
  

  

Abstract— This paper is concerned with the tracking of 
partially or entirely occluded objects in a video sequence. We 
propose certain modifications to the template matching 
approach, which seem to fit the type of tracking data being 
considered in the present note. Specifically, we will use a 
nonstandard particle filtering method via the following two 
steps: The first step employs the normalized cross-correlation 
function as the likelihood. The second step is to resample, and 
to fuse the results of multiple cross-correlations of different 
patches of the given object, in order to refine the likelihood for 
the particle filter. Experimental results show that the method is 
reliable for noisy measurements, and provides accurate results 
in cases of occlusion or heavy shadows. 

I. INTRODUCTION 
ARGET tracking in video sequences is a very important 
problem in surveillance and security with applications 

ranging from homeland security to missile defense.  
Our goal in this work is to track the target object defined 

by its template (for example, a snapshot from the first frame 
in a video sequence), and to construct the target’s trajectory 
based only on this template. We are not interested in the 
present work in extracting the form or features of the target, 
but only in tracking a point within the given object, 
preferably close to its center of mass.   

The proposed algorithm works in a variety of scenarios. 
The method deals naturally with clutter and noise in scenes, 
low contrast targets, and partial occlusions. The 
incorporation of a modified particle filter provides a smooth 
target trajectory, and ameliorates the problem of target 
occlusion. 

We should note that the problem formulation is not new, 
and a large literature is available on this topic. We mention 
here only a few of the most relevant works for the approach 
taken in this paper. A broad survey on general tracking 
methods can be found in the book by Blackman and Popoli 
[1], and in the book by Bar-Shalom et al. [2]. A deep 
analysis of particle filters is provided in [3], where rigorous 
theory and applications of different kinds of particle filters 
are presented. Also, a powerful application of particle filters 
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to image sequences (CONDENSATION algorithm) can be 
found in the paper by Blake and Isard [4]. More recent 
extensions incorporating particle filtering in visual tracking 
are available (e.g., [5], [6]).  

The development of cross-correlation based trackers 
began in the sixties. Many image comparison algorithms 
were invented since then, among them normalized cross-
correlation coefficient with fast computation algorithm, e.g. 
[7], statistical correlation [8], median correlation [9], 
correlation with multiple patches [10], and other template 
matching schemes. The idea of a particle filter that utilizes 
two measurement steps (including the correlation 
measurement) is presented in work on the direction of 
arrival of audio signals [11]. In our algorithm, we use a 
related idea for 2-D image signals. Also, by analogy with 
multiresolution analysis, we define and we use multiple 
cross-correlation coefficients for better tracking. 

In general, the video tracking systems can be divided to 
four basic classes:  

Template matching (e.g., [7]-[10]); 
Feature / model based matching (e.g., [12]); 
Contour matching (e.g., [13]); 
Motion and structure based trackers (e.g., [14]). 
 
A number of algorithms suppose a stationary camera, 

visible target contours, key features such as target color, or 
need a preliminary learning process or adaptation. Our 
algorithm neither assumes stationary camera, nor finds the 
contour, nor assumes color information. The algorithm 
provides the robust way of template matching without 
adaptation for targets without prominent features. 

The remainder of this paper is organized as follows. 
Section 2 explains the template-matching problem. We 
briefly discuss the solution with the normalized cross-
correlation coefficient function (NCC), and we define the 
concept of half-wave rectified multiple normalized cross-
correlation (MNCC). We point out important differences 
between NCC and MNCC. In Section 3, we discuss the 
general problem of tracking with particle filters, and present 
the particle filter that using two measurement steps that are 
based on NCC and MNCC. In Section 4, we test our 
algorithm on four video sequences, which clearly illustrate 
its features. Finally, in Section 5, we summarize our 
research, and present the conclusions. We also discuss some 
key problems that still have to be solved, and propose the 
future directions for the research. 
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II. TEMPLATE MATCHING BY MULTIPLE NORMALIZED CROSS-
CORRELATIONS 

Let I(m,n) denote the intensity value of the image (or the 
search region), and P(i,j) denote the intensity value of the 
template patch. We assume that the size of I is x yM M× , 

and the size of P is x yN N×  (see Fig.1). Clearly, we assume 
that the size of I is greater than the size of P. It is known that 
the noisy version of the patch is placed somewhere in the 
image I. Our goal is to determine the most probable position 
of the patch in image I. The standard approach to this 
problem is to compute the coordinates of the maximum 
normalized cross-correlation coefficient (NCC) between the 
image and the template. These coordinates represent the 
position of the best match. The normalized cross-correlation 
coefficient is defined for any pixel (m,n) by: 
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where the mean intensities I  and P  are defined by: 
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The values of NCC(m,n) are between -1 and 1 (1 for 

perfect match, and 0 for “no correlation”). 
 

 We are interested only in non-negative values of NCC; 
therefore we define the half-wave rectified cross-correlation 
as follows: 

 
( , ), ( , ) 0,

( , )
0, .P
NCC m n if NCC m n

RNCC m n
otherwise

≥⎧
= ⎨

⎩
 (5) 

 
The position of the maximal value of RNCC can be used 

for tracking the desired object in image sequence. The 
presented technique is used in many practical applications, 
and has shown a robustness to noise and intensity variations 
[7]. The problem is that this technique may fail in the case of 
a partial occlusion of the desired object in the image I, or in 
case that the object is partially deformed (not rigid). In 
addition, the peak of normalized cross-correlation is blunt, 
and not always appropriate for accurate tracking (see Fig. 
2a).  

 
To overcome these problems we propose to use multiple 

normalized cross-correlation coefficients. The idea is to 
divide the template patch into K  rectangular sub-regions 
(not necessarily disjoint), and to compute the RNCC map for 
every sub-region. Then, all the maps are fused to a single 
map, according to the offsets of the sub-regions in the 
template patch, namely: 
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where  
iP = the sub-region  #i; 

( , )m n is defined in (4); 
( , )i im n denotes the offset of i-th sub-region according to the 
top-left corner of the template patch 
(0 1, 0 1)i x i ym N n N≤ ≤ − ≤ ≤ − . 

The position of maximal value of MNCC function is 
equivalent to the position of the best match. The problem of 
partial occlusion is avoided, because we are constructing the 
correlation map by computing cross-correlations of different 
parts of desired object, and the maximum value is achieved 

Figure 1: The dimensions of image I, the dimensions of template patch 
P, and the position of sub-part Pi in the template.    
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Figure 2: a. Example of normalized cross-correlation map 
b. Example of multiple normalized cross-correlations map for the same 
image and template.  
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where the most parts are matched. The occluded parts give 
low RNCC coefficients, therefore their influence on MNCC 
is weak, and they can be ignored. The peaks of multiple 
cross-correlations are sharp (see Fig. 2b) that makes this 
technique less (than NCC) appropriate for general tracking, 
but more appropriate for fine-tuning after the search region 
in the image I is narrow and well-defined.  

In the next section, we will combine the advantages of the 
RNCC and MNCC techniques in a particle filtering 
framework with low number of state parameters, which 
makes it appropriate for real-time applications. 

III. ROBUST TRACKING WITH PARTICLE FILTERS 

A. Particle filtering 
In this section, we present a modified algorithm for 

particle filtering, which we believe is quite useful for visual 
tracking in our framework. Our approach may be divided 
into two steps. The first step incorporates the advantages of 
normalized cross-correlation for template matching. The 
second step, after resampling, uses MNCC as the likelihood 
for determining the object’s position. This algorithm showed 
the robust tracking results in the case of translational 
moving object in clutter and with possible partial and entire 
occlusions, as we will see in the experimental section below. 
We refer the reader to reference [3] for the complete 
background on particle filtering. 

In general, the goal of particle filter is to estimate the 
sequence of hidden state parameters Xk, based only on the 
observed data Zk. These estimates follow from the posterior 
distribution P(Xk|Z0,Z1,…,Zk). It is assumed that the state and 
the observations are first order Markov processes, and each 
Zk depends only on Xk. The particle filter estimates the 
P(Xk|Z0,Z1,…,Zk) distribution, and it does not require any 
linearity or Gaussian assumptions on the model. The particle 
filter will generate a set of N samples that approximate the 
filtering distribution. For the k-th frame, we denote the state 
vector by Xk=(x1,x2,...). For example, (x1,x2) can be the top-
left corner coordinates of the desired object in the frame. 
The state estimate is recursively obtained as follows: 
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The prediction step that corresponds to the distribution 

1( | )k kP X X −  is governed by system state dynamical 
equations. For example, if state time evolution is assumed to 
be smoothly changing, and there is no additional 
information about the object dynamics, then the simplest 

model given by 
 1 , ~ (0, )k k k kX X v v N−= + Σ  (9) 

 
is many times appropriate. The mean of kX over all the 
particles is approximately the actual value of kX . 

B. The Algorithm 
The state estimation is carried out by updating weighted 

particles according to (7). In the first part of the algorithm 
we employ a bootstrap filter which uses the system model 
and ( ) ( | )NCC

k kP Z X as the likelihood, due to its blunt 
peaks. For MNCC, the likely result is a function 

( ) ( | )MNCC
k kP Z X  with many sharp peaks in it. Therefore, 

we can use this distribution only in the second part to 
localize the desired object. In this step only the weights of 
particles are updated according to ( ) ( | )MNCC

k kP Z X . 
 

Initialization: 
The N particles ( )

0 , ( 1,..., )nX n N= are drawn from the 
uniform distribution. 

For every video frame (k-th frame), we perform the 
following steps. 
STEP 1: 
Using the particles from previous frame, predict the new 
state by sampling from: 

 ( ) ( )
1~ ( | ).n n

kk kX P X X −  (10) 
STEP 2: 
Measure and weight the new position in terms of the 
measured features kZ : 
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STEP 3: 
Resample the particles ( ) , ( 1,..., )n

kX n N=  according to the 

weight ( ) , ( 1,..., )n
kw n N= . Denote the resampled particles 

by ( )n
kX . 

STEP 4: 
Update the weights of the ( )n

kX  particles as: 

 ( ) ( )( ) ( | )n nMNCC
kk kw P Z X∝  (12) 

STEP 5: 
Compute the state estimate from: 

 ( )

1

1ˆ ,
N

n
k k

n
X X

N =
≈ ∑  (13) 

and repeat the steps (1-5) for the next video frame. 
 
The result of this algorithm is the estimated state X̂ , that 

includes the information about the position of the desired 
object in every video frame. 
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IV. EXPERIMENTS AND DISCUSSION 
We tested the proposed algorithm in various situations, 

including highly cluttered exterior scenes with shadows and 
occlusions with a high rate of success. A single template was 
used for every video. To see more clearly the results of 
tracking, only the relevant parts of the full scene images are 
shown in Figures 3, 4, 6 and 7. 

• The following examples include gray level sequences, 
recorded at 25 frames per second, with resolution of 
240 320×  pixels.  

• We chose the simplest dynamics model (9) for the first 
three sequences, and constant velocity model [1 p.203] 
for the last sequence.  

• The target is selected manually in the first video frame. 
• The template size is constant. 
• For MNCC calculation, the template is divided to 3 2×  

non-overlapping quadrants. 

A. Sequence 1: Woman walking through shadow 
In the first sequence, we want to track a woman that 

walks on the alleyway through the shadow from the tree (see 
Fig. 3). This scenario represents the difficulty in tracking 
under outdoor conditions, where the illumination of the 
target is changing abruptly. In addition, surrounding objects 
can mislead the tracker, especially when the woman walks 
through the shadow, and she is hardly visible. 

 

 
In this sequence, the proposed algorithm robustly tracked 

the target with 60 particles, while the NCC based tracker lost 
its track after 100 frames. 

B. Sequence 2: Two people walking together with partial 
occlusions 
The second sequence indicates two people walking 

together. The aim here is to follow the person from the right 
side. The camera is unsteady, and the two people look alike. 
Many moving parts of the picture (e.g., the moving leaves 
on the trees) can distract a tracker, but our tracker is robust 
to such changes. Also, the tracker manages to overcome the 
problem of partial occlusion (see Fig. 4). 

NCC based trackers (with and without the standard PF) 
will follow the target person only until the frame 173, where 
the partial occlusion occurs. In this case, our multiple 
correlations based algorithm follows the object without any 
problem with 50 particles. In the frame 439, we see a partial 
occlusion of the target. The second unoccluded person 
would mislead the standard cross-correlation, but the MNCC 

Figure 3: The video sequence where the woman walks through the 
shadow. 

Figure 4: The video sequence with two men walking together. Both of 
them partially (or entirely) occluded from time to time.    
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still provides the right measurement for the particle filter. In 
frame 467, the target person is completely occluded by the 
tree, and now only the particle filter is able to compensate 
for the full occlusion, and to keep the right track (at least for 
a short time). 

To verify the robustness of our algorithm, we want to 
examine the number of particles that is sufficient for 
successful tracking. It is clear, that if we are willing use 
more particles, then one should expect better tracking results 
and runs that are more successful. On the other hand, this 
will cause longer computation times. We consider a tracking 
run a success for a given video sequence, if for every frame 
of the video, the tracker pointing on the desired object 
(compared to manually tracked position).  

The Fig. 5 shows the number of successful runs (from 
100) as function of number of particles. From this graph, we 
conclude that with our proposed algorithm, 60 particles are 
sufficient to get very reasonable tracking results. The graph 
also suggests that although the second sequence is longer, it 
is easier to track. 

 
C. Sequence 3: A car driving on the road captured by 
non-stationary camera 
In this sequence, we want to track a white car driving on 

the road. The results of tracking with 60 particles are shown 
in Fig. 6. In the frame 59 the car is significantly rotated 
(relative to its initial template position), and our tracker 
temporarily loses track. Nevertheless, with a smaller rotation 
angle, such as in frame 200, our tracker finds the right 
position of the car. The frame 445 shows three similar cars 
with some zoom. The bottom car is the tracked one. Our 
tracker still gives the right result in the presence of closely 
placed similar cars. 

D. Sequence 4: A maneuvering vehicle with full occlusion  
In this sequence, the vehicle is maneuvering, and trying to 

hide, and the camera moving following him. The full 
occlusion occurs in the frames 81-103.  

Despite the changes in scaling and appearance, our 
tracker  

 
 
with 80 particles follows the target even when it is in the 
hiding-place (see Fig. 7 frame 90). 

E. Comparison of correlation-based algorithms to our 
approach 
We tested the correlation-based algorithms [7-10] with 

each sequence, and most of them failed to track the selected 
targets. The algorithms [7-9] based on NCC cannot follow 
the occluded target and often provide non-smooth 
trajectories. The algorithm [9] significantly increases the 
robustness of correlation tracking, and can be later 
incorporated in our approach. The approach of Guo and 

Figure 5: The approximate number of successful random runs (from 100)
as function of the number of particles for two tested sequences.    
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Figure 7: The video sequence with a maneuvering vehicle, captured by 
a non-stationary camera. This example includes a moving background, 
vehicle appearance changes, scaling, and entire occlusion. 

Figure 6: The video sequence with a white car driving on the road, 
captured by a non-stationary camera. This example includes a moving 
background, car rotations, and scaling. 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB02.1

656



  

Dyer [10] overcomes the problem of partial occlusions, but 
cannot solve the problem with full occlusion, and the 
resulting trajectories are not always smooth, in contrast to 
our approach. 

We recall that for all sequences we used simple target 
dynamics model and a constant template. We assumed that 
no additional information is given about the target, besides 
the template. With learned higher order models, and 
smoothly changing adaptive template we expect to get even 
better results with the same algorithm. 

V. CONCLUSION 
In this paper, we presented an algorithm for tracking in 
video sequences of occluded objects without the need for 
adaptation and learning mechanisms. With rather small 
number of particles and low number of states (compared, for 
example, to the CONDENSATION algorithm), we achieve a 
robust tracking results with many complicated and cluttered 
real world video sequences, including sequences with 
camera motion.  

The combination of the particle filter with two types of 
correlation trackers makes it possible to get smooth target 
trajectories. The algorithm can cope with translations, and 
moderate deformations of the tracked object, when the 
deformations affect only a small portion of pixels in any 
template patch used by MNCC. The algorithm is appropriate 
also for small targets with low contrast. The proposed 
approach is time efficient, and should be suitable for real-
time applications. The disadvantage of our methodology is 
that it is not capable of tracking targets subject to large 
rotations and a large scaling (zoom). The next step in our 
research is to add scaling and rotation states to the particle 
filter definition, and to choose good dynamic models for 
scaling and rotation. With these modifications, we expect to 
get scale and rotation invariant tracking. In addition, other 
types of correlation measures should be tested. Finally, in 
the future, the algorithm should be extended for multiple 
target tracking. 
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