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Abstract— This paper is concerned with the concept of semi-
invariant and its use for the stability analysis of the origin
for nonlinear systems of order two. Well known tools from
differential geometry such as (orbital) symmetries render the
proposed results quite interesting from a computational point
of view. The proper connections with center manifold theory
are pointed out.

I. INTRODUCTION

The goal of this paper is to propose a technique for

the construction in closed-form of Lyapunov functions for

stability analysis; time-invariant nonlinear systems of order

two (planar systems) are considered. The proposed Lyapunov

functions are based on some special functions, the semi-

invariants, that generalize to nonlinear systems the concept of

left-eigenvector for (the dynamic matrix of) linear systems.

The semi-invariants are well known in nonlinear dynamics

(see, e.g., [1], [2]) and are referred to with various names,

e.g., second integrals or Darboux polynomials. In this pa-

per, the very strong connection between semi-invariants and

(orbital) symmetries is exploited to derive computationally

attractive techniques for the stability analysis of nonlinear

systems.

Symmetries are another well-known concept from differ-

ential geometry; the concept of (orbital) symmetry of a dif-

ferential equation was introduced by S. Lie [3] in the second

half of the 19-th century, as an attempt of generalizing the

theory of Galois, and it was primarily used for the solution

in closed-form of differential equations. In [4], S. Lie proved

that a planar system, described by a pair of first-order time-

invariant differential equations, (or, equivalently, one time-

varying differential equation) admits an inverse integrating

factor, whence by quadrature a (non-trivial) first integral, if

and only if it admits a (non-trivial) orbital symmetry. Modern

reference on the subject can be found, e.g., in [5]-[9].

II. NOTATIONS AND BACKGROUND

Consider two vector functions f(x), g(x) ∈ R
2 and the

corresponding planar systems described by the ordinary

differential equations (from now on, the dependencies on

times t, τ ∈ R are omitted, if not necessary):

dx

dt
= f(x), x ∈ Uf ⊆ R

2, (1)

dx

dτ
= g(x), x ∈ Ug ⊆ R

2, (2)
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where Uf and Ug are open and connected subsets of R
2;

assume that 0 ∈ Uf , f(0) = 0 and that Uf ∩ Ug 6= ∅. For

the sake of simplicity, in the remainder of the paper, with U
we will denote Uf or Uf ∩ Ug if both systems (1) and (2)

are to be jointly considered; moreover, we will assume that

all the functions are analytic in some open and connected

subset of R
2, not necessarily containing the origin of R

2,

unless otherwise specified. This implies that systems (1) and

(2) have unique maximal solutions x(t) = Φf (t, x0) and

x(τ) = Φg(τ, x0), respectively, which are defined in an open

and connected subset V ⊆ R × R
2, including {0} × U . Let

A := ∂f
∂x

∣

∣

∣

x=0
; then, Ax is called the linear part of f ; f is

said to have zero linear part if A = 0.

The Lie derivative of a scalar function h by f is Lfh :=
∂h
∂x
f ; the Lie bracket [f, g] of f by g is [f, g]:= ∂g

∂x
f− ∂f

∂x
g. A

first integral of system (1) is a scalar function I(x) : U∗ →
R, analytic in U∗, such that LfI = 0,∀x ∈ U∗, with U∗

being an open and connected subset of U ; if I is a constant,

then the first integral is trivial.

The flow y = Φg(τ, x) is a symmetry (respectively,

an orbital symmetry) of system (1) and system (2) is its

infinitesimal generator if [f, g] = 0 (respectively, [f, g] =
µf ),∀x ∈ U∗, with U∗ being an open and connected subset

of U and µ being a scalar function analytic in U∗. With a little

abuse of notation, g is also called a symmetry (respectively,

an orbital symmetry) of f ; g is said to be non-trivial if it is

not colinear with f .

III. PRELIMINARY TECHNICAL RESULTS

We first recall some well known facts about the local

integration of a one-form (see Chapter 1 of [10]).

A one-form in R
2, β =

[

β1 β2

]

, with β1(x), β2(x) ∈

R, is closed if ∂β1

∂x2

= ∂β2

∂x1

; any closed one-form β is locally

exact, i.e., there exists a (not necessarily unique) scalar

function h such that ∂h
∂x

= β, in some open and connected

subset of R
2. A scalar function ω, not identically null, is

an inverse integrating factor of the one-form β, if the one-

form 1
ω

[

β1 β2

]

is closed; in the planar case, an inverse

integrating factor always exists in a neighborhood of any

regular point of the one-form (i.e., around any x0 ∈ R
2 such

that β(x0) 6= 0) (see Theorem 1.15 of [10]). A function

ω, not identically null, is an inverse integrating factor of

system (1) if the one-form 1
ω

[

f2 −f1
]

is closed: in such

a case, there exists a first integral I(x) of system (1) such

that ∂I
∂x1

= f2

ω
, ∂I

∂x2

= − f1

ω
, in some open and connected

subset of R
2.

The following Lemmas 1-2 are classical (see, e.g. [1]).
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Lemma 1: A function ω is an inverse integrating factor of

system (1) if and only if one of the following two equivalent

conditions holds:

div
(

1
ω
f
)

= 0, ∀x ∈ U : ω(x) 6= 0, (3)

div (f) = 1
ω
Lfω, ∀x ∈ U : ω(x) 6= 0. � (4)

Let ω = det
[

f g
]

; if ω is not identically equal to 0
(f and g are not colinear), then, by linear algebra, we have

(see Statement (a) of Proposition 1.1 of [1])

[f, g] =
(

div (g) − 1
ω
Lgω

)

f +
(

−div (f) + 1
ω
Lfω

)

g;

if [f, g] = µf holds, then (since f and g are not colinear)

we have div (f) = 1
ω
Lfω and ω is an inverse integrating

factor of system (1). Such a reasoning allows one to prove

Lemma 2, given by S. Lie in [4] (see also [3]).

Lemma 2: If g is an orbital symmetry of f and ω =
det

[

f g
]

is not identically equal to 0, then ω is an

inverse integrating factor of system (1). If ω is an inverse

integrating factor of system (1), then any g, such that

det
[

f g
]

= ω holds, is an orbital symmetry of f . �

If ω is an inverse integrating factor and I is a first integral

of system (1), then all the orbital symmetries of f are given

by g =
[

g1 g2
]T

, with g1, g2 such that ωG(I) = f1g2 −
f2g1, where G(I) is an arbitrary (not null) function of I; if

f1 is not the null function, then

g =
[

g1
ωG(I)+f2g1

f1

]T

(5)

parameterizes all the (non-trivial) orbital symmetries of f ,

with g1 being an arbitrary function of x (a similar expression

can be obtained if f2 is not the null function).

Since in the planar case an inverse integrating factor ω

always exists, letting I be the first integral of system (1) such

that ∂I
∂x

= 1
ω

[

f2 −f1
]

, then any planar system admits as

orbital symmetries, for instance if f1 is not the null function,

all the g parameterized by (5). In particular, since a first

integral of a planar system always exists in a neighborhood

of any regular point x0, f(x0) 6= 0, then an orbital symmetry

always exists around x0. An orbital symmetry g may be

not defined in a singular point x0, f(x0) = 0, but this has

not consequences for the subsequent developments: the only

requirement is that g is analytic in some open and connected

domain, not necessarily containing the equilibrium points of

f . Nevertheless, the difficulty for the computation in closed-

form of an orbital symmetry is the same as that for the

computation in closed-form of an inverse integrating factor.

In the following, we describe some classes of planar

systems for which an orbital symmetry can be easily found;

note that once an orbital symmetry of f is known in closed-

form, then we know in closed-form an inverse integrating

factor ω, whence we know, by quadrature, a first integral

I; then, for instance by (5), we can parameterize all the

orbital symmetries of f . In addition, note that, for the mere

computation of an orbital symmetry g, a common factor α(x)

between the two entries f1 and f2 of f can be dropped out.

Moreover, if, by a suitable change of coordinates y = T (x),
we bring f(x) into a simpler form f̃(y) and we are able to

compute an orbital symmetry g̃(y) of f̃(y), then we have

found an orbital symmetry g(x) of f(x) by expressing g̃(y)
into the original coordinates x.

S1) Homogeneous systems. Given a vector of integers

r =
[

r1 r2
]T

(r1 and r2 are called weights), an integer

dilation δr
εx is defined as δr

εx :=
[

εr1x1 εr2x2

]T
, for

any scalar real ε 6= 0. A scalar function h(x) : R
2 → R

is homogeneous of degree m ∈ Z, with respect to δr
εx,

if h(δr
εx) = εmh(x), whenever defined. A vector function

f :=
[

f1 f2
]T

: R
2 → R

2 is homogeneous of degree

m ∈ Z, with respect to δr
εx, if fi is homogeneous of degree

ri−m with respect to δr
εx, i = 1, 2 (see Sections 1.1 and 1.2

of [11]; see also [12], [13] and Section 5.3 of [14]), namely

if fi(ε
r1x1, ε

r2x2) = εri−mfi(x1, x2), i = 1, 2. Let g =
[

r1x1 r2x2

]T
; if f is homogeneous of degree m with

respect to δr
εx (with the integer m being possibly negative),

then g is an orbital symmetry of f (a symmetry if m = 0):

in particular, [f, g] = mf (see [15], [16]). If [f, g] = mf for

some g (not necessarily of the form g =
[

r1x1 r2x2

]T
),

with m ∈ Z, then f is said to be homogeneous of degree m

with respect to g [15]. Notice that a linear f is homogeneous

of degree 0 with respect to the standard dilation δr
εx, with

r =
[

1 1
]T

. The inverse integrating factor corresponding

to the pair f, g =
[

r1x1 r2x2

]T
such that [f, g] = mf ,

with m ∈ Z, is ω = det

[

f1 r1x1

f2 r2x2

]

= r2x2f1 − r1x1f2:

notice that, such an ω is homogeneous of degree r1 +r2−m

with respect to δr
εx, with r =

[

r1 r2
]T

. Assume that

all the weights ri are positive. If the scalar function h is

homogeneous of degree m with respect to δr
εx and analytic

at x = 0, then m ≥ 0 (actually, h in this case is polynomial).

If the vector function f is homogeneous of degree m with

respect to δr
εx and analytic at x = 0, then ri − m ≥ 0,

i = 1, ..., n, which implies m ≤ min{r1, ..., rn}. Any vector

function f analytic at x = 0 can be expanded in Taylor

series about x = 0 and all the resulting monomials can be

grouped together according to their degree of homogeneity

with respect to δr
εx so that f =

∑

i≤m∗ f [i], where m∗ ≤

min{r1, ..., rn} and f [i] is homogeneous of degree i with

respect to δr
εx; the term of maximum degree f [m∗] is called

the first approximation with respect to the dilation δr
εx. This

first approximation is useful in the study of the stability of the

origin, because (see the classical references [17], [18] when

m∗ = 0 and the dilation is standard, Chapter III of [17] when

the dilation is standard, [11], [13], [14] and references therein

for the general case) if the origin is asymptotically stable

for system ẋ = f [m∗], then it is also asymptotically stable

for ẋ = f . The techniques proposed in this paper can be

applied to the first approximation (which necessarily admits

the orbital symmetry mentioned above) to find a Lyapunov
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function that can be used for the whole system.

S2) Systems, with a semi-simple linear part, in the

Poincaré-Dulac normal form. A vector function f(x) is in

the Poincaré-Dulac normal form (briefly, PD-normal form)

if f(x) = Ax + h(x), with A being semi-simple and

h(x) having zero linear part and satisfying the condition

[Ax, h(x)] = 0 (see [19]). Since condition [Ax, h(x)] = 0
implies 0 = [Ax,Ax+ h(x)] = − [f(x), Ax], then g = Ax

is a symmetry of f(x) (notice that [Ax, h(x)] = 0 ⇐⇒
h(eAtx) = eAth(x), see equation (5.7) of [20]). Any f with

a semi-simple linear part can be formally transformed into

its normal form through a formal series y = T (x); under

some convergence conditions T (x) is analytic (see [21]). If

we do not require any convergence condition, then by the

Borel Lemma [22], there exists a C∞-transformation such

that the transformed f differs from its PD-normal form for a

flat vector function; whence, for any arbitrarily high integer

m > 0, there exists a polynomial diffeomorphism such

that the transformed f differs from its PD-normal form for

terms of order higher than m. The inverse integrating factor

corresponding to the pair f(x) = Ax+ h(x), g(x) = Ax is

ω = det
[

Ax+ h(x) Ax
]

= det
[

h(x) Ax
]

.

S3) A first integral I associated with f is known. Since

LfI = 0, then the gradient ∂I
∂x

is colinear with
[

f2 −f1
]

,

i.e., there exists a non-null scalar function ω such that ∂I
∂x

=
1
ω

[

f2 −f1
]

, namely ω is an inverse integrating factor.

Then, if ∂I
∂x1

is not the null function, an orbital symmetry

g of f is g =
[

1
∂I

∂x1

0
]T

=
[

ω
f2

0
]T

; if ∂I
∂x2

is not

the null function, then an orbital symmetry g of f is g =
[

0 1
∂I

∂x2

]T

=
[

0 − ω
f1

]T
.

The classes of systems described above are just what is

needed for the developments to follow. Other special classes

of systems for which it is possible to derive interesting

results include classes of systems in the Belitskii normal form

[20], Hamiltonian systems, systems with the separations of

variables property and classes of Lienard systems. As for

the Belitskii normal form, it is a generalization of the PD-

normal form, not requiring that A is semi-simple; notice that

the three systems SA, SB and SC studied in the subsequent

Example 1 are in the Belitskii normal form.

IV. SEMI-INVARIANTS AND LYAPUNOV

FUNCTIONS

The semi-invariants (using the name given in [1]) are

widely studied in the literature under various names, such

as: semi-invariants, second integrals, special integrals (poly-

nomials), eigenpolynomials, Darboux polynomials (curves),

algebraic invariant curves (manifolds), particular algebraic

solutions; an introductory reference is Section 2.5 of [2] in

case of polynomial semi-invariants, with polynomial charac-

teristic function. In this section, the semi-invariants are used

as elementary bricks for the construction, in closed-form, of

Lyapunov functions, to be used for the stability analysis.

Definition 1: A semi-invariant of system (1) is a scalar

function ω(x) : U → R, for some U open and connected,

analytic in U , such that

Lfω = λω, ∀x ∈ U ,

with λ(x) ∈ R being a ratio of functions analytic in U ,

λ(x) = N(x)
D(x) , where D(x) 6= 0 in U ; if ω(x) and λ(x) are

polynomial in x ∈ U , then ω is said to be a Darboux polyno-

mial; λ(x) is called the characteristic function (respectively,

characteristic polynomial) of the semi-invariant (respectively,

of the Darboux polynomial); if ω(x) is a constant, then the

semi-invariant is said to be trivial, non-trivial otherwise. Let

Iω := {x ∈ U : ω(x) = 0}. �

Since ω̇ = λω along the dynamics of system (1), we have

ω(x(t)) = ω(x(0)) exp
(

∫ t

0
λ(x(τ))dτ

)

for each (t, x(0)) ∈

V . If ω(x(0)) = 0, then ω(x(t)) = 0 for each t ≥ 0 such

that exp
(

∫ t

0
λ(x(τ))dτ

)

is finite; since x(τ) is finite for

each (τ, x(0)) ∈ V and D(x) 6= 0, ∀x ∈ Iω , if ω(x(0)) = 0,

then ω(x(t)) = 0 for each (t, x(0)) ∈ V , namely the set of

points Iω is invariant for system (1).

The following theorem, restated from [2] (see, also, [23]),

characterizes Darboux polynomials (notice that some of its

statements, with proper amendments, also apply to non-

polynomial semi-invariants).

Theorem 1: Assume that f is polynomial.

(1) If I(x) = ω1(x)
ω2(x) is a (non-trivial) first integral of

system (1), with ω1 and ω2 being coprime (non-constant)

polynomials, then ω1 and ω2 are Darboux polynomials of

system (1), with the same characteristic polynomials λ1(x) =
λ2(x).

(2) Let ω(x), ω1(x) and ω2(x) be Darboux polynomials of

system (1) with respective characteristic polynomials λ(x),
λ1(x) and λ2(x); then, all the irreducible factors of ω(x)
are Darboux polynomials of system (1), and the product

ωn1

1 (x)ωn2

2 (x) is a Darboux polynomial of system (1) for

any pair of integers n1, n2, with characteristic polynomial

n1λ1(x) + n2λ2(x). �

Let

ω(x) := det
[

f(x) g(x)
]

; (6)

if ω(x) is not the null function and g is an orbital symmetry

of f , then Lfω = div (f)ω, whence, since div(f) is analytic

in U , ω is a semi-invariant, with characteristic function

div (f). If ω = ω1ω2, then there exists λ1 and λ2 such that

Lfω1 = λ1ω1, Lfω2 = λ2ω2 and λ1 + λ2 = div(f): hence,

if λi is analytic for each x ∈ Iωi
, i = 1, 2, then ω1 and ω2

are semi-invariants with characteristic functions λ1 and λ2.

If f and g are polynomial, then ω is a Darboux polynomial,

as well as its irreducible factors.

There may be a strong connection between a semi-

invariant (respectively, a Darboux polynomial) and the center

manifold (see [24]-[19]). As already mentioned, if ω is a

semi-invariant, then the manifold described by ω = 0 is

invariant. Assume that the matrix A of the linear part of f
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has two real eigenvalues λ1 6= 0 and λ2 = 0; call center the

subspace of R
2 spanned by the eigenvector with eigenvalue

λ2. If ω = 0 is tangent with the center at x = 0, then ω = 0
is the center manifold. Such planar systems can be studied

easily either by the Shoshitaishvili Theorem [26], [27], or by

using the PD-normal form. To this end, assume that the linear

part of f is such that A = diag (0, b), with b 6= 0. Assume

that f(x) can be transformed into its PD-normal form f̃(y)
by y = T (x). The linear centralizer of A (i.e., the set of all

matrices that commute with A) is spanned by {E,A}, being

E the identity matrix; all the first integrals of ẏ = Ay are of

the form I = G(y1), with G being an arbitrary function of

the argument. Then,

f̃ = Ay + ψy + ϕAy =
[

ψy1 by2 + y2 (ψ + ϕb)
]T
,

with ψ and ϕ being arbitrary functions of y1. A symmetry g̃

of f̃ is given by g̃ = Ay =
[

0 by2
]T

. The corresponding

inverse integrating factor is ω = bψy1y2, giving two Darboux

polynomials ω1 = y1 and ω2 = y2. The center manifold is

described by ω2 = 0, and ẏ1 = y1ψ(y1) is the corresponding

reduced system. For b < 0, the origin is asymptotically

stable for the given system if and only if it is such for the

reduced system, i.e., if and only if ψ(y1) < 0 for all y1 6= 0
belonging to a neighborhood of y1 = 0; this can be verified,

in the original coordinates, using as a Lyapunov function

V = 1
2ω

2
1 + 1

2ω
2
2 . As a consequence, if a given system (1)

has a linear part with eigenvalues 0 and b 6= 0, then, if the

transformation T (x) is convergent [resp., formal], the system

has at least two [resp., formal] semi-invariants that coincide

with the entries of T (x).
For linear systems, the Darboux polynomials are strictly

correlated with the left eigenvectors of the dynamic matrix

A: in particular, if uTA = λuT , with λ ∈ R and u 6= 0, then

ω = uTx is a Darboux polynomial of system ẋ = Ax, with

a constant characteristic function λ. Easy computations show

that, letting ω(x) = det[f(x) g(x)], with f = Ax and g = x,

one can use as a Lyapunov function for proving the (possibly

asymptotic) stability of the origin either V = ω in the case

of complex eigenvalues, or, in the case of real, negative and

distinct, eigenvalues, the function V = 1
2 (ω2

1 + ω2
2), being

ω1 and ω2 the two irreducible factors of ω. The case of two

real and coincident eigenvalues is to be dealt with by means

of a different reasoning if A is not semi-simple. This way

of using Darboux polynomials for the stability analysis can

be extended to the nonlinear case, as shown in the following

example, used to motivate the subsequent Theorem 2.

Example 1: Assume that f is polynomial and homoge-

neous of degree −2 with respect to the dilation δr
εx, with

weights r =
[

1 3
]T

,

f =

[

a1x2 + a2x
3
1

a3x
5
1 + a4x

2
1x2

]

;

notice that the linear part of f is nilpotent (its linear approxi-

mation cannot be directly used for stability analysis). Letting

g =
[

x1 3x2

]T
, by construction [f, g] = −2f ; then, a

Darboux polynomial is given by the inverse integrating factor

ω = det
[

f g
]

= 3a1x
2
2 + (3a2 − a4)x2x

3
1 − a3x

6
1.

Since ω = 0 is an invariant set, then the possible curves

obtained by letting ω = 0 divide the plane into open sectors

such that if the initial state is in one of these sectors then the

state remains there for all times. Other Darboux polynomials

are given by the possible irreducible factors of ω, depending

on the values of the parameters ai’s. Consider the following

three cases:

SA : fA(x) =
[

x2 − x3
1 −x2x

2
1

]T
,

SB : fB(x) =
[

x2 − x3
1 −x2x

2
1 + x5

1

]T
,

SC : fC(x) =
[

x2 − x3
1 −x2x

2
1 + 8

3x
5
1

]T
;

the respective inverse integrating factors are:

ωA = x2

(

3x2 − 2x3
1

)

,

ωB =
(

3x2 + x3
1

) (

x2 − x3
1

)

,

ωC = 1
3

(

3x2 + 2x3
1

) (

3x2 − 4x3
1

)

.

By computing the irreducible factors of the inverse integrat-

ing factor, one has two Darboux polynomials in each case:

ωA
1 = x2, ωA

2 = 3x2 − 2x3
1,

ωB
1 = 3x2 + x3

1, ωB
2 = x2 − x3

1,

ωC
1 = 3x2 + 2x3

1, ωC
2 = 3x2 − 4x3

1,

with respective characteristic functions:

λA
1 = −x2

1, λA
2 = −3x2

1,

λB
1 = 0, λB

2 = −4x2
1,

λC
1 = x2

1, λC
2 = −5x2

1.

In Case A, choosing the Lyapunov function V A =
1
2

(

ωA
1

)2
+ 1

2

(

ωA
2

)2
= 1

2x
2
2+ 1

2

(

3x2 − 2x3
1

)2
, one has V̇ A =

−x2
1

(

ωA
1

)2
− 3x2

1

(

ωA
2

)2
= −x2

1x
2
2 − 3x2

1

(

3x2 − 2x3
1

)2
,

which is negative semi-definite and, therefore, shows that

the origin is stable; the further remark that the origin is

the largest invariant set contained in V̇ A = 0 shows, by

Krasowskii-LaSalle Theorem (see Theorems 3 and 4 of [28];

in the following, briefly, KLS theorem), that the origin is

asymptotically stable (since V A is radially unbounded, then

the origin is globally asymptotically stable).

In case B, choosing the Lyapunov function V B =
1
2

(

ωB
1

)2
+ 1

2

(

ωB
2

)2
= 1

2

(

3x2 + x3
1

)2
+ 1

2

(

x2 − x3
1

)2
, one

has V̇ B = −4x2
1

(

ωB
2

)2
= −4x2

1

(

x2 − x3
1

)2
, which is

negative semi-definite and, therefore, shows that the origin

is stable; since the curve described by ωB
1 = c (namely,

x2 = − 1
3x

3
1+ c

3 ) is invariant for any real c (because ω̇B
1 = 0),

it does not pass through the origin for c 6= 0, and for c 6= 0
arbitrarily small it passes through points arbitrarily close to

x = 0, then the origin is not attractive.
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In case C, instability of the origin can be proven by

means of Chetaev’s theorem (see [18]) using V = 1
2 (ωC

1 )2−
1
2 (ωC

2 )2, since in the set A = {x1 > 0 and x2 >
1
3x

3
1} one

has both V > 0 and V̇ > 0, and V = 0 for x ∈ ∂A.

Notice that fA contains monomials of degree less than or

equal to 3 with respect to the standard dilation, whereas fB

and fC are obtained from fA by adding a term of higher

degree with respect to the standard dilation; in particular,

the origin of SA, which is asymptotically stable, is rendered

simply stable by adding to fA the term hB =
[

0 x5
1

]T

(fB = fA + hB) and unstable by adding to fA the term

hC =
[

0 8
3x

5
1

]T
(fC = fA + hC). Actually, this has

been simply done because fA and the additional terms hB ,

hC have the same degree with respect to the chosen dilation,

with weights r1 = 1, r2 = 3. �

The following theorem gives conditions for the stability

analysis of the origin for system (1) and, when it can be

applied, gives also a Lyapunov function in closed-form. The

proof is omitted for space reasons.

Theorem 2: Assume that f is polynomial, with f(0) = 0,

and that there exists a polynomial orbital symmetry g of f .

(1) Let the inverse integrating factor ω in (6) be irreducible.

If the only solution of ω2(x) = 0 in a neighborhood of the

origin is x = 0 and if div (f) ≤ 0 in a neighborhood of the

origin, then the origin is stable for system (1). If the greatest

invariant set contained in div (f)ω2 = 0 is x = 0, then the

origin is asymptotically stable.

(2) Let ωi, i = 1, 2, ...,m, m ≥ 1, be the irreducible

factors of the inverse integrating factor ω in (6), with λi

being the corresponding characteristic polynomials. Let λ :=
[

λ1 λ2 ... λm

]T
; if there exist k ≥ 1 row vectors

of positive integers hi =
[

hi,1 hi,2 ... hi,m

]

, i =

1, 2, ..., k, such that λ̃i := hiλ ≤ 0 in a neighborhood of the

origin, and if x = 0 is the only solution of
∑k

i=1 ω̃
2
i = 0,

with ω̃i =
∏m

ℓ=1 ω
hi,ℓ

ℓ , then the origin is stable for system

(1). If the greatest invariant set contained in
∑k

i=1 λ̃iω̃
2
i = 0

is x = 0, then the origin is asymptotically stable.

(3) Let ωi, i = 1, 2, ...,m, be the irreducible factors

of the inverse integrating factor given in (6), with λi be-

ing the corresponding characteristic polynomials. Let λ :=
[

λ1 λ2 ... λm

]T
; if there exists a row vector of posi-

tive integers h =
[

h1 h2 ... hm

]

such that λ̃ := hλ ≥
0 in a neighborhood of the origin, and ∂ω̃

∂x

∣

∣

x=0
6= 0, with

ω̃ =
∏m

ℓ=1 ω
hℓ

ℓ , then the origin is not attractive. �

The following three examples illustrate the applicability of

Theorem 2 based on the computation of symmetries.

Example 2: Let f =

[

−x1x
2
2

x3
1 −

1
10x

3
2

]

; f is homogeneous

of degree −2 with respect to g =
[

x1 x2

]T
, and the

corresponding inverse integrating factor is ω = ω1ω2ω3 with

ω1 = x1, ω2 = x1 + 3

√

9
10x2,

ω3 = x2
1 −

3

√

9
10x1x2 + 3

√

81
100x

2
2,

and respective characteristic functions:

λ1 = −x2
2, λ2 = 3

√

9
10x

2
1 −

3

√

81
100x1x2 −

1
10x

2
2,

λ3 = − 3

√

9
10x

2
1 + 3

√

81
100x1x2 −

1
5x

2
2.

It can be seen that both λ2 and λ3 are not definite nor

semidefinite, whereas both λ1 and λ̃2 :=λ2+λ3 = − 3
10x

2
2 are

negative semidefinite. Hence, the positive definite function:

V := 1
2ω

2
1 + 1

2 (ω2ω3)
2 = 1

2x
2
1 + 1

2

(

x3
1 + 9

10x
3
2

)2
,

(obtained using statement (2) of Theorem 2, with h1 =
[1, 0, 0] and h2 = [0, 1, 1]) is such that

V̇ = −x2
2x

2
1 −

3
10x

2
2

(

x3
1 + 9

10x
3
2

)2
.

Using KLS theorem, it is easy to prove the asymptotic

stability of the origin. �

Example 3: Let f be in the PD-normal form, with linear

part described by A =

[

0 1
−1 0

]

. Since the linear cen-

tralizer of A is spanned by {E,A}, being E the identity

matrix, and since all the first integrals of ẋ = Ax are of

the form G(x2
1 + x2

2), with G being an arbitrary function

of the argument, then vector function f is given by f =
Ax+ ψx+ ϕAx, with ψ and ϕ being arbitrary functions of

x2
1 + x2

2. Furthermore, g = Ax is a symmetry of f and the

corresponding inverse integrating factor is

ω = det

[

x2 + ψx1 + ϕx2 x2

−x1 + ψx2 − ϕx1 −x1

]

= −
(

x2
1 + x2

2

)

ψ.

The semi-invariant ω1 = x2
1 + x2

2 has characteristic function

λ = 2ψ. If ψ (ξ) is assumed analytic at ξ = 0, then in

a neighborhood of the origin we have ψ (ξ) ≈ aξn; if

a < 0 and integer n is even, then, with the Lyapunov

function V = 1
2ω

2 = 1
2

(

x2
1 + x2

2

)2
having derivative V̇ =

2ψω2 ≈ 2a
(

x2
1 + x2

2

)n+2
, it is easy to see that the origin is

asymptotically stable (exponentially if n = 0), independently

of function ϕ. �

As for the instability of the origin, next theorem can be

stated. Its proof is omitted for space reasons.

Theorem 3: Let ωi(x1, x2) be a semi-invariant associated

with system (1), such that ωi(0, 0) = 0. Assume that

ωi(x1, x2) = 0 can be locally (around (x1, x2) = 0) rendered

explicit with respect to one of the two variables, say x1

without loss of generality; in particular, assume that there

exists a function ϕi(·), ϕi(0) = 0, and an interval I = [0, δ)
(or, respectively, I = (−δ, 0])) such that (ϕi(x2), x2) ∈
U ,∀x2 ∈ I and ωi(x1, x2) = 0 ⇔ x1 = ϕi(x2) for each

x2 ∈ I. Consider the reduced system ẋ2 = hi(x2), with
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hi(x2) := f2(ϕi(x2), x2). If x2hi(x2) > 0 for all x2 ∈ (0, δ)
(respectively, x2 ∈ (−δ, 0)), then the origin of system (1) is

unstable; if hi(x2) = 0 for all x2 ∈ (0, δ) (respectively,

x2 ∈ (−δ, 0)), for a sufficiently small δ > 0, then the origin

of system (1) is not attractive. �

Theorem 3 generalizes what can be done by means of the

center manifold theory, as shown in the following example,

in which the center manifold coincides with the state space.

Example 4: Consider again the system SC of Example 1.

The equation ωC
2 = 3x2 − 4x3

1 = 0 can be locally rendered

explicit with respect to x2, obtaining x2 = ϕ2(x1) = 4
3x

3
1;

the corresponding reduced system is ẋ1 = h2(x1) = 1
3x

3
1.

Since x1h2(x1) = 1
3x

4
1 is positive for any x1 6= 0, then the

origin of SC is unstable.

Consider again system SB of Example 1. The equation

ωB
2 = x2 − x3

1 = 0 can be locally rendered explicit

with respect to x2, obtaining x2 = ϕ2(x1) = x3
1; the

corresponding reduced system is ẋ1 = h2(x1) = 0. Since

h2 = 0 for all x1, then the origin of SB is not attractive. �

V. CONCLUSIONS

In this paper it has been shown how the semi-invariants of

a planar system can be used for stability analysis of planar

systems. The proposed technique is based on the use of (or-

bital) symmetries for the computation of semi-invariants, and

on their use as elementary bricks for the explicit construction

of Lyapunov functions. The main advantage of the techniques

proposed in this paper is that they rely on the knowledge of

geometric properties of the system, that can be related to its

symmetries.
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