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Abstract— This is the second part of a two-part paper on
collective motion from consensus with Cartesian coordinate
coupling. In this part, we study the collective motions of a team
of vehicles in 3D by introducing a rotation matrix to an existing
consensus algorithm for double-integrator dynamics. It is shown
that the network topology, the damping gain, and the value of
the Euler angle all affect the resulting collective motions. In
particular, we show a necessary and sufficient condition on
the damping gain for rendezvous when there is no Cartesian
coordinate coupling. We also explicitly show the critical value
for the Euler angle when there is Cartesian coordinate coupling
and quantitatively characterize the resulting collective motions,
namely, rendezvous, circular patterns, and logarithmic spiral
patterns. Simulation results are presented to demonstrate the
theoretical results.

I. INTRODUCTION

Taking into account the fact that equations of motion of a

broad class of vehicles require a double-integrator dynamic

model, consensus algorithms for double-integrator dynamics

are studied in [1]–[6]. In particular, [1], [2] derive conditions

on the network topology and the control gains under which

convergence is guaranteed. Refs. [3] study formation keeping

problems while [4]–[6] study flocking of multiple vehicle

systems.

Motivated by [8], we have introduced in the first part [9]

of the two-part paper Cartesian coordinate coupling to an ex-

isting consensus algorithm for single-integrator kinematics.

In this second part, we consider the case of double-integrator

dynamics. In contrast to the single-integrator case, the analy-

sis for double-integrator dynamics poses more challenges.

The contributions of this second part of the paper are as

follows. We study the convergence properties of a consensus

algorithm with a rotation matrix introduced in 3D for double-

integrator dynamics over a general network topology. In

contrast to the single-integrator case, we show that the net-

work topology, the damping gain, and the value of the Euler

angle all play an important role in the resulting collective

motions. In particular, we show a necessary and sufficient

condition on the damping gain for rendezvous when there is

no Cartesian coordinate coupling. We also explicitly show

the critical value for the Euler angle when there is Cartesian

coordinate coupling and quantitatively characterize the re-

sulting collective motions, namely, rendezvous, circular pat-

terns, and logarithmic spiral patterns. The results generalize

the Cartesian coordinate coupling case for single-integrator
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kinematics presented in [9] to account for dynamic models

and also generalize existing consensus algorithms for double-

integrator dynamics to achieve different collection motions.

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Notions

It is natural to model interaction among vehicles by

directed or undirected graphs. Suppose that a team consists

of n vehicles. A weighted graph G consists of a node set

V = {1, . . . , n}, an edge set E ⊆ V × V , and a weighted

adjacency matrix A = [aij ] ∈ R
n×n. An edge (i, j) in a

weighted directed graph denotes that vehicle j can obtain

information from vehicle i, but not necessarily vice versa. In

contrast, the pairs of nodes in a weighted undirected graph

are unordered, where an edge (i, j) denotes that vehicles i

and j can obtain information from each another. Weighted

adjacency matrix A of a weighted directed graph is defined

such that aij is a positive weight if (j, i) ∈ E , while

aij = 0 if (j, i) 6∈ E . Weighted adjacency matrix A of a

weighted undirected graph is defined analogously except that

aij = aji, ∀i 6= j, since (j, i) ∈ E implies (i, j) ∈ E .

A directed path is a sequence of edges in a directed graph

of the form (i1, i2), (i2, i3), . . ., where ij ∈ V . An undi-

rected path in an undirected graph is defined analogously. A

directed graph has a directed spanning tree if there exists at

least one node having a directed path to all other nodes. An

undirected graph is connected if there is an undirected path

between every pair of distinct nodes.

Let nonsymmetric Laplacian matrix L = [ℓij ] ∈ R
n×n

associated with A be defined as ℓii =
∑n

j=1,j 6=i aij and

ℓij = −aij , i 6= j. For a weighted undirected graph, L is

symmetric positive semi-definite. However, L for a weighted

directed graph does not have this property.

B. Existing Consensus Algorithm

Consider vehicles with double-integrator dynamics given

by

ṙi = vi, v̇i = ui, i = 1, . . . , n, (1)

where ri ∈ R
m and vi ∈ R

m are, respectively, the position

and velocity of the ith vehicle, and ui ∈ R
m is the control

input. A consensus algorithm for (1) is studied in [2], [10]

as

ui = −
n∑

j=1

aij(ri − rj) − αvi, i = 1, . . . , n, (2)

where aij is the (i, j)th entry of weighted adjacency matrix

A associated with weighted directed graph G, and α is a
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positive gain. Consensus is reached using (2) if for all ri(0)
and vi(0), ri(t) → rj(t) and vi(t) → 0 as t → ∞.

III. CONSENSUS FOR DOUBLE-INTEGRATOR DYNAMICS

WITH CARTESIAN COORDINATE COUPLING

In this section, we consider a consensus algorithm for

double-integrator dynamics (1) with Cartesian coordinate

coupling as

ui = −
n∑

j=1

aijC(ri − rj) − αvi, i = 1, . . . , n, (3)

where C ∈ R
m×m denotes a Cartesian coordinate coupling

matrix. Note that (2) corresponds to the case where C = Im.

That is, using (2), the components of ri (i.e., the Cartesian

coordinates of vehicle i) are decoupled while using (3) the

components of ri are coupled. In this section, we focuses on

the case where C is a rotation matrix while a similar analysis

can be extended to the case where C is a general matrix.

Before moving on, we need the following lemmas and

definition:

Lemma 3.1: [11] Let U ∈ R
p×p, V ∈ R

q×q, X ∈ R
p×p,

and Y ∈ R
q×q . Then (U⊗V )(X⊗Y ) = UX⊗V Y . Let A ∈

R
p×p have eigenvalues βi with associated eigenvectors fi ∈

C
p, i = 1, . . . , p, and let B ∈ R

q×q have eigenvalues ρj with

associated eigenvectors gj ∈ C
q , j = 1, . . . , q. Then the pq

eigenvalues of A⊗B are βiρj with associated eigenvectors

fi ⊗ gj , i = 1, . . . , p, j = 1, . . . , q.

Lemma 3.2: [12] Let L be the nonsymmetric Laplacian

matrix associated with weighted directed graph G. Then L
has at least one zero eigenvalue and all nonzero eigenvalues

have positive real parts. Furthermore, L has a simple zero

eigenvalue and all other eigenvalues have positive real parts

if and only if G has a directed spanning tree. In addition,

there exist 1n, where 1n is the n × 1 column vector of all

ones, satisfying L1n = 0 and p ∈ R
n satisfying p ≥ 0,

pTL = 0, and pT 1 = 1.1

Definition 3.1: Let µi, i = 1, . . . , n, be the ith eigenvalue

of −L with associated right eigenvector wi and left eigen-

vector νi. Also let arg(µi) = 0 for µi = 0 and arg(µi) ∈
(π

2 , 3π
2 ) for all µi 6= 0, where arg(·) denotes the phase of a

number. Without loss of generality, suppose that µi is labeled

such that arg(µ1) ≤ arg(µ2) ≤ · · · ≤ arg(µn).2

Lemma 3.3: (see e.g., [13]) Given a rotation matrix R ∈
R

3×3, let a = [a1, a2, a3]
T and θ denote, respectively, the

Euler axis (i.e., the unit vector in the direction of rotation)

and Euler angle (i.e., the rotation angle). The eigenvalues

of R are 1, eιθ, and e−ιθ, where ι denotes the imaginary

unit, with the associated right eigenvectors given by, respec-

tively, ς1 = a, ς2 = [(a2
2 + a2

3) sin2( θ
2 ),−a1a2 sin2( θ

2 ) +
ιa3 sin( θ

2 )| sin( θ
2 )|,−a1a3 sin2( θ

2 ) − ιa2 sin( θ
2 )| sin( θ

2 )|]T ,

and ς3 = ς2, where · denotes the complex conjugate of a

number. The associated left eigenvectors are, respectively,

̟1 = ς1, ̟2 = ς2, and ̟3 = ς3.

1That is, 1n and p are, respectively, the right and left eigenvectors of L
associated with the zero eigenvalue.

2It follows from Lemma 3.2 that µ1 = 0, w1 = 1n, and ν1 = p.

Lemma 3.4: Let A ∈ R
n×n with eigenvalues γi and

associated right and left eigenvectors qi and si, respectively.

Also let B =

[
0n×n In

A −αIn

]

, where 0n×n denotes the n×n

zero matrix and α is a positive scalar. Then the eigenvalues

of B are given by ζ2i−1 =
−α+

√
α2+4γi

2 with associated

right and left eigenvectors

[
qi

ζ2i−1qi

]

and

[
(ζ2i−1 + α)si

si

]

,

respectively, and ζ2i =
−α−

√
α2+4γi

2 , with associated right

and left eigenvectors given by

[
qi

ζ2iqi

]

and

[
(ζ2i + α)si

si

]

,

respectively,

Proof: Suppose that ζ is an eigenvalue of B with an

associated right eigenvector

[
f

g

]

, where f, g ∈ C
n. It follows

that

[
0n×n In

A −αIn

] [
f

g

]

= ζ

[
f

g

]

, which implies g = ζf

and Af − αg = ζg. It thus follows that Af = (ζ2 + αζ)f .

Noting that Aqi = γiqi, we let f = qi and ζ2+αζ = γi. That

is, each eigenvalue of A, γi, corresponds to two eigenvalues

of B, denoted by ζ2i−1,2i =
−α±

√
α2+4γi

2 . Because g = ζf ,

it follows that the right eigenvectors associated with ζ2i−1

and ζ2i are, respectively,

[
qi

ζ2i−1qi

]

and

[
qi

ζ2iqi

]

. A similar

analysis can be used to find the left eigenvectors of B

associated with ζ2i−1 and ζ2i.

Theorem 3.2: Suppose that weighted directed graph G
has a directed spanning tree. Let the control algorithm

for (1) be given by (3), where ri = [xi, yi, zi]
T and

vi = [vxi, vyi, vzi]
T . Let µi, wi, νi, and arg(µi) be defined

in Definition 3.1, p be defined in Lemma 3.2, and a =
[a1, a2, a3]

T , ςk, and ̟k be defined in Lemma 3.3.

1) Suppose that C = I3. Then all vehicles will even-

tually rendezvous if and only if α > αc, where αc △
=

maxi

√
|µi| sin2(arg(µi))
− cos(arg(µi))

. The rendezvous position is given by

[pT (x(0) +
vx(0)

α
),pT (y(0) +

vy(0)

α
),pT (z(0) +

vz(0)

α
)],

(4)

where x, y, z, vx, vy , and vz are, respectively, stack vectors

of xi, yi, zi, vxi, vyi, and vzi.

2) Suppose that C = R, where R is the 3×3 rotation matrix

defined in Lemma 3.3, and α > αc. Given |µi|, i = 2, . . . , n,

let ψl
i ∈ (π

2 , π) (respectively, ψu
i ∈ (π, 3π

2 )) be the solution

to |µi| sin2(ψi) + α2 cos(ψi) = 0 if arg(µi) ∈ (π
2 , π]

(respectively, arg(µi) ∈ [π, 3π
2 )). If |θ| < θc

d, where

θc
d

△
= minarg(µi)∈[π, 3π

2 )(ψ
u
i −arg(µi)), then all vehicles will

eventually rendezvous at the position given by (4).

3) Under the assumption of 2), if |θ| = θc
d and

there exists a unique arg(µκ) ∈ [π, 3π
2 ) such that

ψu
κ − arg(µκ) = θc

d, then all vehicles will eventually

move on circular orbits with center given by (4) and

period πα
|µκ sin(ψu

κ)| . The radius of the orbit for vehicle i is

given by 2|wκ(i)p
T
c [r(0)T , v(0)T ]T |

√

a2
2 + a2

3 sin2( θ
2 ),

where wκ(i) is the ith component of wκ and
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pc = 1
(2σc+α)νT

κ wκ̟T
2 ς2

[
(σc + α)(νκ ⊗ ̟2)

νκ ⊗ ̟2

]

, where

σc = ι
2|µκ| sin(ψu

κ)
α

. The relative radius of the orbits is equal

to the relative magnitude of wκ(i). The relative phase of

the vehicles on their orbits is equal to the relative phase of

wκ(i). The circular orbits are on a plane perpendicular to

Euler axis a.

4) If there exists a unique arg(µκ) ∈ [π, 3π
2 )

such that ψu
κ − arg(µκ) = θc

d and θc
d < |θ| <

minarg(µi)∈[π, 3π
2 ), i 6=κ(ψu

i − arg(µi)), then the vehicles

will eventually move along logarithmic spiral curves

with center given by (4), growing rate Re(σs), where

σs = −α+
√

α2+4λs

2 with λs = µκeι|θ|, and period 2π
|Im(σs)| .

The radius of the logarithmic spiral curve for vehicle i is

2|wκ(i)p
T
s [r(0)T , v(0)T ]T eRe(σs)t

√

a2
2 + a2

3 sin2( θ
2 ), where

ps = 1
(2σs+α)νT

κ wκ̟T
2 ς2

[
(σs + α)(νκ ⊗ ̟2)

νκ ⊗ ̟2

]

. The relative

radius of the logarithmic spiral curves is equal to the relative

magnitude of wκ(i). The relative phase of the vehicles on

their curves is equal to the relative phase of wκ(i). The

curves are on a plane perpendicular to Euler axis a.

Proof: 1) For the first statement, if C = I3, then (1) using (3)

can be written in matrix form as

[
ṙ

v̇

]

=








[
0n×n In

−L −αIn

]

︸ ︷︷ ︸

Γ

⊗I3








[
r

v

]

, (5)

where r = [rT
1 , . . . , rT

n ]T and v = [vT
1 , . . . , vT

n ]T . It follows

from the proof of Theorem 5.1 in [10] that the vehicles

will eventually rendezvous if and only if Γ defined in (5)

has a simple zero eigenvalue and all other eigenvalues

have negative real parts. Note from Lemma 3.4 that each

eigenvalue µi of −L corresponds to two eigenvalues of Γ

given by ζ2i−1 =
−α+

√
α2+4µi

2 with associated right and

left eigenvectors given by

[
wi

ζ2i−1wi

]

and

[
(ζ2i−1 + α)νi

νi

]

,

respectively, and ζ2i =
−α−

√
α2+4µi

2 , with associated right

and left eigenvectors given by

[
wi

ζ2iwi

]

and

[
(ζ2i + α)νi

νi

]

,

respectively, where i = 1, . . . , n.

Because weighted directed graph G has a directed span-

ning tree, it follows from Lemma 3.2 that −L has a simple

zero eigenvalue and all other eigenvalues have negative real

parts. According to Definition 3.1, we let µ1 = 0 and

Re(µi) < 0, i = 2, . . . , n. Note from Lemma 3.2 that

w1 = 1n and ν1 = p. It thus follows that ζ1 = 0 with

associated right and left eigenvectors given by

[
1n

0n

]

and
[
αp

p

]

, respectively, and ζ2 = −α. Note that ζ2 < 0 if

α > 0. Also noting that all
√

α2 + 4µi have nonnegative

real parts, it follows that all ζ2i, i = 2, . . . , n, have negative

real parts if α > 0. It is left to show conditions under which

ζ2i−1, i = 2, . . . , n, have negative real parts. Suppose that

α∗
i is the critical value for α such that ζ2i−1, i = 2, . . . , n,

is on the imaginary axis. Let ζ2i−1 = ηiι, where ηi ∈ R,

i = 2, . . . , n. After some manipulation, it follows that α∗
i =

√
|µi| sin2(arg(µi))
− cos(arg(µi))

and ηi = 2|µi| sin(arg(µi))
α

, i = 2, . . . , n. It

is straightforward to verify that if α > α∗
i (respectively, α <

α∗
i ), then ζ2i−1, i = 2, . . . , n, has a negative (respectively,

positive) real part. Therefore, all ζ2i−1, i = 2, . . . , n, have

negative real parts if and only if α > maxi=2,...,n α∗
i .

Combining the above arguments shows that Γ has a simple

zero eigenvalue and all other eigenvalues have negative real

parts if and only if α > αc.

Note that Γ can be written in Jordan canonical form as

SJS−1, where the columns of S, denoted by sk, k =
1, . . . , 2n, can be chosen to be the right eigenvectors or

generalized right eigenvectors of Γ associated with eigen-

value ζk, k = 1, . . . , 2n, the rows of S−1, denoted by

hT
k , k = 1, . . . , 2n, can be chosen to be the left eigen-

vectors or generalized left eigenvectors of Γ associated

with eigenvalue ζk such that hT
k sk = 1 and hT

k sℓ =
0, k 6= ℓ, and J is the Jordan block diagonal matrix

with ζk being the diagonal entries. We can choose s1 =
[1T

n ,0T
n ]T and h1 = [pT , 1

α
pT ]T . Note that hT

1 s1 =

1. It thus follows that limt→∞

[
r(t)
v(t)

]

= limt→∞(eΓt ⊗

I3)

[
r(0)
v(0)

]

=

[([
1n

0n

]
[
pT 1

α
pT

]
)

⊗ I3

] [
r(0)
v(0)

]

, which

implies that xi(t) → pT x(0)+ 1
α
pT vx(0), yi(t) → pT y(0)+

1
α
pT vy(0), zi(t) → pT z(0) + 1

α
pT vz(0), vxi(t) → 0,

vyi(t) → 0, and vzi(t) → 0 as t → ∞. Equivalently, it

follows that all vehicles will eventually rendezvous at the

position given by (4).

2) For the second statement, using (3), (1) can be written

in matrix form as
[
ṙ

v̇

]

=

[
03n×3n I3n

−(L ⊗ R) −αI3n

]

︸ ︷︷ ︸

Σ

[
r

v

]

. (6)

It follows from Lemmas 3.1 and 3.3 and Definition 3.1 that

the eigenvalues of −(L⊗R) are µi, µie
ιθ, and µie

−ιθ with

associated right eigenvectors wi ⊗ ς1, wi ⊗ ς2, and wi ⊗ ς3,

respectively, and associated left eigenvectors νi⊗̟1, νi⊗̟2,

and νi ⊗̟3, respectively. That is, the eigenvalues of −(L⊗
R) correspond to the eigenvalues of −L rotated by angles

0, θ, and −θ, respectively. Let λℓ, ℓ = 1, . . . , 3n, denote the

ℓth eigenvalue of −(L ⊗ R). Without loss of generality, let

λ3i−2 = µi, λ3i−1 = µie
ιθ, and λ3i = µie

−ιθ, i = 1, . . . , n,

be the eigenvalues of −(L⊗R). Note from Lemma 3.4 that

each λk corresponds to two eigenvalues of Σ, defined in (6),

given by σ2k−1,2k =
−α±

√
α2+4λk

2 , k = 1, . . . , 3n. Because

µ1 = 0, it follows that λ1 = λ2 = λ3 = 0, which in turn

implies that σ1 = σ3 = σ5 = 0 and σ2 = σ4 = σ6 = −α.

Similar to the proof of the first statement, all σ2k, k =
1, . . . , 3n, have negative real parts if α > 0. Given α > 0 and

χi = |µi|eιarg(χi), i = 2, . . . , n, ψl
i and ψu

i are the critical

values for arg(χi) ∈ [0, 2π) such that
−α+

√
α2+4χi

2 is on the

imaginary axis. In particular, if arg(χi) = ψl
i (respectively,

ψu
i ), then

−α+
√

α2+4χi

2 = ι
2|µi| sin(arg(ψl

i)
α

(respectively,
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ι
2|µi| sin(arg(ψu

i )
α

), i = 2, . . . , n. If arg(χi) ∈ (ψl
i, ψ

u
i ) (re-

spectively, arg(χi) ∈ [0, ψl
i)∪ (ψu

i , 2π)), then
−α+

√
α2+4χi

2
have negative (respectively, positive) real parts. Because

α > αc, the first statement implies that all
−α+

√
α2+4µi

2 ,

i = 2, . . . , n, have negative real parts, which in turn implies

that arg(µi) ∈ (ψl
i, ψ

u
i ), i = 2, . . . , n. If |θ| < θc

d, then

arg(λ3i−2), arg(λ3i−1), and arg(λ3i) are all within (ψl
i, ψ

u
i ),

which implies that σ6i−5, σ6i−3, and σ6i−1, i = 2, . . . , n, all

have negative real parts. Therefore, if |θ| < θc
d, then Σ has

exactly three zero eigenvalues and all other eigenvalues have

negative real parts.

Similar to the proof of the first statement, we write Σ
in Jordan canonical form as MJM−1, where the columns

of M , denoted by mk, k = 1, . . . , 6n, can be chosen to

be the right eigenvectors or generalized right eigenvectors

of Σ associated with eigenvalue σk, the rows of M−1,

denoted by pT
k , k = 1, . . . , 6n, can be chosen to be

the left eigenvectors or generalized left eigenvectors of Σ
associated with eigenvalue σk such that pT

k mk = 1 and

pT
k mℓ = 0, k 6= ℓ, and J is the Jordan block diagonal

matrix with σk being the diagonal entries. Note that the

right and left eigenvectors of −(L ⊗ R) associated with

eigenvalue λℓ = 0 are, respectively, 1n ⊗ ςℓ and p ⊗ ̟ℓ,

where ℓ = 1, 2, 3. It in turn follows from Lemma 3.4 that the

right and left eigenvectors of Σ associated with σ2ℓ−1 = 0

are, respectively,

[
1n ⊗ ςℓ

03n

]

and

[
αp ⊗ ̟ℓ

p ⊗ ̟ℓ

]

, where ℓ =

1, 2, 3. We can choose m2ℓ−1 =

[
1n ⊗ ςℓ

03n

]

and p2ℓ−1 =
[

p ⊗ ̟ℓ

̟T
ℓ

ςℓ

p ⊗ ̟ℓ

α̟T
ℓ

ςℓ

]

, where ℓ = 1, 2, 3. Note that pT
2ℓ−1m2ℓ−1 = 1

and pT
2ℓ−1m2k−1 = 0, where k, ℓ = 1, 2, 3 and k 6= ℓ. Noting

that σ2ℓ−1 = 0, ℓ = 1, 2, 3, it follows that limt→∞

[
r(t)
v(t)

]

=

limt→∞ MeJtM−1

[
r(0)
v(0)

]

→ (
∑3

ℓ=1 m2ℓ−1p
T
2ℓ−1)

[
r(0)
v(0)

]

,

which implies that xi(t) → pT x(0) + 1
α
pT vx(0), yi(t) →

pT y(0)+ 1
α
pT vy(0), zi(t) → pT z(0)+ 1

α
pT vz(0), vxi(t) →

0, vyi(t) → 0, and vzi(t) → 0 as t → ∞. Equivalently, it

follows that all vehicles will eventually rendezvous at the

position given by (4).

3) For the third statement, if θ = θc
d (respectively,

θ = −θc
d) and there exists a unique arg(µκ) ∈ [π, 3π

2 ) such

that ψu
κ − arg(µκ) = θc

d, then λ3κ−1 = µκeιθ = |µκ|eιψu
κ

(respectively, λ3κ = µκe−ιθ = |µκ|eιψu
κ ), which implies that

σ6κ−3 =
−α+

√
α2+4λ3κ−1

2 = ι
2|µκ| sin(ψu

κ)
α

(respectively,

σ6κ−1 = −α+
√

α2+4λ3κ

2 = ι
2|µκ| sin(ψu

κ)
α

). Noting that the

complex eigenvalues of Σ are in pairs, it follows that

Σ has an eigenvalue equal to σ6κ−3 = −ι
2|µκ| sin(ψu

κ)
α

(respectively, σ6κ−1 = −ι
2|µκ| sin(ψu

κ)
α

), denoted by σ∗ for

simplicity. In this case, Σ has exactly three zero eigenvalues,

two nonzero eigenvalues on the imaginary axis, and all

other eigenvalues have negative real parts. In the following,

we focus on θ = θc
d since the analysis for θ = −θc

d

is similar except that all vehicles will move in reverse

directions. Note from Lemma 3.4 that the right and left

eigenvectors associated with σ6κ−3 are, respectively,[
wκ ⊗ ς2

σ6κ−3(wκ ⊗ ς2)

]

and

[
(σ6κ−3 + α)(νκ ⊗ ̟2)

νκ ⊗ ̟2

]

.

We can choose m6κ−3 =

[
wκ ⊗ ς2

σ6κ−3(wκ ⊗ ς2)

]

and

p6κ−3 = 1
(2σ6κ−3+α)νT

κ wκ̟T
2 ς2

[
(σ6κ−3 + α)(νκ ⊗ ̟2)

νκ ⊗ ̟2

]

.

Note that pT
6κ−3m6κ−3 = 1. Similarly, it follows

that m∗ and p∗ corresponding to σ∗ are given by

m∗ = m6κ−3 and p∗ = p6κ−3. It follows that[
r(t)
v(t)

]

= eΣt

[
r(0)
v(0)

]

→ (
∑3

ℓ=1 m2ℓ−1p
T
2ℓ−1)

[
r(0)
v(0)

]

+ c(t)

for large t, where c(t)
△
= (eι

2|µκ| sin(ψu
κ)

α
tm6κ−3p

T
6κ−3 +

e−ι
2|µκ| sin(ψu

κ)

α m∗pT
∗ )

[
r(0)
v(0)

]

. Let ck(t) be the kth compo-

nent of c(t), k = 1, . . . , 6n. It follows that c3(i−1)+ℓ(t) =

2Re(eι
2|µκ| sin(ψu

κ)

α
twκ(i)ς2(ℓ)p

T
6κ−3[r(0)T , v(0)T ]T ), where

i = 1, . . . , n, ℓ = 1, 2, 3, and ς2(ℓ) denotes the ℓth component

of ς2. After some manipulation, it follows that c3(i−1)+ℓ(t) =

2|ς2(ℓ)wκ(i)p
T
6κ−3[r(0)T , v(0)T ]T | cos(

2|µκ| sin(ψu
κ)

α
t +

arg(wκ(i)p
T
6κ−3[r(0)T , v(0)T ]T ) + arg(ς2(ℓ))),

i = 1, . . . , n, ℓ = 1, 2, 3. Therefore, it follows that

xi(t) → pT x(0) + 1
α
pT vx(0) + c3i−2(t), yi(t) →

pT y(0) + 1
α
pT vy(0) + c3i−1(t), and zi(t) → pT z(0) +

1
α
pT vz(0) + c3i(t) for large t. After some manipulation,

it can be verified that
∥
∥[c3i−2(t), c3i−1(t), c3i(t)]

T
∥
∥ =

2|wκ(i)p
T
6κ−3[r(0)T , v(0)T ]T |

√

a2
2 + a2

3 sin2( θ
2 ), which

is a constant. Therefore, it follows that all vehicles will

eventually move on circular orbits with center give by (4)

and period πα
|µκ sin(ψu

κ)| . The radius of the orbit for vehicle i

is given by 2|wκ(i)p
T
6κ−3[r(0)T , v(0)T ]T |

√

a2
2 + a2

3 sin2( θ
2 ).

The relative radius of the orbits is equal to the relative

magnitude of wκ(i). In addition, the relative phase of

the vehicles is equal to the relative phase of wκ(i). Note

from Lemma 3.3 that Euler axis a is orthogonal to both

Re(ς2) and Im(ς2), where Re(·) and Im(·), representing,

respectively, the real and imaginary part of a number, are

applied componentwise. It can thus be verified that a is

orthogonal to [c3i−2(t), c3i−1(t), c3i(t)]
T , which implies

that the circular orbits are on a plane perpendicular to a.

4) For the fourth statement, if there exists a unique

arg(µκ) ∈ [π, 3π
2 ) such that ψu

κ − arg(µκ) = θc
d and

θc
d < θ < minarg(µi)∈[π, 3π

2 ),i 6=κ(ψu
i −arg(µi)) (respectively,

−minarg(µi)∈[π, 3π
2 ),i 6=κ(ψu

i − arg(µi)) < θ < −θc
d),

then λ3κ−1 = µκeιθ = |µκ|eι(arg(µκ)+θ) (respectively,

λ3κ = µκe−ιθ = |µκ|eι(arg(µκ)−θ)), where

arg(µκ) + θ > ψu
κ (respectively, arg(µκ) − θ > ψu

κ),

which implies that σ6κ−3 =
−α+

√
α2+4λ3κ−1

2 (respectively,

σ6κ−1 = −α+
√

α2+4λ3κ

2 ) has a positive real part. A similar

argument as above shows that Σ has exactly three zero

eigenvalues and two eigenvalues with positive real parts and

all other eigenvalues have negative real parts. By following

a similar procedure to the proof of the third statement,

we can show that all vehicles will eventually move along
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logarithmic spiral curves with center given by (4), growing

rate Re(σ6κ−3), and period 2π
|Im(σ6κ−3)| . The radius of

the logarithmic spiral curve for vehicle i is given by

2|wκ(i)p
T
6κ−3[r(0)T , v(0)T ]T |eRe(σ6κ−3)t

√

a2
2 + a2

3 sin2( θ
2 ).

The relative radius of the logarithmic spiral curves is equal

to the relative magnitude of wκ(i). In addition, the relative

phase of the vehicles on their curves is equal to the relative

phase of wκ(i). A similar argument to that for the third

statement shows that the curves are on a plane perpendicular

to Euler axis a.

Remark 3.3: Note that the first statement of Theorem 3.2

generalizes Theorem 5.1 in [10], which gives only a suffi-

cient condition for α, by giving a necessary and sufficient

condition. Unlike the single-integrator case, the critical value

for the Euler angle for double-integrator dynamics depend

on both α and L. The critical value for the Euler angle

in the double-integrator case is smaller than that for the

single-integrator case. When α increases to infinity, the

critical value for the Euler angle in the double-integrator

case approaches that for the single-integrator case. Note that

besides the network topology and the Euler angle, α plays

an important role in (3).

Example 3.4: To illustrate, consider four vehicles with

network topology G shown by Fig. 1. Let L associated with

G be given by






1.5 0 −1.1 −0.4
−1.2 1.2 0 0
−0.1 −0.5 0.6 0
−1 0 0 1







. (7)

It can be computed that θc
d = 0.3557 rad. Let R be the

rotation matrix corresponding to Euler axis a = 1
14 [1, 2, 3]T

and Euler angle θ = θc
d. Fig. 2 shows the eigenvalues of

−L and −(L⊗ R). Note that the eigenvalues of −(L ⊗ R)
correspond to the eigenvalues of −L rotated by angles 0, θ,

and −θ. Fig. 3 shows the eigenvalues of Σ. Note that each

eigenvalue of −(L⊗R), λk, correspond to two eigenvalues

of Σ, σ2k−1,2k, where σ2k−1,2k =
−α±

√
α2+4λk

2 , k =
1, . . . , 12. Because θ = θc

d, two nonzero eigenvalues of Σ
are located on the imaginary axis as shown in Fig. 2.

'&%$Ã!"#1 //

²² ¹¹

'&%$Ã!"#2

¡¡¡¡
¡
¡
¡
¡
¡
¡

'&%$Ã!"#3

HH

'&%$Ã!"#4

VV

Fig. 1. Network topology for four vehicles. An arrow from j to i denotes
that vehicle i can receive information from vehicle j.

IV. SIMULATION

In this section, we study collective motions of four vehi-

cles using (3). Suppose that the network topology is given

by Fig. 1 and L is given by (7). Let θc
s, θc

d, and a be

given in Example 3.4. Using (3), it can be computed that

αc = 0.3626. We let α = αc+0.5. Also note that there exists

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ

−θ

Real part

Im
a

g
in

a
ry

 p
a

rt

Fig. 2. Eigenvalues of −L and −(L ⊗ R) with θ = θc

d
. Circles denote

the eigenvalues of −L while x-marks denote the eigenvalues of −(L⊗R).
The eigenvalues of −(L⊗R) correspond to the eigenvalues of −L rotated
by angles 0, θ, and −θ, respectively. In particular, the eigenvalues obtained
by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid
line, the dashed line, and the dashdot line.

a unique arg(µ4) ∈ [π, 3π
2 ) such that ψu

4 − arg(µ4) = θc
d

(i.e., κ = 4 in Theorem 3.2). Note that the right eigenvector

of −L associated with eigenvalue µ4 is w4 = [−0.2847 −
0.2820ι, 0.7213,−0.2501 + 0.1355ι, 0.4809 + 0.0837ι]T .

Also note that p = [0.2502, 0.1911, 0.4587, 0.1001]T .

Figs. 4, 5, and 6 show, respectively, the trajectories of

the four vehicles using (3) with θ = θc
d − 0.2, θ = θc

d, and

θ = θc
d + 0.2. Note that all vehicles eventually rendezvous

at the position given by (4) when θ = θc
d − 0.2, move on

circular orbits when θ = θc
d, and move along logarithmic

spiral curves when θ = θc
d + 0.2. Also note that when

θ = θc
d, the relative radius of the circular orbits (respectively,

the relative phase of the vehicles) is equal to the relative

magnitude (respectively, phase) of the components of w4.

In addition, the trajectories of all vehicles are perpendicular

to Euler axis a in all cases. By comparing the simulation

results with those in [9], we note that the critical values for

the Euler angle, the period of the circular motion, and the

period and growing rate of the logarithmic spiral motion are

quite different in both cases even if the network topology

and L are chosen to the same in both cases.

V. CONCLUSION

We have introduced Cartesian coordinate coupling to a

consensus algorithm by a rotation matrix in 3D for double-

integrator dynamics. The results generalize the results pre-

sented in the first part [9] of the two-part paper and ex-

isting results on consensus algorithms for double-integrator

dynamics. We have shown that the network topology, the

damping gain, and the value of the Euler angle all affect the

resulting collective motions and quantitatively characterize

the resulting collective motions. Simulation results have

shown the effectiveness of theoretical results.
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Fig. 3. Eigenvalues of Σ with θ = θc

d
. Squares denote the eigenvalues

computed by σ2k−1 =
−α+

√
α2+4λk

2
while diamonds denote the

eigenvalues computed by σ2k =
−α−

√
α2+4λk

2
, k = 1, . . . , 12. In

particular, the eigenvalues of Σ correspond to λ10 = µ4, λ11 = µ4eιθ ,
and λ12 = µ4e−ιθ are shown by, respectively, the solid line, the dashed
line, and the dashdot line. Because θ = θc

d
, two nonzero eigenvalues of Σ

are on the imaginary axis.
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Fig. 4. Trajectories of the four vehicles using (3) with θ = θc

d
−0.2. Circles

denote the starting positions of the vehicles while the squares denote the
snapshots of the vehicles at 30 sec.
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