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Abstract— We consider linear systems with distributed delays
where delay kernels are assumed to be finite duration impulse
responses of finite dimensional systems. We show that stability
analysis for this class of systems can be reduced to stability
analysis of linear systems with discrete delays, for which
many algorithms are available in the literature. The results
are illustrated on a mathematical model of hematopoietic cell
maturation dynamics.

I. INTRODUCTION

Distributed delay system models appear in a wide range

of applications, such as, logistics [8], traffic flow [27],

microorganism growth [24], and hematopoiesis [1], [2], [4].

Algebraic theory of systems with distributed and lumped

delays is well established, see e.g. [14], [16] where realiza-

tion and control properties are studied within this framework.

Also, stability analysis for systems with distributed delays

has been studied by many researchers, see [25] for a list

of early works and [11], [12], [13], [17], [19], [20], [21],

[28], [29], [30] for some other relevant results. In particular,

[11], [12], [13] deal with piecewise constant delay kernels.

In [20] the delay kernel is a gamma-distribution, and in [21],

[30] rational delay kernels are considered. The setting in [28]

covers, in an indirect way, exponential delay kernels; the

main discussion there is on the analytic solution of Lyapunov

functional equation.

Distributed delay kernels considered in this paper are finite

duration impulse responses of finite dimensional systems,

i.e., they consist of finite linear combinations of exponential

terms and the Dirac delta. A simpler form of this type

of systems has been considered in the motivating example

section of [30]. We will generalize a result of [30] on scalar

systems to a larger class of linear systems with distributed

delays. In particular, stability analysis of such systems will

be reduced to the analysis of systems with lumped delays

for which many computationally effective algorithms are

available, see e.g. [9], [12], [22] and references therein.

As an application example we will consider the linearized

model of hematopoietic cell maturation dynamics appearing

in [3]. This model of hematopoiesis is particularly dedicated

to represent the evolution dynamics of Acute Myeloblastic
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H. Özbay is with Dept. of Electrical & Electronics Eng., Bilkent Univer-
sity, Ankara TR-06800, Turkey, hitay@bilkent.edu.tr

C. Bonnet is with INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P.
105, 78153 Le Chesnay Cedex, France, Catherine.Bonnet@inria.fr

J. Clairambault is with INRIA Paris-Rocquencourt, Domaine de
Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France, and INSERM team
U 776 “ Biological Rhythms and Cancers”, Hôpital Paul-Brousse, 14 Av.
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Leukemia (AML), a cancerous hemopathy for which math-

ematical modeling has been limited so far. We should also

point out that therapies for AML have remained unchanged

for the last 40 years, relying mainly on the cytotoxic drug

Cytosine Arabinoside, with only partial successes (see e.g.,

[15], [26] and following review articles in the latter journal).

The model we consider is structured both in discrete cell

differentiation status k = 1,2, . . .N and in continuous cell

physiological age a (0 ≤ a < hk in the kth proliferating cell

compartment, a ≥ 0 in the resting cell compartments).

It has been shown that the process of formation and

development of blood cells can be modeled by using time

delay system models, see e.g. [1]–[7], [18], [23], where

non-linear discrete or distributed delay models appear. The

linearized model of [3] can be seen as a cascade connection

of N scalar systems with distributed delays. Therefore, the

stability of each individual scalar system determines local

stability of the cell differentiation model proposed.

The paper is organized as follows. In section 2 we discuss

the scalar case where the delay kernel is a single exponential

term. In this section we make connections with some earlier

results, and pose the multivariable version of the problem. In

Section 3 the stability analysis of distributed delay systems

with exponential kernels is reduced to the analysis of a higher

order system with lumped delays. In Section 4 the results

are applied to a mathematical model of hematopoietic cell

maturation dynamics taken from [3]. Concluding remarks are

made in Section 5.

II. DELAY KERNEL WITH SINGLE EXPONENTIAL TERM

In order to motivate our main problem let us consider the

following scalar system taken from [29], [30]

ẋ(t) = −ax(t)+
∫ h

0
be−αθ x(t −θ )dθ (1)

where a, b, α and h are fixed real numbers, h is positive and

x(t) is a real valued function, with known initial condition,

x(θ ), for θ ∈ [−h , 0]. We want to determine stability

conditions in terms of given parameters. When a > 0, the

system is stable for h = 0. So, we may pose the following

problem: find the smallest h > 0 (as a function of a, b and α)

destabilizing the system. There are several approaches to this

problem, including [10] and [30], where different conditions

are obtained for stability of (1). Here we take an alternative

approach which considers the characteristic equation

s+ a−F(s) = 0 (2)
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where F(s) is the Laplace transform of the extended delay

kernel

f (t) =

{
b e−αt for 0 ≤ t ≤ h

0 for t > h.
(3)

If we assume x(θ ) = 0 for θ ∈ [−h , ,0) and x(0) = xo 6= 0,

then the input-output stability of the system (x(t), t ≥ 0 is

the output due to an impulsive input xoδ (t)) is determined

by checking the roots of the characteristic equation (2). In

this case we have a retarded delay system, and hence input-

output stability is equivalent to having all roots of (2) in the

open left half plane, C−. In this setting, it is easy to verify

that

F(s) = b
1− e−h(s+α)

s+ α
. (4)

In [30] the author discusses the question whether the

stability bound (5) given below is tight (i.e. it is also

necessary) or not, but does not give a conclusive answer.

Proposition 1. Let a,b,α,h be positive numbers. All roots

of (2) are in C− if and only if

b (1− e−hα)

a α
< 1. (5)

Proof. Clearly, all roots of (2) are in C− if and only if the

Nyquist graph of G( jω) does not encircle −1, where

G(s) = −(s+ a)−1F(s).

Note that the function ∠G( jω)+ π is

tan−1

(
e−hα sin(hω)

1− e−hα cos(hω)

)
− tan−1(ω/a)− tan−1(ω/α),

where ∠G( jω) is the phase of G( jω). Then the result

follows from the claim that ∠G( jω) = −π only at ω = 0,

and ∠G( jω) < −π for ω > 0. Therefore G( jω) does not

encircle −1 if and only if G(0) > −1, which is equivalent

to (5).

Now in order to prove the above claim it is sufficient to

show that

ℓ(ω) :=
ω

α
>

e−hα sin(hω)

1− e−hα cos(hω)
=: r(ω) (6)

for ω > 0. Clearly ℓ(0) = r(0) = 0 and ℓ(ω) has constant

derivative 1/α . The right hand side, r(ω), has the derivative

d

dω
r(ω) = he−hα cos(hω)− e−hα

(1− e−hα cos(hω))2

and the derivative is maximum at ω = 0. A careful exami-

nation shows that for positive h and α we have

1

α
> h

e−hα

1− e−hα
.

This proves (6), which implies the result. �

At this point we should also mention that the above result

can also be deduced from [10] and [3] where a model of

hematopoietic stem cell dynamics is analyzed.

Next we show here that a > 0 is not a sufficient condition

when b < 0 (see [30] where this question is discussed): as an

example let us take b = −300, a = 10, h = 0.25 and α = 1,

the Nyquist plot is as shown in Figure 1. Since G is stable

G( jω) should not encircle −1 for feedback system stability,

however, we see one encirclement.

−2 −1 0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

Real Axis

Im
a
g
in

a
ry

 A
x
is

Nyquist Plot of G(jω) for a=10, b=−300, h=0.25, α=1

Fig. 1. Nyquist plot of G( jω) for a = 10, b = −300, h = 0.25 and α = 1.

Let us now consider the system (1) with a < 0. In this case

when b = 0, or h = 0, the system is unstable. So, we can see

the distributed delay term as a feedback control which tries

to stabilize the open-loop unstable system. It is interesting to

investigate the stabilizing b and h pair for a given a < 0 and

α . Clearly if b > 0 there is no hope to stabilize the system

(the right hand side of (1) becomes positive for all positive

initial conditions). So, consider only b < 0 when a < 0. The

characteristic equation is 1 + G(s) = 0, where

G(s) =
|b|

(s−|a|)

(1− e−h(s+α))

(s+ α)
.

In this case feedback system is stable if and only if G( jω)
encircles −1 once in the counter clockwise direction. This

is equivalent to the following three conditions:

G(0) < −1 (7)

d

dω
∠G( jω)

∣∣∣∣
ω=0

> 0 (8)

−1 < G( jω1) (9)

where ω1 > 0 is the smallest ω for which ∠G( jω) = −π .

For this system it is easy to check that the second condition

(8) is equivalent to

hα

ehα −1
> 1−

α

|a|
. (10)

In particular, when |a| ≤ α , (10) holds for all h > 0. When

|a|/α > 1 then (10) specifies an upper bound for hα .

Let us now examine the special case a = −1, α = 1. For

these fixed parameters (7) is equivalent to having

G(0) = −|b|(1− e−h) < −1.
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Since |a| = α > 0 and h > 0 the second condition (8) holds

as discussed above. For a = −1 and α = 1 we have

∠G( jω) = −π + tan−1

(
sin(hω)

eh − cos(hω)

)

which gives ω1 = π/h. So, the third condition (9) is equiv-

alent to b < 0 and

|b|
1 + e−h

(π/h)2 + 1
< 1.

Thus, combining all the above conditions we obtain the

following result.

Proposition 2. Let a = −1, α = 1, b < 0 and h > 0. Then

(2) has all roots in C− if and only if

1

(1− e−h)
< |b| <

(π/h)2 + 1

1 + e−h
. (11)

�

Figure 2 shows the allowable range of |b| as a function of

h, determined from (11).
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Fig. 2. Allowable range of |b| as a function of h when a =−1, and α = 1.

We now briefly discuss the multivariable version of the

above problem:

ẋ(t) = Ax(t)+
∫ h

0
B(θ )x(t −θ )dθ (12)

where A is an n× n Hurwitz matrix, and B(·) is an n× n

piecewise continuous matrix function, bounded on [0 , h].
The characteristic equation is

det(sI −A−F(s)) = 0

where F is the Laplace transform of the delay kernel, i.e.,

F(s) =

∫ h

0
B(t)e−stdt. (13)

Suppose there exists bo such that

∫ h

0
‖B(t)‖dt ≤ bo,

then ‖F‖∞ ≤ bo. The small gain theorem says that the

feedback system formed by (sI − A)−1 and F(s) is stable

if

‖(sI−A)−1‖∞ < 1/bo. (14)

This is exactly the same sufficient condition obtained in [29].

III. TRANSFORMATION TO A LUMPED DELAY FORM

The second sufficient condition found in [30], for stability

of (1), is derived by transforming the distributed delay system

to another system with lumped delay. We now generalize this

idea for the MIMO systems in the form (12).

A. Impulse Response of a Finite Dimensional System Re-

stricted to [0 , h]

First we consider the case where B(·) is the impulse

response of a strictly proper finite dimensional system re-

stricted to the finite interval [0 , h]; more precisely,

B(θ ) = CoeAoθ Bo , θ ∈ [0 , h] (15)

for some given real matrices Ao,Bo,Co of compatible di-

mensions such that (Ao,Bo) is controllable and (Co,Ao) is

observable. Now, the Laplace transform of the delay kernel

as defined by (13) can be computed:

F(s) = Co(sI −Ao)
−1Bo −CoeAoh(sI−Ao)

−1Boe−hs. (16)

Let us define

w(t) =

∫ h

0
B(θ )x(t −θ )dθ

then ẋ(t)= Ax(t)+w(t), where w can be seen as the output of

the linear system F whose input is x. A particular realization

of this system is

ẋd(t) = Aoxd(t)+ Box(t) , xd(0) = 0

w(t) = Coxd(t)−CoeAohxd(t −h).

Combining x and xd , let z(t) =

[
x(t)
xd(t)

]
, then we have

ż(t) =

[
A Co

Bo Ao

]
z(t)+

[
0 −CoeAoh

0 0

]
z(t −h). (17)

For a given set of parameters, A,Ao,Bo,Co,h, there are

several numerically efficient techniques to check stability of

the system (17), see e.g. [9], [12], [22].

Remark. The model (17) remains valid even when the

“delay” h is time-varying. In order to see this let us consider

w(t) :=

∫ h(t)

0
CoeAoθ Box(t −θ )dθ . (18)

Then, we claim that w(t) can be obtained from

ẋd(t) = Aoxd(t)+ Box(t) , xd(0) = 0 (19)

w(t) = Coxd(t)−CoeAoh(t)xd(t −h(t)). (20)

To prove this claim, first, note that the solution of (19) is

xd(t) =

∫ t

0
eAoτ Box(t − τ)dτ t ≥ 0.
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Therefore, (20) gives

w(t) = Coxd(t)−
∫ t−h(t)

0
CoeAo(τ+h(t))Box(t −h(t)− τ)dτ

which is equivalent to

w(t) =

∫ t

0
CoeAoτ Box(t − τ)dτ −

∫ t

h(t)
CoeAoσ Box(t −σ)dσ

and hence (19)-(20) gives w(t) defined in (18).

B. Impulse Responses of Several Finite Dimensional Systems

Restricted to Sub-Intervals of [0 , h]

The above discussion can be generalized to the case where

B(θ ) is in the form (15) on several sub-intervals of [0 , h].
More precisely,

B(θ ) = BkeAkθCk , for θ ∈ [hk , hk+1) (21)

for k = 1, . . . ,n, where h1 = 0 < h2 < · · · < hn+1 = h. As

before, we assume that (Ak,Bk) is controllable and (Ck,Ak)
is observable. Let us now define

wk(t) =

∫ hk+1

hk

BkeAkθCkx(t −θ )dθ

then ẋ(t) = Ax(t)+∑n
k=1 wk(t), and each wk is the output of

the following system with lumped delays

ẋdk(t) = Akxdk(t)+ Bkx(t −hk) , xdk(0) = 0

wk(t) = Ckxdk(t)−CkeAkτk xdk(t − τk).

where τk = (hk+1 −hk), k = 1, . . . ,n.

Defining z(t) = [x(t),xd1(t), . . . ,xdn(t)]
T, we get a new

system equation of the form

ż(t) = Â1z(t)+
n

∑
k=2

Âkz(t −hk)+
n

∑
k=1

B̂kz(t − τk)

for some fixed matrices Âk and B̂k, for k = 1, . . . ,n, computed

from the original problem data.

In the above discussion it is possible to include additional

Dirac delta terms in B(θ ). For example if

B(θ ) = BkeAkθCk + Dkδ (θ −hd
k )

for θ ∈ [hk , hk+1), and hk ≤ hd
k ≤ hk+1, then wk(t) contains

an additional term Dkx(t−hd
k ), which is a lumped delay term.

Thus, any Dirac delta term in the distributed delay kernel

give rise to a lumped delay term.

In conclusion, if the delay kernel consists of impulse

responses of finite dimensional systems, restricted to finite

intervals, then stability analysis can be done using a linear

system with lumped delays only, that is obtained from the

above transformation technique.

IV. APPLICATION TO HEMATOPOIESIS

There have been a number of studies where mathematical

models for the process of formation and development of

blood cells (hematopoiesis) are proposed and studied. See

for example the works [1]–[7], [18], [23], where non-linear

discrete or distributed delay models appear. Most recently,

in [3] a system of N differential equations with distributed

delays is introduced to model cell differentiation and to study

acute myelogenous leukemia. The linearization of the model

in [3], around the equilibrium point of interest, leads to a

linear system whose characteristic equation is in the form

n

∏
k=1

(s+ ak −Fk(s)) = 0

where

Fk(s) =

∫ hk

0
bke−γkθ fk(θ )e−sθ dθ

hk, γk are positive constants, ak and bk are constants and fk

is a positive valued function such that
∫ hk

0
fk(θ )dθ = 1.

In [3], the authors show numerically that a blockade of

one of the biological processes described by the model,

namely the differentiation rate from the kth proliferating

to the (k + 1)th resting cell subpopulation, for one given

maturation stage k, 0 ≤ k ≤ N, yields in the model what is

observed in the clinic of acute leukemias: overproduction in

the bone marrow and release in the bloodstream of immature

cells (myeloblasts).

In this model, a key function is the probability fk for a

cell in the proliferative kth subpopulation to divide. In their

numerical studies, Adimy et al. use the Dirac measure δhk

(0 ≤ a < hk for proliferating cells) for this probability, but a

more general form for fk in the model is

fk(θ ) = gk(θ )e−
∫ θ

0 gk(u)du, for 0 ≤ θ ≤ hk, otherwise 0,

where the division rate gk ≥ 0 must satisfy the condition
∫ hk

0
gk(u)du = +∞,

for fk to be a probability density. Note here that from this

condition one can deduce that, equivalently to the definition

of fk from the division rate gk, one can write

gk(θ ) = fk(θ )

[∫ hk

θ
fk(u)du

]−1

.

Unfortunately, we have no access to the actual division rate

as a function of age in the proliferating cell subpopulations,

be it for cancer or for normal cells, and we must content

ourselves with speculations on the form of gk, knowing that

no cell divides at the beginning (in age) of the proliferative

phase, and all cells will have divided after age hk.

We propose to use more regular probability densities on

[0,hk), such as

fk(θ ) =
m

emhk −1
emθ , m integer > γk, (22)
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whence gk(θ ) =
m

em(hk−θ)−1
for the division rate, or also

fk(θ ) = e
h−m+1

k
m−1 .

e−
(hk−θ )−m+1

m−1

(hk −θ )m
,

coming from gk(θ ) = (hk −θ )−m, m integer > 1, or more

generally from any gk positive convex function on [0 , hk)
with a sharp increase when θ approaches hk, such that∫ hk

0
gk(u)du = +∞.

Following Adimy et al., we define:

• δk, death rate in the resting kth subpopulation,

• µk =
d

dx
[xβk(x)]

∣∣∣
x=x∗

, where βk is the reintroduction

function from the resting kth subpopulation into the

proliferative kth subpopulation and x∗ is an equilibrium

point,

• Lk (0 ≤ Lk ≤ 1) is the rate of proliferating cells that

divide without differentiation, i.e., that remain in the

kth compartment; setting Lk to 1 means blocking cell

differentiation at stage k,

• Fk is the Laplace transform of the function

θ 7→

{
bke−γkθ fk(θ ) when 0 ≤ θ ≤ hk and

0 when θ > hk

where γk is the death rate in the proliferative kth sub-

population, fk is the mitosis (=cell division) probability

density in this same subpopulation, an event that must

occur before the age limit hk for these cells, and bk =
2µkLk,

which allows to write the characteristic equation for the lin-

earized system, valid in the neighborhood of an equilibrium

point, as:

s+ δk + µk −Fk(s) = 0.

In the first, more analytically tractable, case mentioned above

(note that µk, and hence also µk + δk may be negative, so

that absolute values matter), the sufficient stability condition

(14) obtained at the end of Section II reads: all roots of

(s+ δk + µk −Fk(s)) = 0 are in C− if

|δk + µk|

2|µk|Lk

>
m

(m− γk)

e(m−γk)hk −1

emhk −1
.

In the case of a positive µk, we have the following

necessary and sufficient condition of stability: all roots of

(s+ δk + µk −Fk(s)) = 0 are in C− if and only if

δk + µk

2µkLk

>
m

(m− γk)

e(m−γk)hk −1

emhk −1
.

From a physiological point of view, in the case of a

positive µk, the ratio
δk + µk

2µkLk

may be interpreted as follows:

if one assesses, in the system that has been linearized around

a steady state, the balance between influx and efflux of cells

in and out of the kth non-proliferating compartment (xk), then

the linear stability condition involves only movements of

cells at the kth level, since the input from differentiated, lately

divided, cells from the (k− 1)th compartment, contributing

to non-diagonal terms is not taken into account by analyzing

the eigenvalues of the triangular jacobian matrix (whether or

not linearization around a steady state is actually sufficient

to completely investigate the stability of the initial nonlinear

biological system is another problem, which we will not

discuss here). Hence at the kth differentiation compartment

level, the cell efflux is measured by the quantities δk (death)

and µk, whereas the influx is measured by the quantity

2Lk. In this respect, the ratio
δk + µk

µk

is a measure of the

excess efflux due to cell death (excess with respect to 1 for

efflux due only to the reintroduction rate at steady state).

The complete ratio
δk + µk

2µkLk

may be seen as a balance term

between efflux and influx: the ratio efflux/influx must be

greater than a given quantity (on the right hand side of the

inequation above) to ensure stability rather than explosion.

Furthermore, this right hand side term, related to the choice

of fk in our example, is readily seen as a decreasing function

of γk, the death term in the proliferative compartment, which

means that increasing γk will naturally relax the constraint

on the minimum allowable
δk + µk

2µkLk

that ensures stability.

Of course, different choices of fk lead to other stability

conditions which can be computed using the technique of

Section III.

Now, considering therapeutic objectives, note that it is

already clear from the real part of the general characteristic

equation,

σ + δk + µk

{
1−2Lk

∫ hk

0
e−(γk+σ)θ fk(θ )cos(ωθ )dθ

}
= 0,

(where we used s = σ + jω) that increasing Lk, i.e. de-

creasing cell differentiation at stage k, will result in a

destabilization of the linearized system around its steady

state, a destabilization that can be made up for by e.g.,

increasing the death rates γk or δk. Naturally, this can also be

seen even more neatly on the particular stability condition

that we have derived in the case of our example (see above).

The effect of therapies in the case of AML may firstly

be thought of in this theoretical context as being exerted on

the death rates in the proliferative and resting compartments,

increasing these death rates, γk or δk, respectively. Since

agents used in the clinic of AML, such as classical Cytosine

Arabinoside (AracytinTM), or more recent ones, coupled to

monoclonal antibodies, such as Gemtuzumab-Ozogamicin

(MylotargTM), usually act by blocking DNA synthesis in the

proliferating S-phase of the cell division cycle, γk is likely to

be in this model the main or only theoretical target for these

drugs. Secondly, other therapeutic molecules might also be

used, exerting their effects by blocking reintroduction from

rest to proliferation, i.e., by decreasing µk in this model.

Such a function could be pharmacologically achieved by a

mechanism totally independent of the previously described,

cytotoxic, one, e.g., by growth factor receptor antagonizing

molecules. Thirdly, in an even more distant future, one

can think of acting by drugs not to kill diseased cells,

but to redirect them in the physiological direction. That

could be done by releasing differentiation, in this model by
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decreasing Lk, by hoped-for redifferentiation therapies, that

unfortunately are not, to our best knowledge, available so far

in the clinic of AML. And finally, combining drugs acting

on these different mechanisms in a synergistic way is also an

option for the future, that could benefit from this sketched

theoretical therapeutic framework.

The stability analysis that we performed in the frame of

this hematopoiesis model [3] may thus provide therapeutists

with theoretical conditions to combine different molecules,

acting on different targets, in a coherent and optimized way.

V. CONCLUDING REMARKS

In this paper linear systems with distributed delays are

studied. We have seen that when the delay kernel is finite

sum of impulse responses of finite dimensional systems,

restricted to finite time interval, it is possible to transform

the distributed delay system to an equivalent system with

lumped delays only. Some simple sufficient conditions for

delay dependent stability are derived using the small gain

theorem, these are in agreement of the earlier results of [29],

[30]. For the scalar case we have shown that the sufficient

condition of [29] is necessary as well.

This technique is applied to a mathematical model of

cell differentiation taken from [3] where application to acute

myelogenous leukemia (AML) is considered. We notice that

in the simulation section of [3] the functions fk(θ ) are taken

as Dirac delta, which directly give a lumped delay system

(i.e., one can argue that in this case we do not have a

distributed delay system). The possibility to use smoother

functions for the fk allowed us to perform a stability study

in a slightly more general case.

We have proposed a stability analysis method from which

one can infer stabilization principles for therapeutic control

by drugs that are used or may be used in the future. More

precisely, we have investigated possible theoretical targets

in the model, and how they should be controlled, having in

mind known or searched-for anti-cancer molecules, some of

which are already in use in the clinic of AML.
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