
Application of A Consensus Problem to Fair Multi-resource Allocation
in Real-time Systems

Naoki Hayashi and Toshimitsu Ushio

Abstract— This paper provides an application of a consensus
problem with nonlinear performance functions to resource
allocation in soft real-time systems. In soft real-time systems,
fairness of QoS (Quality of Service) levels plays an important
role to guarantee appropriate service under timing and resource
constraints. We propose fair QoS control with an agent-based
controller where each agent manages an allocated resource
and a QoS level of each task. We derive an adaptive resource
allocation algorithm and sufficient conditions to achieve fair
QoS levels by extending results of a consensus problem.

I. INTRODUCTION

Coordinated behavior of multi-agent systems can be ob-
served in diverse fields of engineering and applied sciences
such as formation control of Unmanned Aerial Vehicles
(UAVs), swarming of animals, and automated transportation
systems [1]–[4]. Bertsekas et al. investigated asynchronous
optimization algorithms for parallel and distributed com-
puting systems [5], [6]. The theoretical framework of a
consensus problem was introduced by Jadbabaie et al. [7].
They studied swarming behavior with nearest neighbor rules,
and showed that heading directions of all agents converge to
a common value if information topologies are jointly con-
nected in a bounded time interval. Olfati-Saber and Murray
investigated a consensus problem with switching information
topologies [8]. They provided conditions for an average
consensus with time-delayed communication among agents.
Moreau considered a continuous-time nonlinear consensus
algorithm for undirected communication networks using set-
valued Lyapnov functions [9]. Ren and Beard studied an
information consensus problem over time-varying interaction
topologies [10]. They investigated a global stability on an in-
formation state of agents using a linear consensus algorithm.
Xiao and Boyd provided an optimal center-free algorithm
for distributed resource allocation with convex cost functions
[11]. Xiao and Wang addressed a consensus problem where
each agent has a high dimensional state [12]. They presented
some necessary and sufficient conditions to reach consensus
on a state of agents.

Real-time systems are computing systems whose behav-
iors depend not only on a logical result of computation
but also on a timing constraint. In fact, real-time systems
can be classified into two categories with respect to the

The authors are with the Division of Mathematical Science
for Social Systems, Department of Systems Innovation,
Graduate School of Engineering Science, Osaka University,
Japan. na-hayashi@hopf.sys.es.osaka-u.ac.jp
ushio@sys.es.osaka-u.ac.jp

This work was supported by Grant-in-Aid for Scientific Research
(No. 17360198).

timing constraint: hard real-time systems and soft real-time
systems [13], [14]. Hard real-time systems may have a
critical damage when an execution of a task can not be
completed before its deadline. On the other hand, soft real-
time systems cause performance degradation by deadline
miss but may tolerate to continue an operation of the systems.
Application of control theory to resource allocation in real-
time systems has been widely examined [15], [16]. Marti
et al. presented several resource management policies using
a set of feedback controllers [17]. In real-time systems,
performance of an executed task is evaluated as a QoS
(Quality of Service) level. QoS levels generally depend on
resources allocated to a task such as a CPU utilization,
network bandwidth, and a memory size. This means that we
need to allocate more resources to tasks so as to improve their
QoS levels. However, improving QoS levels of all tasks may
cause overload conditions. Rajkumar et al. proposed Q-RAM
(QoS-based Resource Allocation Model) with multiple QoS
dimensions under resource-constrained environment [18].
They also considered a mixed integer programming problem
based on Q-RAM to maximize a system utility [19]. Buttazzo
et al. proposed an adaptive resource management method
using an elastic task model to prevent overload conditions
[20]. By avoiding overload conditions, however, QoS levels
have large variations depending on tasks and some tasks may
have to run with unacceptably low QoS levels. Therefore
fairness of QoS levels, which implies that tasks have the
same QoS levels, plays an important role to guarantee
appropriate service for all tasks. The control problem to
achieve fair QoS levels avoiding overload conditions is called
fair QoS control. Harada et al. proposed adaptive fair QoS
control in soft real-time systems based on errors between the
current QoS levels and their average [21].

This paper considers an application of a consensus prob-
lem with nonlinear performance functions to fair QoS con-
trol in soft real-time systems. We propose an adaptive re-
source allocation algorithm with an agent-based controller to
achieve fair QoS levels. We model the agent-based controller
as a multi-agent system where each agent has information
of a resource and a QoS level of each task, and updates
the resource according to a consensus protocol. We show
sufficient conditions to achieve fair QoS levels by extending
results of a consensus problem.

The rest of this paper is organized as follows. Section II
reviews some notations of algebraic graph theory. In Section
III, we introduce a performance consensus problem. Section
IV considers an application of the performance consensus
problem to fair QoS control in soft real-time systems. We

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA17.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2450

conduct simulation with the EDF (Earliest Deadline First)
scheduling in Section V. Finally, we conclude this paper in
Section VI.

II. PRELIMINARIES

This section reviews some fundamental facts of graph
theory and matrix theory [22], [23].

A. Graph

A directed graph or a digraph G(V, E) consists of a finite
and nonempty node set V = {vi | i ∈ I} and an edge
set E ⊆ V × V , where I = {1, 2, . . . , n}. A directed
tree is a digraph whose nodes except the root have exactly
one parent. A spanning tree of a digraph is a directed tree
formed by directed edges that connect all nodes of the tree.
A digraph is said to have a spanning tree if the digraph
contains a spanning tree as a subgraph. Let Gi(V, Ei) be a
possible digraph with a node set V and edge sets Ei (i =
1, 2, . . . , M). The union of graphs G =

⋃M
i=1 Gi(V, Ei) is

the digraph with the common node set V and the union of
the edge sets

⋃M
i=1 Ei.

B. Matrix

A vector p (∈ R
n) is said to be positive or nonnegative,

denoted as p > 0 or p ≥ 0, if all components of p are
positive or nonnegative, respectively. For vectors p (∈ R

n)
and q (∈ R

n), p > q and p ≥ q stand for p − q > 0 and
p − q ≥ 0, respectively. A matrix P = [pij] (∈ R

n×n) is
said to be nonnegative, denoted as P ≥ 0, if pij ≥ 0 for
all i, j (∈ I). A (row) stochastic matrix P is a nonnegative
matrix which satisfies

∑n
j=1 pij = 1 for all i.

III. CONSENSUS PROBLEM WITH NONLINEAR
PERFORMANCE FUNCTIONS

This section introduces a performance consensus problem
[24]. In our model, each agent has a high dimensional state
and a performance value. We show sufficient conditions for
a group of agents to achieve consensus on their performance
values.

A. Consensus Protocol

We consider a system with n agents each of which has
an m-dimensional state and a performance value. The vector
xi[k] = [xi1 [k] xi2 [k] · · · xim [k]]T (∈ R

m) represents the
state of agent i at time k (i ∈ I, k = 0, 1, . . .). We
assume that xi�

[k] (∈ R) is in the interval [xinf
i�

, xsup
i�

]
(� ∈ L = {1, 2, . . . , m}). The performance value of agent i is
denoted as yi[k] (∈ R) and characterized by the performance
function fi(xi) = fi(xi1 , xi2 , . . . , xim). We assume that
each performance function fi(xi) is strictly increasing and
of class C1 in

∏m
�=1[x

inf
i�

, xsup
i�

]. We define performance
consensus as follows:

Definition 1: A group of agents achieves performance
consensus if (1) holds for any i, j (∈ I) and for any initial
state.

|yi[k] − yj[k]| → 0 as k → ∞. (1)

To achieve performance consensus, we consider a consensus
protocol given by the following equations for each agent i:

xi[k+1]=xi[k]+bi[k]
n∑

j=1,j �=i

{pij [k]gij [k](yj [k]−yi[k])}, (2)

yi[k]=fi(xi[k]), (3)

where pij [k] (∈ R) is the positive time-varying weight on
the communication from agent j to agent i. The vector
bi[k] is the weight of agent i and defined as bi[k] =
[bi1 [k] bi2 [k] · · · bim [k]]T > 0 (∈ R

m). The variable gij [k]
is a time-varying Boolean value which indicates the existence
of the communication from agent j to agent i:

gij [k] =

⎧⎨
⎩

1 if agent i receives information from
agent j at time k,

0 otherwise,

and gii[k] = 0 for any k. We assume that pij [k] and bi�
[k]

are lower and upper bounded.

B. Performance Consensus

In this section, we investigate sufficient conditions for
performance consensus.

Let din
i [k] be the number of incoming edges to node vi (i ∈

I). Note that xi[k + 1] = xi[k] for any pij [k] and bi[k] if
din

i [k] = 0. Thus, we assume that, for each k, there is at
least one agent which receives information from others, that
is, there exists i such that din

i [k] > 0 for each k. From (3)
and the mean value theorem, there exists ci�

[k] such that

yi[k + 1] = yi[k] +
m∑

�=1

{ci�
[k] (xi�

[k + 1] − xi�
[k])} . (4)

The supremum ci�
[k] with respect to time k is given as

follows:

csup
i�

= sup
k

ci�
[k] = sup

xi

∂

∂xi�

fi(xi). (5)

From (4), we can rewrite (2) and (3) as follows:

x[k + 1] = x[k] + B[k]P [k]y[k], (6)
y[k + 1] = y[k] + C[k](x[k + 1] − x[k]), (7)

where

x[k] =
[
xT

1 [k] xT
2 [k] · · · xT

n [k]
]T ∈ R

mn,

y[k] = [y1[k] y2[k] · · · yn[k]]T ∈ R
n,

P [k] = P̃ [k] ⊗ 1m ∈ R
mn×n,

P̃ [k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−
n∑

j=2

p1j [k]g1j [k] . . . p1n[k]g1n[k]

...
. . .

...

pn1[k]gn1[k] . . . −
n−1∑
j=1

pnj [k]gnj[k]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

B[k] = diag [b11 [k] · · · b1m [k] · · · bn1 [k] · · · bnm [k]]
∈ R

mn×mn,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA17.4

2451

C[k] =

⎡
⎢⎣
c11 [k] . . . c1m [k] . . . 0 . . . 0

...
...

. . .
...

...
0 . . . 0 . . . cn1 [k] . . . cnm [k]

⎤
⎥⎦

∈ R
n×mn,

and ⊗ is the Kronecker product. From (6) and (7), we have

y[k + 1] = y[k] + C[k]B[k]P [k]y[k] = W [k]y[k], (8)

where W [k] = In + C[k]B[k]P [k] (∈ R
n×n) and In is an

n × n identity matrix.
In the same way as [24], we can prove the following

lemma which guarantees that the matrix W [k] in (8) is a
stochastic matrix with positive diagonal entries.

Lemma 1: The matrix W [k] is a stochastic matrix with
positive diagonal entries if any edge weight pij [k] with
din

i [k] > 0 satisfies

0 < pij [k] <

{(
m∑

�=1

csup
i�

bi�
[k]

)
din

i [k]

}−1

. (9)

The following theorem shows sufficient conditions to
achieve performance consensus based on a result of [24].

Theorem 1: A set of agents achieves performance consen-
sus with (2) and (3) if the following conditions hold:
(a) Any edge weight pij [k] with din

i [k] > 0 satisfies (9).
(b) There exists an infinite sequence 0 = k0 < k1 < k2 <

· · · satisfying conditions (i) and (ii):
(i) the time interval [0,∞) is divided into non-

overlapping subintervals [k0, k1) ∪ [k1, k2) ∪ · · · ,
(ii) the union of interaction graphs in each subinterval

[ks, ks+1) has a spanning tree (s = 0, 1, 2, . . .).

IV. REAL-TIME SYSTEMS AND FAIR QOS CONTROL

This section formulates fair QoS control as a performance
consensus problem. We propose an agent-based controller
where each agent has information of an allocated resource
and a QoS level of each task. Each agent in the agent-
based controller updates a resource of each task based on
a consensus protocol to achieve fair QoS levels.

A. Overall System

We consider a soft real-time system which consists of a
set of n periodic tasks {τ1, τ2, . . . , τn} and m independent
resources {X1, X2, . . . , Xm}. We assume that n tasks are
scheduled on a single processor. Each instance of a task is
called a job of the task. A relative deadline of a task is
duration between its release time and the time by which its
job has to be completed. We also assume that the relative
deadline of each task Di is equal to its period Ti.

B. Multi-agent Based Resource Management

We propose a multi-agent based resource management for
fair QoS control as shown in Fig.1. Each task τi periodically
releases a job at its release time. The released jobs are
put in a queue and a scheduler makes their scheduling.
Information exchange of a QoS level is managed by an agent-
based controller, where each agent i has information of the

Task

Queue

Release of Jobs

Scheduling

Scheduler

Task

Task

Task Set Agent-based Controller

CPU

Memory

CPU

Memory

Computing System

Agent n

Agent 2

Agent 1

y2[k]y2[k]y1[k]y1[k]

y1[k]y1[k]

yn[k]yn[k]n[k]

Resource x1 [k+1]Resource x1 [k+1]x1 [k+1]

Resource x2 [k+1]Resource x2 [k+1]x2 [k+1]

Resource xn[k+1]Resource xn[k+1]xn[k+1]

Fig. 1. Multi-agent based resource management for fair QoS control.

Execution of task

Resource allocation
for task

Monitoring of
a QoS level of task

QoS level
from other agents

QoS level
to other agents

Communication
with other agents

Agent i

Fig. 2. The procedure of agent i in an agent-based controller.

allocated resource xi[k] (∈ R
m) and the monitored QoS

level yi[k] (∈ R) of task τi. The procedure of agent i from
monitoring of the QoS level yi[k] to resource allocation for
task τi is illustrated in Fig.2. Note that, in real-time systems,
it is undesirable to change resource allocation of tasks whose
jobs are being executed or waiting in a queue. Therefore,
we assume that the only tasks whose jobs are neither being
executed nor waiting in a queue can exchange their QoS
levels. In this paper, we say that an agent is exchangeable at
time k if a job of its task is neither being executed nor waiting
in a queue at time k. Note also that there are not always other
exchangeable agents when some agent exchanges its QoS
level. This may fail to achieve fair QoS levels as shown in
the following example.

Example 1: We consider 3 tasks which have the same
periods T . We assume that relative deadlines of 3 tasks are
equal to their periods. The Gantt chart 1 of these tasks is
shown in Fig. 3. A vertical dotted line in the Gantt chart
represents a relative deadline of a task. In this example, agent
3 is exchangeable at each time αT (α = 1, 2, . . .). However,
agents 1 and 2 are not exchangeable at these times. Thus,
agent 3 can never exchange its QoS level y3[k] and we fail

1The Gantt chart illustrates how a set of tasks is scheduled on a processor.
The time line of each task in the Gantt chart shows an interval during which
its job is executed by a processor.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA17.4

2452

ta
u

3

Time
T0 2T 3T

ta
u

2
ta

u
1

Fig. 3. The Gantt chart of 3 tasks. These tasks have the same relative
deadlines which are equal to their periods T . A vertical dotted line represents
a release time of a task.

to achieve fair QoS levels because we can not satisfy the
condition of Theorem 1 (b) which requires that a union of
interaction graphs of agents has a spanning tree in some
bounded time interval.

To avoid such a situation shown in Example 1, we assume
that one of agents in an agent-based controller has a token
which gives a priority of information exchange. We assume
that agent i has a token and is exchangeable at time tk.
If there are other exchangeable agents at time tk, agent i
exchanges its QoS level with them. Then, agent i updates
the resource of task τi to xi[k + 1] based on the result of
the information exchange, and cyclically passes the token to
agent i+1. If none of agents except agent i are exchangeable
at a release time of task τi, agent i skips a release of a job of
task τi and suspends information exchange until other agents
are exchangeable. Note that we can satisfy the conditions of
Theorem 1 (b) by a job skipping policy because a token
is cyclically passed among agents and there are always
other exchangeable agents when some agent exchanges its
QoS level. In this paper, we assume that a soft real-time
system can accept such an occasional job skipping and does
not cause any critical damage provided that most jobs are
normally executed.

Example 2: We consider 3 tasks which have the same
relative deadlines and periods T . We assume that agent 3 has
a token at time 0 and the token is cyclically passed among
3 agents. We also assume that these tasks are scheduled by
a job skipping policy to meet the condition of Theorem 1
(b). The Gantt chart of 3 tasks with the job skipping policy
is shown in Fig. 4. In this example, none of agents except
agent 3 are exchangeable at time T . Thus, agent 3 skips a
release of a job of task τ3 at time T . At time t1, agents 3 and
1 are exchangeable. Hence, they exchange their QoS levels
as shown in Fig. 5 (a), and the token is passed to agent 1
from agent 3. In Fig. 5, each node vi of a digraph G(V, E)
represents agent i and the directed edge (vi, vj) indicates
that agent j receives information of the QoS level yi[k] from
agent i. At time t2, agent 1 has the token, and agents 1 and
2 are exchangeable. Thus, they exchange their QoS levels as
shown in Fig. 5 (b), and the token is passed to agent 2.

C. Fair QoS Control

The agent-based controller in Section IV-B can be modeled
as a multi-agent system where a resource and a QoS level of
each task are represented as a state and a performance value

Time
T0 2T 3Tt1t1 t2t2

ta
u

3
ta

u
2

ta
u

1

Fig. 4. The Gantt chart of 3 tasks with a job skipping policy. Agent 3 has
a token at the initial time 0.

v2v2

(a) Time t1(a) Time t1

v1v1

(b) Time t2(b) Time t2

v2v2v3v3

v1v1
y1[k]1y1[k]1[k]1

v3v3
y3[k]1y3[k]1[k]1

y1[k]2y1[k]2[k]2
y2[k]2y2[k]2[k]2

Fig. 5. Information exchanges at times t1 (a) and t2 (b). A shaded node
represents that the corresponding agent has a token.

of each agent, respectively. We formulate resource allocation
of each agent as a consensus protocol given by (2) and (3)
with the following resource constraints:

n∑
i=1

xi�
[k] = R� for all k and �, (10)

where R� ∈ R+ and R+ is the set of all positive real
numbers. Fairness of QoS levels corresponds to performance
consensus so that achieving fair QoS levels implies achieving
consensus on QoS levels. The proposed resource allocation
algorithm of agent i with a job skipping policy is summarized
in Table I. If agent i has a token and is exchangeable, it
exchanges its QoS level with other exchangeable agents.
Then, these agents update resources of their tasks based on
(2). If none of agents except agent i are exchangeable at a
release time of task τi, agent i skips a release of a job of
task τi and suspends information exchange until other agents
are exchangeable. Note that the proposed fair QoS control
enables asynchronous resource allocation in the sense that
agents do not have to suspend information exchange until
jobs of all tasks are completed and update their resources
simultaneously.

By Theorem 1, we showed that (2) and (3) achieve fair
QoS levels. In real-time systems, we also have to consider
feasibility of resource allocation. Proposition 1 proves that
soft real-time systems satisfy the resource constraints (10)
whenever resource allocation is updated.

Proposition 1: Assume that
∑n

i=1 xi�
[0] = R� for all �.

Then, all tasks satisfy the resource constraints (10) at all
times if information exchange among agents can be modeled
as an undirected graph and b1�

[k] = b2�
[k] = · · · = bn�

[k] =
b�[k] for all �.
Proof: Note that information exchange among agents can
be modeled as an undirected graph, we have

pij [k]gij [k] = pji[k]gji[k] for all i, j and k.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA17.4

2453

TABLE I
RESOURCE ALLOCATION ALGORITHM OF AGENT i WITH A JOB SKIPPING

POLICY FOR FAIR QOS CONTROL (i ∈ I).

Input: Initial resource xi[0] > 0.
Output: Sequence of QoS levels {yi[k]}.
for k = 1, 2, . . . do

if a job of task τi is completed then
Monitor its QoS level yi[k];

end if
if agent i has a token and is exchangeable then

if there are other exchangeable agents then
Exchange its QoS level with them;
Update a resource to xi[k + 1] based on (2);
if i �= n then

Pass the token to agent i + 1;
else

Pass the token to agent 1;
end if

else if none of agents except agent i are exchangeable at a
release time of task τi then

Skip a release of a job of task τi;
end if

else if agent i and the agent which has a token are exchangeable
then

Exchange its QoS level with the agent which has a token;
Update a resource to xi[k + 1] based on (2);

end if
end for

We define ẽ� as an n× 1 vector whose �-th component is 1
and other components are all 0. We also define e� as e� =
[ẽ� ẽ� · · · ẽ�]

T ∈ R
mn. Then, for all k and �, we have

eT
� B[k]P [k]y[k] =

(
b�[k]eT

� Imn

)
P [k]y[k]

= b�[k]eT
� P [k]y[k] = 0. (11)

Suppose that eT
� x[k] = R� for some k. From (6) and (11),

we have

eT
� x[k + 1] = eT

� x[k] + eT
� B[k]P [k]y[k]

= eT
� x[k] + 0 = R�. (12)

Thus, all tasks satisfy the resource constraints (10) at all
times.

The following proposition ensures that resources allocated
to a set of tasks are positive at all times.

Proposition 2: Let xi[0] > 0 for all i. The resource
allocated to task τi is positive at all times if any edge weight
pij [k] with din

i [k] > 0 satisfies (9), and each QoS function
satisfies fi(xi) > 0 for any xi > 0.

Proof: Suppose that xi[k] is positive for some k. Since
each QoS function satisfies fi(xi) > 0 for any xi > 0,
the QoS level yi[k] is positive. From Lemma 1, W [k] is
a stochastic matrix with positive diagonal entries if (9)
holds, and hence yi[k + 1] is also positive. Thus, from the
assumption on the QoS function, xi[k + 1] is positive.

Considering the preceding argument and the initial condi-
tion xi[k] > 0, we conclude that the resource xi[k] is positive
for all k.

V. SIMULATION

In this section, we provide a numerical example with 5
tasks τi (i ∈ I = {1, 2, . . . , 5}) and 3 resources X� (� ∈

L = {1, 2, 3}), where X1, X2 and X3 are a CPU utilization,
memory size, and network bandwidth, respectively. Each task
τi is periodic and its deadline Di is equal to its period Ti =
200. Agent i in an agent-based controller manages resources
allocated to task τi: the CPU utilization xi1 [k], the memory
size xi2 [k] and the network bandwidth xi3 [k]. QoS levels are
evaluated by the following QoS functions:

f1(x11 , x12 , x13) =
1
2
x11x12 + x2

13
, (13)

f2(x21 , x22 , x23) =
1
5
x21x23 +

1
5

sin
(π

4
x22

)
, (14)

f3(x31 , x32 , x33) =
1
4
x31 +

1
4
x32x33 , (15)

f4(x41 , x42 , x43) =
1
5
x41 +

1
5
x2

42
+

1
5
x43 , (16)

f5(x51 , x52 , x53) =
1
10

x51x52 +
1
4
x52x53 . (17)

We set the weights pij [k] and bi�
[k] as follows:

pij [k] = 0.8 × min

⎧⎨
⎩
{(

3∑
�=1

csup
i�

bi�
[k]

)
din

i [k]

}−1

,

{(
3∑

�=1

csup
j�

bj�
[k]

)
din

j [k]

}−1
⎫⎬
⎭, (18)

bi�
[k] = 1 for all i, � and k. (19)

The EDF (Earliest Deadline First) algorithm is a well-
known dynamic scheduling algorithm which gives the high-
est priority to the task with the earliest deadline [13], [14].
Suppose that all tasks are periodic and relative deadlines
are equal to their periods. Then, it is known that the EDF
scheduling algorithm can meet a deadline of each task if and
only if

n∑
i=1

xi1[k] ≤ 1.0 for all k, (20)

where xi1[k] is the CPU utilization of task τi and n is the
number of tasks [25]. To satisfy the schedulability condition
(20), we give the following resource constraints:

5∑
i=1

xi1 [k] = 1.0 for all k, (21)

5∑
i=1

xi2 [k] = 2.0 for all k, (22)

5∑
i=1

xi3 [k] = 1.5 for all k. (23)

Then, we have csup
i�

as shown in Table II where 0 ≤ xi1 ≤
1.0, 0 ≤ xi2 ≤ 2.0 and 0 ≤ xi3 ≤ 1.5 (i ∈ I, � ∈ L).

Fig. 6 illustrates QoS levels of 5 tasks with the EDF
scheduling algorithm. The Gantt chart from time 0 to time
2000 is shown in Fig. 7. We assume that agent 5 has a
token at time 0 and the token is cyclically passed among 5
agents. In this simulation, none of agents except agent 5 are
exchangeable at time 200. Thus, agent 5 has to skip a release

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA17.4

2454

TABLE II
VARIABLES csup

i�
(i ∈ I, � ∈ L).

csup
11

csup
21

csup
31

csup
41

csup
51

1.0 0.3 0.25 0.2 0.2

csup
12

csup
22

csup
32

csup
42

csup
52

0.5 0.05π 0.375 0.8 0.475

csup
13

csup
23

csup
33

csup
43

csup
53

3.0 0.2 0.5 0.2 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Q
oS

 L
ev

el

Time

y 1
y 2
y 3
y 4
y 5

Fig. 6. QoS levels of 5 tasks from time 0 to time 2000 with the EDF
scheduling.

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ta
u

5
ta

u
4

ta
u

3
ta

u
2

ta
u

1

Time

Fig. 7. The Gantt chart from time 0 to time 2000. Agent 5 has a token at
time 0.

of a job of task τ5 at time 200. At time 240, a job of task τ1

is completed, and agents 5 and 1 are exchangeable. Hence,
they exchange their QoS levels, and the token is passed to
agent 1 from agent 5. In the same way, agent 1 has the token,
and agents 1 and 2 are exchangeable at time 280. Thus, they
exchange their QoS levels, and the token is passed to agent
2. Figs. 6 and 7 show that the set of tasks {τ1, τ2, . . . , τ5}
achieves fair QoS levels without any deadline miss.

VI. CONCLUSIONS
This paper considered an application of a performance

consensus problem to fair QoS control in soft real-time
systems. We proposed an adaptive resource allocation algo-
rithm with an agent-based controller where each agent has
information of an allocated resource and a QoS level of each
task. We provided sufficient conditions to achieve fair QoS
levels by extending results of a consensus problem. In multi-
resource fair QoS control, there are several feasible solutions
for fair QoS levels. Future work includes optimization on the
fair QoS levels.

REFERENCES

[1] W. Ren, R. W. Beard, and E. M. Atkins, “A Survey of Consensus
Problems in Multi-agent Coordination,” Proceedings of the 2005
American Control Conference, vol. 3, pp. 1859–1864, 2005.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
Cooperation in Networked Multi-Agent Systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[3] W. Ren, R. W. Beard, and E. M. Atkins, “Information Consensus in
Multivehicle Cooperative Control,” IEEE Control Systems Magazine,
vol. 27, no. 2, pp. 71–82, 2007.

[4] S. Martinez, J. Cortes, and F. Bullo, “Motion Coordination with
Distributed Information,” IEEE Control Systems Magazine, vol. 27,
no. 4, pp. 75–88, 2007.

[5] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athens, “Distributed Asyn-
chronous Deterministic and Stochastic Gradient Optimization Algo-
rithms,” IEEE Transactions on Automatic Control, vol. 31, no. 9,
pp. 803–812, 1986.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Prentice-Hall, 1989.

[7] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of
Mobile Autonomous Agents Using Nearest Neighbor Rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[8] R. Olfati-Saber and R. M. Murray, “Consensus Problems in Networks
of Agents With Switching Topology and Time-Delays,” IEEE Trans-
actions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[9] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Transactions on Automatic Control, vol. 50,
no. 2, pp. 169–182, 2005.

[10] W. Ren and R. W. Beard, “Consensus Seeking in Multiagent Systems
Under Dynamically Changing Interaction Topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[11] L. Xiao and S. Boyd, “Optimal Scaling of A Gradient Method for
Distributed Resource Allocation,” Journal of Optimization Theory and
Applications, vol. 129, no. 3, pp. 469–488, 2006.

[12] F. Xiao and L. Wang, “Consensus problems for high-dimensional
multi-agent systems,” Control Theory and Applications, vol. 1, no. 3,
pp. 830–837, 2007.

[13] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications Series. Springer, 2005.

[14] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.
[15] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and

J. Walpole, “A Feedback-Driven Proportion Allocator for Real-Rate
Scheduling,” Proceedings of the 3rd symposium on Operating systems
design and implementation, pp. 145–158, 1999.

[16] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback Control Real-
Time Scheduling: Framework, Modeling, and Algorithms,” Real-Time
Systems, vol. 23, no. 1-2, pp. 85–126, 2002.

[17] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes, “Optimal
State Feedback Based Resource Allocation for Resource-Constrained
Control Tasks,” Proceedings of the 25th IEEE Real-Time Systems
Symposium, pp. 161–172, 2004.

[18] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource
Allocation Model for QoS Management,” Proceedings of the 18th
IEEE Real-Time Systems Symposium, pp. 298–307, 1997.

[19] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “Practical
Solutions for QoS-Based Resource Allocation Problems,” Proceedings
of the 19th IEEE Real-Time Systems Symposium, pp. 296–306, 1998.

[20] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
Scheduling for Flexible Workload Management,” IEEE Transactions
on Computers, vol. 51, no. 3, pp. 289–302, 2002.

[21] F. Harada, T. Ushio, and Y. Nakamoto, “Adaptive Resource Allocation
Control for Fair QoS Management,” IEEE Transaction on Computers,
vol. 56, no. 3, pp. 344–357, 2007.

[22] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

[23] C. Godsil and G. Royle, Algebraic Graph Theory. Springer Verlag,
2001.

[24] N. Hayashi and T. Ushio, “Performance Consensus Problem of Multi-
agent Systems with Multiple State Variables,” IEICE Transactions on
Fundamentals of Electronics, vol. E91-A, no. 9, pp. 2403–2410, 2008.

[25] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” Journal of the
Association for Computing Machinery, vol. 20, no. 1, pp. 46–61, 1973.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA17.4

2455

