning of the state space as shown

in Fig. 3. The solution contains 284 critical regions. The

value of µsat for this problem is about 7.5 which could

be easily found from simulation. Partitioning of the state
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Fig. 3. Critical regions for the parametric solution of mp-MILP in the
illustrative example
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Fig. 4. Approximate critical regions obtained with µ = 7.5, nR = 126

space with this value has been depicted in Fig. 4. Here the

approximate algorithm is run for several values of the tuning

parameter µ. To show the computational benefits achieved by

the proposed approach, the number of MILP subproblems

(nMILP ), the number of mp-LP subproblems (nmpLP ), the

time required to find the explicit solution (T (µ)) and a

posteriori measure of suboptimality (SF2(µ)) for several

values of the tuning parameter have been compared in Table

1. The results are found using a machine with Intel Pentium

M 1.6 GHz CPU with 500 MB of RAM. The values in the

table clarify that as stated earlier the error in the approximate

profiles is monotonically increasing function of the tuning

TABLE I

PERFORMANCE MEASURES OF PROPOSED ALGORITHM FOR THE

ILLUSTRATIVE EXAMPLE.

µ nR(µ) nMILP nmpLP T (µ) (sec) SF2(µ)
0 284 2007 717 989.4 0

0.5 224 634 149 176.6 0.2 %
1 186 318 71 65.1 0.29 %
2 172 264 54 47.3 1.06 %

7.5 126 178 34 26.8 11.78 %

parameter and the computational complexity measures are

monotonically decreasing functions of µ.

Also it can be seen that for this special example the

proposed approach at the best case reduces the number

of critical regions by a factor of 2.25 and also provides

considerable reduction in the number of MILP and mp-LP

subproblems. In the approximate solution obtained by µ =
µsat these parameters (nMILP and nmpLP ) are respectively

11 and 21 times better than the exact solution. The time

complexity in solving the mpMILP problem has also been

reduced by a factor of 36. The important point is that whole

these computational benefits have been achieved by loosing

less that 12 % of optimality.

V. CONCLUSION

Although the basic idea in the proposed approximate

multi-parametric MILP solver is intuitively simple, nice

theoretical properties about approximate solutions have been

presented in the present article. It is shown that the feasible

region of the approximate solution coincides with the feasible

region of the exact solution. Also it is proved that the error in

the approximate solutions and also the computational com-

plexity in finding the solution and in its final representation

can be monotonically adjusted using the tuning parameter.

However as is pointed out in the paper, the problem of

finding a feasible solution to the mp-MILP problem with

least level of computational complexity is still an open

important problem.
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