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Abstract— We introduce a new concept of strong controlla-
bility for ARX models in adaptive tracking. This new notion is
related to the Schur complement of a suitable limiting matrix. It
allows us to extend the previous convergence results associated
with both least squares and weighted least squares algorithms.
In particular, we show the almost sure convergence as well as
the central limit theorem for this two algorithms.

I. INTRODUCTION

Consider the d-dimensional autoregressive process with

adaptive control of order (p, q), ARXd(p, q) for short, given

for all n ≥ 0 by

A(R)Xn+1 = B(R)Un + εn+1 (1)

where R stands for the shift-back operator and Xn, Un and

εn are the system output, input and driven noise, respectively.

The polynomials A and B are given for all z ∈ C by

A(z) = Id − A1z − · · · − Apz
p,

B(z) = Id + B1z + · · · + Bqz
q,

where Ai and Bj are unknown square matrices of order d and

Id is the identity matrix. Denote by θ the unknown parameter

of the model

θt = (A1, . . . , Ap, B1, . . . , Bq).

One can obviously see that (1) can be rewritten as

Xn+1 = θtΦn + Un + εn+1 (2)

where the regression vector Φn =
(
Xp

n, U
q
n−1

)t
with

Xp
n = (Xt

n, . . . ,Xt
n−p+1),

Uq
n = (U t

n, . . . , U t
n−q+1).

We shall often make use of the regression matrix

Sn =
n∑

k=0

ΦkΦt
k.

We assume that the driven noise (εn) is a martingale differ-

ence sequence adapted to the filtration F = (Fn) associated

with ARXd(p, q) process given by (1). In addition, we also

assume that, for all n ≥ 0, E[εn+1ε
t
n+1|Fn] = Γ a.s. where

Γ is a positive definite covariance matrix.
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A wide literature is available concerning the estimation of

θ and on the optimality of the tracking control, see e.g. [1],

[3], [4], [7], [8], [10], [12], [15], [16]. In the particular case

q = 0, it was shown in [4] that

lim
n→∞

Sn

n
= L a.s.

where L is the block diagonal matrix of order dp given by

L = diag (Γ, · · · ,Γ) .

Our purpose is to extend the previous results in [4], [5], [10],

[11], [14] via the introduction of a new concept of strong

controllability. Under the classical causality assumption on

the polynomial B, this new notion allows us to prove that

lim
n→∞

Sn

n
= Λ a.s. (3)

where Λ is the symmetric square matrix of order δ = d(p+q)

Λ =

(
L Kt

K H

)
.

Moreover, the matrices H and K are explicitly calculated.

It is well-known [13] that det(Λ) = det(L) det(S) where

the symmetric matrix S = H − KL−1Kt is the Schur

complement of L in Λ. Moreover, as L is positive definite,

Λ is positive definite if and only if S is positive definite. We

shall propose a suitable assumption under which S is positive

definite. This assumption is really easy to understand and it

can’t be avoided. Then, we shall carry out a sharp analysis

of the almost sure convergence for both least squares (LS)

and weighted least squares (WLS) estimators of the unknown

parameter θ. We also provide a central limit theorem and a

law of iterated logarithm for these two estimators.

II. STRONG CONTROLLABILITY

In all the sequel, we shall make use of the well-known

causality assumption on B.

Definition 1: We shall say that the matrix polynomial B

is causal if for all z ∈ C with |z| ≤ 1

(A1) det(B(z)) 6= 0.

In other words, the polynomial det(B(z)) only has zeros

with modulus > 1. Consequently, if r > 1 is strictly less

than the smallest modulus of the zeros of det(B(z)), then

B(z) is invertible in the ball with center zero and radius r

and B−1(z) is a holomorphic function. For all z ∈ C such

that |z| ≤ r, we shall denote

P (z) = B−1(z)(A(z) − Id) =
∞∑

k=1

Pkzk. (4)
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All the matrices Pk may be explicitly calculated as functions

of the matrices Ai and Bj . For example, we always have

P1 = −A1. In addition, one can see that if p = q = 1 then

for all k ≥ 2, Pk = −(−B1)
k−1A1 while if p = 2, q = 1,

Pk = (−B1)
k−2(B1A1 − A2).

Moreover, if p = 1, q = 2 then P2 = B1A1 and P3 =
(B2 − B2

1)A1 while if p = 2, q = 2, P2 = B1A1 − A2 and

P3 = (B2−B2
1)A1 +B1A2. We shall often make use of the

square matrix of order dq given, if p ≥ q, by

Π =





Pp Pp+1 · · · Pp+q−2 Pp+q−1

Pp−1 Pp Pp+1 · · · Pp+q−2

· · · · · · · · · · · · · · ·
Pp−q+2 · · · Pp−1 Pp Pp+1

Pp−q+1 Pp−q+2 · · · Pp−1 Pp





while, if p ≤ q, by

Π =





Pp Pp+1 · · · · · · Pp+q−2 Pp+q−1

· · · · · · · · · · · · · · · · · ·
P1 P2 · · · · · · Pq−1 Pq

0 P1 P2 · · · Pq−2 Pq−1

· · · · · · · · · · · · · · · · · ·
0 · · · 0 P1 · · · Pp




.

Definition 2: An ARXd(p, q) process is said to be

strongly controllable if B is causal and Π is invertible,

(A2) det(Π) 6= 0.

Remark 1: The concept of strong controllability is not

really restrictive. For example, if p = q = 1, assumption

(A2) reduces to det(A1) 6= 0, if p = 2, q = 1 to

det(A2 − B1A1) 6= 0, if p = 1, q = 2 to det(A1) 6= 0,

while if p = q = 2 to

det

(
A1 A2 − B1A1

A2 − B1A1 −B1A2 + (B2
1 − B2)A1

)
6= 0.

For 1 ≤ i ≤ q, let Hi be the square matrix of order d

Hi =
∞∑

k=i

PkΓP t
k−i+1.

Let H be the symmetric square matrix of order dq

H =





H1 H2 · · · Hq−1 Hq

Ht
2 H1 H2 · · · Hq−1

· · · · · · · · · · · · · · ·
Ht

q−1 · · · Ht
2 H1 H2

Ht
q Ht

q−1 · · · Ht
2 H1




. (5)

For all 1 ≤ i ≤ p, let Ki = PiΓ and denote by K the

rectangular matrix of dimension dq × dp given, if p ≥ q, by

K =





0 K1 K2 · · · · · · Kp−2 Kp−1

0 0 K1 · · · · · · Kp−3 Kp−2

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 K1 K2 · · · Kp−q+1

0 · · · · · · 0 K1 · · · Kp−q





while, if p ≤ q, by

K =





0 K1 · · · Kp−2 Kp−1

0 0 K1 · · · Kp−2

· · · · · · · · · · · · · · ·
0 · · · 0 0 K1

0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0





.

Finally, let L be the block diagonal matrix of order dp

L =





Γ 0 · · · 0 0
0 Γ 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 Γ 0
0 0 · · · 0 Γ




(6)

and denote by Λ the symmetric square matrix of order δ

Λ =

(
L Kt

K H

)
. (7)

Lemma 1: Let S be the Schur complement of L in Λ

S = H − KL−1Kt. (8)

If (A1) and (A2) hold, S and Λ are invertible and Λ−1 is

given by

Λ−1 =

(
L−1 + L−1KtS−1KL−1 −L−1KtS−1

−S−1KL−1 S−1

)
.

III. ESTIMATION AND ADAPTIVE CONTROL

First of all, we focus our attention on the estimation of

the parameter θ. We shall make use of the WLS estimator

of Bercu and Duflo [2], [3], [9] given, for all n ≥ 0, by

θ̂n+1 = θ̂n + anS−1
n (a)Φn

(
Xn+1 − Un − θ̂ t

nΦn

)
t (9)

where the initial value θ̂0 may be arbitrarily chosen and

Sn(a) =
n∑

k=0

akΦkΦt
k + Iδ

where the identity matrix Iδ is added in order to avoid

useless invertibility assumption. The choice of the weighted

sequence (an) is crucial. If

an = 1

we find again the standard LS estimator, while if γ>0,

an =
( 1

log sn

)1+γ

with sn =
n∑

k=0

‖ Φk ‖2,

we obtain the WLS estimator of Bercu and Duflo [2], [3].

Next, we are concern with the choice of the adaptive control

Un. The crucial role played by Un is to regulate the dynamic

of the process (Xn) by forcing Xn to track step by step

a predictable reference trajectory xn. We shall make use

of the adaptive tracking control proposed by Aström and

Wittenmark [1] given, for all n ≥ 0, by

Un = xn+1 − θ̂ t
nΦn. (10)
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By substituting (10) into (2), we obtain the closed-loop

system

Xn+1 − xn+1 = πn + εn+1 (11)

where the prediction error πn = (θ − θ̂n) tΦn. In all the

sequel, we assume that the reference trajectory (xn) satisfies

n∑

k=1

‖ xk ‖2= o(n) a.s. (12)

In addition, we also assume that the driven noise (εn)
satisfies the strong law of large numbers i.e. if

Γn =
1

n

n∑

k=1

εkεt
k,

then Γn converges a.s. to Γ. That is the case if, for example,

(εn) is a white noise or if (εn) has a finite conditional

moment of order > 2. Finally, let (Cn) be the average cost

matrix sequence defined by

Cn =
1

n

n∑

k=1

(Xk − xk)(Xk − xk)t.

The tracking is said to be optimal if Cn converges a.s. to Γ.

IV. MAIN RESULTS

We shall now present the results recently obtained by

Bercu and Vazquez in [6]. The first one deals with the almost

sure properties of the LS estimator.

Theorem 1: Assume that the ARXd(p, q) process is

strongly controllable and that (εn) has finite conditional

moment of order > 2. Then, we have

lim
n→∞

Sn

n
= Λ a.s. (13)

where the limiting matrix Λ is given by (7). In addition, the

tracking is optimal

‖ Cn − Γn ‖= O
(

log n

n

)
a.s. (14)

We can sharpen (14) by

lim
n→∞

1

log n

n∑

k=1

(Xk − xk − εk)(Xk − xk − εk)t = δΓ a.s.

Finally, the LS estimator θ̂n converges almost surely to θ

‖ θ̂n − θ ‖2= O
(

log n

n

)
a.s. (15)

The second result is related to the almost sure properties

of the WLS estimator.

Theorem 2: Assume that the ARXd(p, q) process is

strongly controllable. In addition, suppose that either (εn)
is a white noise or (εn) has finite conditional moment of

order > 2. Then, we have

lim
n→∞

(log n)1+γ Sn(a)

n
= Λ a.s. (16)

where the limiting matrix Λ is given by (7). In addition, the

tracking is optimal

‖ Cn − Γn ‖= o

(
(log n)1+γ

n

)
a.s. (17)

Finally, the WLS estimator θ̂n converges almost surely to θ

‖ θ̂n − θ ‖2= O
(

(log n)1+γ

n

)
a.s. (18)

Remark 2: If the matrix polynomial B is causal but the

ARXd(p, q) process is not strongly controllable, we only

obtain for both LS and WLS estimators that

lim
n→∞

Λ(θ̂n − θ) = 0 a.s.

Theorem 3: Assume that the ARXd(p, q) process is

strongly controllable and that (εn) has finite conditional

moment of order α > 2. In addition, suppose that (xn) has

the same regularity in norm as (εn) which means that for all

2 < β < α
n∑

k=1

‖ xk ‖β= O(n) a.s.

Then, the LS and WLS estimators share the same central

limit theorem

√
n(θ̂n − θ)

L−→ N (0,Λ−1 ⊗ Γ) (19)

where the symbol ⊗ stands for the matrix Kronecker product.

In addition, for any vectors u ∈ R
d and v ∈ R

δ , they also

share the same law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2

vt(θ̂n − θ)u

= − lim inf
n→∞

(
n

2 log log n

)1/2

vt(θ̂n − θ)u

=
(
vtΛ−1v

)1/2(
utΓu

)1/2

a.s. (20)

In particular, it implies that
(

λminΓ

λmaxΛ

)
≤ lim sup

n→∞

(
n

2 log log n

)
‖ θ̂n − θ ‖2 a.s.

lim sup
n→∞

(
n

2 log log n

)
‖ θ̂n − θ ‖2≤

(
λmaxΓ

λminΛ

)
a.s.

where λminΓ and λmaxΓ are respectively the minimum and

the maximum eigenvalues of Γ.

V. SIMULATIONS

The goal of this section is illustrate our asymptotic results

by simulations. We shall also show that our new concept of

strong controllability can’t be avoided. In order to keep this

section brief, we shall only focus our attention on a strongly

controllable ARXd(p, q) model in dimension d = 2 with

p = 1 and q = 1. Our numerical simulations are based on

M = 500 realizations of sample size N = 1000. For the

sake of simplicity, the reference trajectory (xn) is chosen

to be identically zero and (εn) is a Gaussian white noise

N (0, 1). Consider the ARX2(1, 1) model

Xn+1 = AXn + Un + BUn−1 + εn+1
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where

A =

(
2 0
0 1

)
and B =

1

4

(
3 0
0 −2

)
.

First of all, it is easy to see that this ARX2(1, 1) process is

strongly controllable because det(A) = 2. For all k ≥ 1, we

clearly have Pk = −(−B)k−1A. Since the matrices A and

B are diagonal, they commute which leads to

H =
∞∑

k=1

Bk−1A2Bk−1,

= A2

∞∑

k=0

B2k = A2(I2 − B2)−1.

Consequently,

H =
4

21

(
48 0
0 7

)
.

Therefore, the limiting matrix Λ given by (7) is

Λ =
1

21





21 0 0 0
0 21 0 0
0 0 192 0
0 0 0 28



 .

Figure 1 shows the almost sure convergence of the LS

estimator θ̂n to the four coordinates of θ which are different

from zero. One can observe that θ̂n performs very well in

the estimation of θ.
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Almost sure convergence for B

Fig. 1. Almost Sure Convergence

Figure 2 shows the central limit theorem for the four coor-

dinates of

ZN =
√

NΛ1/2(θ̂N − θ).

One can realize that each component of ZN has N (0, 1)
distribution as expected.
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Fig. 2. Central Limit Theorem

Our goal is now to show that our strong controllability

assumption can’t be avoided. Consider the same ARX2(1, 1)
model with

A =

(
2 0
0 0

)
and B =

1

4

(
3 0
0 −2

)
.

We have only change the second diagonal term of the matrix

A. As det(A) = 0, this ARX2(1, 1) process is not strongly
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controllable. In addition,

H = A2(I2 − B2)−1 =
64

7

(
1 0
0 0

)

which leads to

Λ =
1

21





21 0 0 0
0 21 0 0
0 0 192 0
0 0 0 0



 .

Consequently, only the matrix A and the first diagonal term

of the matrix B are properly estimated as one can see in

Figures 3 and 4.
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Fig. 3. Almost Sure Convergence

VI. CONCLUSION

Via our new concept of strong controllability, we have

extended the analysis of the almost sure convergence for

both LS and WLS estimators of the unknown parameter

of ARXd(p, q) models. It enables us to provide a positive

answer to a conjecture in [4] by establishing a CLT and a

LIL for these two estimators. In our approach, the leading

matrix associated with the matrix polynomial B, commonly

called the high frequency gain, was supposed to be known

and it was chosen as the identity matrix Id. It is well-

known that it is really difficult to investigate the almost

sure asymptotic properties for both ELS and WLS estimators

in the ARMAX framework [3], [10]. It would be a great

challenge for the control community to carry out similar

analysis with unknown high frequency gain and to extend

it to ARMAX models.
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Fig. 4. Central Limit Theorem
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