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Abstract— Iterative Learning Control (ILC) is a control
strategy to improve the performance of digital batch repetitive
processes. Due to its digital implementation, discrete time ILC
approaches do not guarantee good intersample behavior. In
fact, common discrete time ILC approaches may deteriorate
the intersample behavior, thereby reducing the performance of
the sampled-data system. In this paper, a generally applicable
multirate ILC approach is presented that enables to balance
the at-sample performance and the intersample behavior. Fur-
thermore, key theoretical issues regarding multirate systems are
addressed, including the time-varying nature of the multirate
ILC setup. The proposed multirate ILC approach is shown to
outperform discrete time ILC in a realistic simulation example.

I. INTRODUCTION

Good at-sample performance is a necessary, yet not suf-

ficient condition for good continuous time performance in

sampled-data systems. Sampled-data systems include many

physical systems that evolve in continuous time and are

controlled by a digital controller [1]. Since the plant evolves

in continuous time, it is most natural to evaluate performance

in continuous time, i.e., to analyze both the at-sample re-

sponse and the intersample behavior. In fact, achieving a

good at-sample performance can go at the expense of a poor

intersample behavior [2]. In this perspective, any high per-

formance digital control design approach for a sampled-data

system should be accompanied by a thorough intersample

behavior consideration.

Iterative Learning Control (ILC) [3], [4], [5], [6] is a

high performance digital control strategy used to improve

the performance of batch repetitive processes, by iteratively

updating the command signal from one experiment (trial) to

the next. Basically, ILC results in a command signal that

can compensate for trial-invariant deterministic components

in the discretized error signal, even if imperfect plant knowl-

edge is available.

Although ILC for discrete time LTI systems based on dis-

cretized error signals has been well developed, a systematic

procedure to analyze and possibly improve the intersample

behavior in ILC is lacking. In this paper, ILC for sampled-

data systems is investigated.

Control design for sampled-data systems [1], [7] includes

the following aspects that are not present in control design

for continuous time systems:

• sampling zeros [8], [9], [1];

• aliased poles [10], [1]; and

• aliased disturbances [2].
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These aspects should be appropriately dealt with in sampled-

data control design, including ILC for sampled-data systems.

ILC can attenuate disturbances up to the Nyquist frequency,

i.e., there is no Bode sensitivity integral as in the attenuation

of disturbances by feedback control [11], thereby potentially

increasing undesirable intersample behavior.

In [12], [13], it is shown that sampling zeros [8] can

indeed deteriorate the intersample response in ILC and ad

hoc solutions are provided for performance improvement.

In [14], repetitive control, which is closely related to ILC, for

sampled-data systems is considered. The proposed solutions

to handle the intersample behavior require modifications to

the sampler and hold function. However, these functions are

commonly unalterable in practice. In [15], [16] repetitive

control of sampled-data systems is considered by employing

lifted system descriptions. Although intersample behavior is

addressed in the approach, these methods do not directly

extrapolate to ILC due to its batch repetitive behavior.

The main contribution of this paper is a systematic proce-

dure that extends existing ILC approaches for sampled-data

systems by explicitly dealing with the intersample behavior.

By employing norm-optimal ILC [17], the intersample re-

sponse is explicitly quantified in the optimization problem.

In addition, a multirate ILC approach is pursued, where the

measurement of fast sampled signals is fully exploited to

generate a command signal at a low sampling frequency.

Although multirate ILC has been considered before in [18],

the intersample behavior has not been explicitly dealt with.

The resulting multirate ILC problem is time-varying, which

is caused by the fact that the input and output signals of the

resulting ILC controller have different sampling frequencies.

Time-variance is appropriately dealt with in this paper.

The paper is organized as follows. In Section II, the

sampled-data ILC problem is formulated. In Section III, the

multirate ILC setup is defined and the main theoretical issues

regarding multirate systems are presented. In Section IV, the

main results regarding the ILC controller design for multirate

systems are presented. In Section V, a simulation example,

which addresses sampling zeros [8], illustrates the necessity

of dealing with intersample behavior in ILC. Finally, in

Section VI, concluding remarks are given.

Notation. Throughout, t ⊆ Z and tc ⊆ R denotes

discrete time and continuous time, respectively. In block

diagrams, continuous time signals are represented by solid

lines, slowly sampled discrete time signals are represented

by dashed lines, and fast sampled discrete time signals

are indicated by dotted lines. All systems are assumed to

be single-input single-output, finite dimensional, and linear

time invariant (LTI). Generalization to the multivariable case

is conceptually straightforward. The delay operator Dτ is
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defined by (Dτf)(t) = f(t − τ), where τ ∈ t. An extended

version of the paper is provided in [19].

II. PROBLEM DEFINITION

In this section, the ILC problem for closed-loop sampled-

data systems is defined. The considered setup is depicted in

Figure 1. Here, y = Pu, where P denotes the continuous

time plant. The plant input is given by

u = Hl(wl + Cd,lSle) (1)

e = r − y, (2)

where r is the reference signal and Cd,l is a discrete time

controller operating at a sampling frequency f l. In (1), the

ideal sampler and zero-order-hold are defined by

Sq : e(tc) 7→ eq(t), eq(ti) = e(tih
q) (3)

Hq : uq(t) 7→ u(tc), u(tih
q + τ) = uq(ti), τ = [0, hq),

(4)

respectively, where ti ∈ t, sampling frequency fq = 1

hq , and

hq denotes the sampling time. The variable q represents a

low or high sampling frequency, e.g., q = l ⇒ hq = hl.

Typically, the sampling time hl of the feedback controller

is lower bounded, since a new control signal has to be

computed in real-time. The command signal wl is generated

by the ILC algorithm. It is assumed that wl operates at

the same sampling frequency as the feedback controller,

since this is commonly encountered in digital computer

implementations. Finally, it is remarked that in (1) and (2),

sampled values of the reference signal r could be used, i.e.,

Slr, since by linearity, see Proposition 6, Sle = Slr − Sly.

However, for the forthcoming sampled-data analysis, it is

instructive to consider r as a continuous time signal.

The main problem considered in this paper is given by the

norm-optimal sampled-data problem.

Definition 1 (Norm-optimal sampled-data ILC) Given

the norm-based criterion JSD(wl, e), the norm-optimal

sampled-data ILC problem amounts to determining

wl
SD⋆ = arg min

wl
JSD(wl, e). (5)

In the norm-optimal sampled-data ILC problem, an optimal

discrete time command signal wl is determined that achieves

good continuous time performance e, see Figure 1. This

implies that the problem involves both continuous time and

discrete time signals. This definition of sampled-data systems

is consistent with the literature on sampled-data systems,

including [1]. In contrast, standard ILC algorithms [3], [4],

[6] employ discrete time measurements of the error e. In

particular, the norm-optimal discrete time ILC problem is

given by the following definition.

Definition 2 (Norm-optimal discrete time ILC) Given

the norm-based criterion JDT(wl, el), the norm-optimal

discrete ILC problem amounts to determining

wl
DT⋆ = arg min

wl
JDT(wl, el). (6)

S l Cd,l Hl P
r yu

wl

e el ul

−

Fig. 1. Closed-loop sampled-data ILC setup.

Sh Sd Cd,l Hu Hh P
r yu

wl

e eh el ul uh

−

Fig. 2. Closed-loop multirate ILC setup.

In the discrete time ILC criterion JDT(wl, el), only the at-

sample response is minimized, whereas the sampled-data

criterion JSD(wl, e) includes the intersample response. This

implies that discrete time ILC approaches may result in poor

intersample behavior, which is quantified by

JSD(wl
DT⋆ , e) ≥ JSD(wl

SD⋆ , e). (7)

The gap in (7) depends on the particular system and exoge-

nous signals and can become arbitrarily large, as is illustrated

in Section V.

In this paper, the sampled-data ILC problem in Defini-

tion 1 is addressed. The sampled-data setup can theoretically

be handled using lifted system descriptions, e.g., [1], [20],

[21]. However, actual implementation of the resulting ILC

controller requires a continuous time measurement of e that

is unavailable in a digital computer environment. In the next

section, a multirate approximation to the sampled-data ILC

problem in Definition 1 is presented to enable a digital

computer implementation.

III. MULTIRATE SETUP

A. Multirate ILC setup

To enable digital computer implementation of ILC con-

trollers that explicitly address intersample behavior, a mul-

tirate approximation of the sampled-data ILC problem, see

Definition 1 and Figure 1, is presented. The key idea is that

in many applications, it is possible to measure error signals

at a higher sampling frequency fh than the frequency f l at

which Cd,l operates. Indeed, the bound on f l is caused by

the fact that in feedback control the new control input has

to be computed in real-time. In contrast, although ILC is

implemented in real-time, it can exploit the time in between

trials for the actual computation of the command signal.

To enable usage of standard tools from multirate signal

processing [22], the following assumption is imposed.

Assumption 3 Let the sampling frequencies f l and fh be

related by

fh = Ff l, 1 < F ∈ Z. (8)

The multirate ILC setup is depicted in Figure 2. Herein,

Sh and Hh are defined in (3) and (4), respectively, where

q = h, i.e., a high sampling frequency fh is assumed. The

downsampling operator Sd is defined by

Sd : eh(t) 7→ el(t), el(ti) = eh(Fti), ti ∈ t. (9)
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In addition, the multirate zero-order-hold Hu is defined as [2]

Hu = IF (z)Su, (10)

where the upsampler Su and zero-order-hold interpolator

IF (z) are given by

Su : ul(t) 7→ ũh(t), ũh(ti) :=

{

ul( ti

F
) for ti ∈ t, ti

F
∈ Z

0 for ti ∈ t, ti

F
/∈ Z.

(11)

IF (z) =
F−1
∑

f=0

z−f . (12)

The multirate setup in Figure 2 leads to the following

norm-optimal multirate ILC problem.

Definition 4 (Norm-optimal multirate ILC) Given the

norm-based criterion JMR(wl, eh), the norm-optimal

multirate ILC problem amounts to determining

wl
MR⋆ = arg min

wl
JMR(wl, eh). (13)

The norm-optimal multirate ILC problem is a sensible ap-

proximation of the sampled-data ILC problem, since under

appropriate technical conditions [23]

JSD(wl, e) − JMR(wl, eh) → 0 for hh → 0. (14)

In practice, F and hence hh, see (8), are upper bounded. In

the zero-order-hold case, a low F , e.g., 2 ≤ F ≤ 5 typically

suffices due to the low-pass character of the interpolator [2],

[10]. In the next section, the multirate setup in Figure 2 is

analyzed in detail.

B. Multirate analysis

In this section, the multirate setup in Figure 2 is analyzed

to enable proper formulation of the multirate system descrip-

tion used for ILC. Initially, admissible feedback controllers

and sampling frequencies are discussed. Subsequently, lin-

earity and time-variance of the multirate ILC setup are

investigated.

Throughout, it is assumed that the feedback system in

Figure 1 is well-posed and internally stable [24]. A nonpatho-

logical sampling frequency is assumed, which is formalized

in the following assumption [25].

Assumption 5 Let (A,B,C, D) be a minimal state space

realization of P . Then, it is assumed that A does not have

two eigenvalues λp(A) = σp + jωp and λq(A) = σq + jωq,

p 6= q that satisfy

{λp, λq|σp = σq and ωp = ωq + r2πf l, r ∈ Z\{0}}. (15)

Assumption 5 ensures sampling preserves observability and

controllability. Hence, there cannot be any unstable modes

in the intersample behavior.

Next, linearity and time-variance of the multirate system

are investigated. The following proposition reveals that sam-

pling and hold operators are linear.

Proposition 6 The operators Sq, Hq, Sd, and Hu, in (3),

(4), (9), and (10), respectively, are linear.

The proof of Proposition 6 follows directly from the defini-

tion of linearity [24].

To analyze time-variance, the notion of periodically time-

varying operators is useful.

Definition 7 [1], [20] An operator G is periodically time-

varying with period h if it commutes with the delay operator

Dh, i.e., DhG = GDh, where h ∈ t.

If Definition 7 does not apply, then the system is considered

time-varying. Recall that time-invariance is a special case of

periodical time variance.

Definition 8 An operator G is time-invariant if it commutes

with Dh for all h ∈ t.

The following results reveal that linearity is preserved in

multirate systems, yet time-invariance may be lost, i.e., mul-

tirate systems can become linear periodically time-varying

(LPTV).

Proposition 9 Consider the sampler Sq and zero-order-hold

Hq. Then,

(a) SqHq is an LTI operator

(b) HqSq is an LPTV operator with period hq.

Proof: (a): (3) and (4) yield SqHq = I that is LTI. (b):

follows from (3) and (4) and evaluating the delay operator

Dτ for different values of τ .

The following results are required for the manipulation of

multirate systems in the next sections.

Proposition 10 Consider the setup in Figure 2 and let

(A,B, C, D) be defined as in Assumption 5. Then, the

following properties hold:

(a) Sl = SdS
h

(b) Hl = HhHu

(c) P d,h = ShPHh has state-space realization

(Ah, Bh, C, D)
(d) P d,l = SlPHl = SdP d,hHu has state-space realization

(Al, Bl, C, D)
(e) P d,h and P d,l are LTI and minimal,

where Ah = eAhh

, Bh =
∫ hh

0
eAτdτB, and Al and Bl

follow from

[

Al Bl

⋆ ⋆

]

=

[

Ah Bh

0 I

]F

, where ⋆ is not used

in further computations.

Proof: (a), (b): follows from (3), (9) and (4), (10),

respectively. (c): follows by integrating differential equations.

(d): follows by successive substitution in the difference

equations. (e): LTI follows similarly as in Proposition 9,

minimality follows if Assumption 5 is included in (c) and

(d).

The novelty of Proposition 10 is that the sampling fre-

quency of P d,h can be reduced to obtain P d,l, which will

be exploited in Section IV.
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Propositions 9 and 10 (e) also have important implications

in the analysis of multirate and sampled-data systems. To

illustrate this, consider an operator that consists of a series

connection of LTI operators and samplers and holds. If the

input, the output, or both the input and output are signals

operating at a higher sampling frequency than any of the

linear operators in between, then the resulting system is

LPTV. This implies that standard transfer functions do not

apply [24] and sinusoids are no longer eigenfunctions of such

operators. In contrast, if the input and output are both signals

at the lowest sampling frequency f l compared to any of the

linear operators in between, then the resulting operator is LTI

and operates at a sampling frequency f l. The LTI nature of

these systems is essential in standard discrete time operations

on signals and systems based on LTI assumptions.

C. Multirate expressions for ILC

ILC algoritms require a model that represents the operator

between the reference r, command input wl, and sampled

versions of e. Depending on the approach, either discrete

time ILC or multirate ILC, the sampling frequency of e is f l

or fh, respectively. In this section, these operators are derived

and analyzed using the results in Section III-B. Specifically,

the operators wl 7→ el and wl 7→ eh are required for the

discrete time ILC and multirate ILC problems, respectively.

Proposition 11 Consider the closed-loop system of Figure 2.

Then, the operators mapping wl and r to el and eh are given

by

el = (I − P d,l(I + Cd,lP d,l)−1Cd,l)Slr − JDTwl (16)

JDT = P d,l(I + Cd,lP d,l)−1 (17)

eh = (I − P d,hHu(I + Cd,lP d,l)−1Cd,lSd)S
hr

− JMRwl
(18)

JMR = P d,hHu(I + Cd,lP d,l)−1. (19)

In addition, the mapping −JDT : wl 7→ el is LTI, whereas

the mapping −JMR : wl 7→ eh is time-varying.

Proof: Equations (16) and (18) result from the inter-

connection structure in Figure 2 and Proposition 10. The fact

that wl 7→ el is LTI follows from Proposition 10 (f). Time-

variance of wl 7→ eh follows from Definitions 7 and 8.

Time-variance of wl 7→ eh is best interpreted by the fact that

the delay operator applied to wl corresponds to time steps

hl, whereas the delay operator applied to eh corresponds to

time steps hh. Additionally, if a fictitious signal satisfying

wl = Sdw
h is introduced, then the mapping wh 7→ eh is

LPTV, see Proposition 9 (b).

The main consequence of Proposition 11 is that discrete

time ILC can resort to standard LTI design techniques.

The mapping wl 7→ eh, as required in multirate ILC, is

time-varying, hence transfer functions in the usual sense

do not apply and standard LTI design techniques cannot

be employed. In the next section, a general framework for

multirate ILC is proposed that deals with the time-varying

nature of the mapping wl 7→ eh and provides a solution to

the multirate ILC problem in Definition 4.

IV. MULTIRATE ILC

In this section, the solution to the multirate ILC problem

is presented. In Section IV-A, appropriate finite time sys-

tem descriptions of the required time-varying operators are

presented. Then, in Section IV-B, the norm-optimal ILC con-

troller is presented. Finally, design aspects and convergence

results are discussed in Section IV-C.

A. Finite time system descriptions

Consider the system P d,l with Markov parameters ml
ti

,

operating over a finite time interval ti ∈ [0, N l − 1] ⊆ t,
where the state of the system is reset to zero after each

trial. Then, the input-output behavior is represented by its

convolution matrix [26], [27]:

yl = P d,lul, P d,l =







ml
0 0

...
. . .

ml
N l

−1
· · · ml

0






. (20)

For causal SISO LTI systems, P d,l ∈ R
N l

×N l

is a square

lower triangular Toeplitz matrix that maps input vector ul ∈
R

N l

to output vector yl ∈ R
N l

. The signals ul and yl are

obtained by stacking the corresponding time signals for time

interval ti ∈ [0, N l − 1] in vectors.

Similar to P d,l, the finite time representation of P d,h with

Markov parameters mh
ti

for ti ∈ [0, F (N l −1)] ⊆ t, is given

by P d,h. In this case, system P d,h ∈ R
FN l

×FN l

maps input

uh ∈ R
FN l

to output yh ∈ R
FN l

.

Next to finite time LTI system descriptions, the presented

framework can be used to formulate finite time expressions

for the downsampler Sd and multirate zero-order-hold Hu

using block Toeplitz matrices, i.e.,

Sd = IF ⊗
[

1 0F−1

]

, Sd ∈ R
N l

×FN l

(21)

Hu = IF ⊗ 1F , Hu ∈ R
FN l

×N l

, (22)

respectively, where 1F :=
[

1 · · · 1
]T

∈ R
F , IF ∈ R

F×F

denotes the identity matrix, and ⊗ denotes the Kronecker

product [24]. With P d,l equal to SdP
hHu, in general ml

ti
6=

mh
Fti

. In addition, Sd and Hu are non-square block Toeplitz

matrices that correspond to sample rate conversions, and

hence to time-varying behavior.

B. Norm-optimal multirate ILC

To determine the ILC controllers, the finite time mapping

between the command signal and error in Proposition 11 is

required, see also [17].

Proposition 12 Consider the interconnection structure in

Figure 2. Then, the finite time mappings −JDT : wl 7→ el

and −JMR : wl 7→ eh, corresponding to (17) and (19),

respectively, are given by

JDT = P d,l(IN l + Cd,lP d,l)−1 ∈ R
N l

×N l

(23)

JMR = P d,hHu(IN l + Cd,lP d,l)−1 ∈ R
FN l

×N l

. (24)

In addition, JDT = SdJMR.
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With the relevant systems and signals for ILC defined, the

norm-optimal ILC controller can be designed. In general,

the objective in ILC control design is to minimize the error

during trial k + 1, k ∈ Z+ in an appropriate norm by

determining a suitable command signal. In norm-optimal

ILC, additional criteria are included in the objective to bound

the command amplitude and the change in amplitude of the

command signal from trial k to trial k + 1. Specifically, the

criterion for determining the command input wl in trial k+1
is given by

J <k+1> = eqT
<k+1>W ee

q
<k+1> + wlT

<k+1>Wwwl
<k+1>

+ (wl
<k+1> − wl

<k>)T W∆w(wl
<k+1> − wl

<k>),
(25)

where q = l for discrete time ILC and q = h in multirate

ILC. In addition, W e, Ww, and W∆w are weighting matrices

of appropriate sizes.

The resulting optimal multirate ILC controller is the

main result of this section and is given by the following

proposition.

Proposition 13 Given a multirate system −JMR : wl 7→ eh

and criterion (25). Then, the norm-optimal multirate ILC

controller
(

Q
MR

, LMR

)

is given by

wl
<k+1> = Q

MR
wl

<k> + LMReq
<k> (26)

Q
MR

= (JT
MRW eJMR + Ww + W∆w)−1

· (JT
MRW eJMR + W∆w)

(27)

LMR = (JT
MRW eJMR + Ww + W∆w)−1JT

MRW e.
(28)

The solution of the norm-optimal multirate ILC prob-

lem seems to be novel. Specifically, the multirate solution

involves non-square matrices, enabling the multirate ILC

controller to map fastly sampled error signals, i.e., eh,

into slowly sampled command signals, i.e., wl. In contrast,

the discrete time ILC problem results in square matrices,

requiring an identical sampling frequency of the error signal,

i.e., el, and the command signal wl. In fact, the discrete

time result can directly be recovered using Proposition 12,

since the discrete time problem is a special case of the ILC

problem for F = 1. The proof of Proposition 13 follows

along similar lines as the discrete time norm-optimal ILC

problem, see [28], [27], [6].

C. Design aspects

To apply the multirate ILC approach in the previous

sections, a model of the system JMR is required. Given

P d,h and Cd,l, JMR can be computed using the results of

Proposition 10 and Proposition 12.

In (25), the weighting matrices W e, Ww, and W∆w are

used to emphasize the relative importance of the different

criteria. Requiring that all matrices are positive definite is

a sufficient condition for a well-posed optimization problem

and guaranteed monotonic convergence in wl [28], i.e.,

‖wl
<k+1> − wl

<∞>‖2 < ‖wl
<k> − wl

<∞>‖2, (29)

where k ∈ Z+ and wl
<∞> = limk→∞ wl

<k>. Often, the

weighting filters are selected as

W e = reI, Ww = rwI, W∆w = r∆wI, (30)

where re, rw, r∆w ∈ R+. In case of (30), r∆w affects the

convergence speed, yet not the converged error for k → ∞.

Selecting a large r∆w is useful to attenuate the influence

of trial-varying exogenous signals, including measurement

noise. The parameters re and rw can be used to weigh the

tracking error and the control effort. A large re relative to rw

results in a small tracking error, whereas a large rw results

in a smaller control effort and improved robustness against

model uncertainty [29].

Finally, it is noted that the discrete time criterion JDT

and multirate criterion JMR cannot be compared directly,

since el and eh are defined in different function spaces.

Hence, suitable modifications should be made for comparing

JDT and JMR. Specifically, by considering Huel, the norm-

optimal discrete time ILC problem in Definition 2 can be cast

in the criterion in Definition 4. In this case, the weighting

matrix We in (30), corresponding to the criterion JDT,

should be scaled appropriately by re

F
.

V. EXAMPLE

In this section, the ILC approach of the previous sections

is applied to a simulation model of a motion system.

A. Setup

The considered system is a positioning system, which is

represented by the differential equation

mẍ = ku, y =
[

x ẋ
]T

, (31)

where the mass m and motor constant k are normalized,

i.e., k = m = 1. In addition, for the sake of the example, it

is assumed that both the position and velocity are measured.

The system (31) is unstable, hence a stabilizing discrete time

feedback controller Cd,l, which is a lead-lag controller that

again for the sake of the example only uses the position

measurement, is implemented with a sampling time hl =
0.01 s, i.e., f l = 1

hl = 100 Hz. Specifically,

P =

[

P11

P21

]

=

[

1

s2

1

s

]

, Cd,l =
[

126z−123.6
z−0.8282

0
]

. (32)

The sampling time of the feedback controller is restricted,

since at each sample instant a new control input has to be

computed. However, it is possible to record measurement

data with a sampling time of hh = 0.0025 s, hence F = 4
and the sampling frequency fh = 1

hh = 400 Hz . The

measurement data recorded with a sampling time hh is

available for the ILC algorithm. The ILC setup and feedback

interconnection are depicted in Figure 2, where

e =

[

e1

e2

]

=

[

r − x
ṙ − ẋ

]

. (33)

In the sequel, only scalar ILC is considered, i.e., sampled

measurements of either e1 or e2 are used as input for

the ILC algorithm. In all cases, the considered exogenous

variables are trial invariant, except for the command signal
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TABLE I

EXAMPLE 1: RESULTING CRITERION VALUE.

JDT(wl, el) JMR(wl, eh)
Initial k = 0 52.0 52.0
Discrete time ILC k = 10 0 10.3
Multirate ILC k = 10 0.7 0.3

wl. Throughout this section, r∆wl = 10−12. In addition, the

parameter re = 1 in JMR and re = 4 in JDT, see Section IV-

C. To compare the presented multirate ILC approach with

standard discrete time ILC, both multirate and discrete time

ILC are applied, which is indicated by the subscripts DT
and MR, respectively. For instance, the resulting error at

sampling frequency f l after 10 iterations of the discrete time

ILC algorithm is denoted by el
DT<10>.

B. Example 1

In this example, the position error e1 is used in both the

discrete time and multirate ILC algorithms, where rwl = 0
in (30). In the first trial, i.e., k = 0, the command input

wl
<0> = 0. The corresponding errors el

1,<0> and eh
1,<0>,

measured at sampling frequencies f l and fh, respectively,

are depicted in Figure 3 (a).

Firstly, the discrete time ILC algorithm is applied. The

error after 10 iterations is depicted in Figure 3 (b), both at

sampling frequencies f l and fh. The error eh
DT<k> is not

used by the discrete time ILC algorithm, only for analysis of

the results. The ILC algorithm achieves zero tracking error

el
DT<10> after 10 iterations. However, this zero tracking

error is at the expense of a poor intersample behavior. These

results are confirmed by evaluating the criteria JDT and

JMR, see Table I. The poor intersample behavior cannot

be observed from el and JDT, hence such criteria are

not suitable for analyzing the performance of sampled-data

systems.

Secondly, the multirate ILC algorithm is applied, with

eh
MR<k> the input to the algorithm. Though the multirate ILC

algorithm results after 10 iterations in a larger error at the

sampling frequency f l, the multirate ILC algorithm results

in improved intersample behavior compared to discrete time

ILC, see Figure 3 (c) and Table I.

The poor intersample behavior in the discrete time ILC

case can be attributed to the cancellation of a sampling

zero [8]. Discretization of the system in (32) yields

P d,l
11 = hl

2
(z + 1)/(z − 1)2, (34)

where a sampling zero at z = 1 appears due to the relative

degree 2 of the system P11. The discrete time ILC algorithm

in fact cancels this sampling zero, resulting in the poor

intersample behavior. The location of the sampling zero

in (34) is invariant under a changing sampling frequency,

hence modifying the sampling frequency in the discrete time

approach does not change the results.

C. Example 2

In Section V-B, it is concluded that neglecting sampling

zeros in discrete time ILC can result in poor intersample

behavior. By analyzing Figure 3, it can be concluded that the
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Fig. 3. Example 1: Comparison of position errors e1 at sampling frequency
fh (dots) and f l (circles), r

wl = 0, (a): initial, (b): after 10 trials discrete
time ILC, (c): after 10 trials multirate ILC.
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Fig. 4. Example 2: Comparison of position errors e1 at sampling frequency
fh (dots) and f l (circles), r

wl = 10−11: after 10 trials discrete time ILC.

intersample oscillation requires a nonzero command signal

wl. Hence, an ad hoc solution to resolve the intersample

behavior issue in discrete time ILC in case of sampled zeros

is to include input weighting in criterion (25). In Figure 4 the

results are depicted for rwl = 10−11. Compared to Example

1 in Section V-B, inclusion of input weighting in ILC

results in a significantly lower error at the higher sampling

frequency fh at the expense of a slightly larger error at

the low sampling frequency f l, and hence better intersample

behavior. Still, the multirate ILC algorithm outperforms the

discrete time algorithm if the error is considered at sampling

frequency fh, see Table I.

D. Example 3

In Section V-B and V-C, it was shown that standard

ILC may result in cancellation of sampling zeros, which

in turn result in poor intersample behavior. In this section,

it is shown that the poor intersample behavior can also

be resolved by reducing the relative degree of the system

such that sampling zeros do not appear. To achieve this, the

velocity error e2, see (33), is considered in the ILC approach.

The initial error e2 at trial k = 0 is depicted in Figure 5

(a). The resulting errors after 10 trials of discrete time and

multirate ILC with rwl = 0 are depicted in Figure 5 (b)

and Figure 5 (c), respectively. The corresponding criteria

JDT and JMR are presented in Table II. Clearly, the discrete

time ILC algorithm results in zero tracking error at sampling

frequency f l, whereas the intersample behavior remains

acceptable. From the results in Table II, it is concluded

that the multirate ILC approach results in a better balanced

tradeoff between the error at sampling frequency f l and

intersample behavior, evaluated at a sampling frequency fh.
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Fig. 5. Example 3: Comparison of errors at sampling frequency fh (dots)
and fs (circles), r

wl = 0, (a): initial error, (b): error after 10 trials discrete
time ILC, (c): error after 10 trials multirate ILC.

TABLE II

EXAMPLE 1.3: RESULTING CRITERION VALUE.

JDT(wl, el) JMR(wl, eh)
Initial k = 0 4.0 1.0
Discrete time ILC k = 10 0 1.8
Multirate ILC k = 10 1.5 0.6

VI. CONCLUSIONS

A novel ILC framework for sampled-data systems aim-

ing at high continuous time performance is presented. The

presented approach extends common, discrete time ILC

approaches by explicitly addressing the intersample behavior

in the learning algorithm. A multirate approach is pur-

sued to enable actual implementation in a digital computer

environment. In the limiting case, the multirate problem

converges to the sampled-data problem. In practice, a small

sampling frequency ratio F is sufficient to approximate the

sampled-data ILC problem due to the low-pass characteristic

of the zero-order-hold interpolator. In addition, key issues

in sampled-data and multirate control, including the time-

varying nature of the multirate ILC setup, have been dealt

with appropriately in the norm-optimal ILC framework.

In a realistic simulation example, it is shown that the

proposed multirate ILC approach outperforms discrete time

ILC. Specifically, discrete time ILC results in poor inter-

sample behavior in case of sampling zeros. Multirate ILC

deals with both these phenomena appropriately by balancing

the error at the low sampling frequency and the intersample

behavior. The presented approach also handles the case of

aliased disturbances [2] and aliased poles [10].

Extensions of the framework include a noninteger sam-

pling frequency ratio F , however, in this case Proposition 10

and the block Toeplitz results in Section IV do not apply

directly.
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