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Collective Motion from Consensus with Cartesian Coordinate Coupling
- Part II: Double-integrator Dynamics

Wei Ren

Abstract—This is the second part of a two-part paper on
collective motion from consensus with Cartesian coordinate
coupling. In this part, we study the collective motions of a team
of vehicles in 3D by introducing a rotation matrix to an existing
consensus algorithm for double-integrator dynamics. It is shown
that the network topology, the damping gain, and the value of
the Euler angle all affect the resulting collective motions. In
particular, we show a necessary and sufficient condition on
the damping gain for rendezvous when there is no Cartesian
coordinate coupling. We also explicitly show the critical value
for the Euler angle when there is Cartesian coordinate coupling
and quantitatively characterize the resulting collective motions,
namely, rendezvous, circular patterns, and logarithmic spiral
patterns. Simulation results are presented to demonstrate the
theoretical results.

I. INTRODUCTION

Taking into account the fact that equations of motion of a
broad class of vehicles require a double-integrator dynamic
model, consensus algorithms for double-integrator dynamics
are studied in [1]-[6]. In particular, [1], [2] derive conditions
on the network topology and the control gains under which
convergence is guaranteed. Refs. [3] study formation keeping
problems while [4]-[6] study flocking of multiple vehicle
systems.

Motivated by [8], we have introduced in the first part [9]
of the two-part paper Cartesian coordinate coupling to an ex-
isting consensus algorithm for single-integrator kinematics.
In this second part, we consider the case of double-integrator
dynamics. In contrast to the single-integrator case, the analy-
sis for double-integrator dynamics poses more challenges.

The contributions of this second part of the paper are as
follows. We study the convergence properties of a consensus
algorithm with a rotation matrix introduced in 3D for double-
integrator dynamics over a general network topology. In
contrast to the single-integrator case, we show that the net-
work topology, the damping gain, and the value of the Euler
angle all play an important role in the resulting collective
motions. In particular, we show a necessary and sufficient
condition on the damping gain for rendezvous when there is
no Cartesian coordinate coupling. We also explicitly show
the critical value for the Euler angle when there is Cartesian
coordinate coupling and quantitatively characterize the re-
sulting collective motions, namely, rendezvous, circular pat-
terns, and logarithmic spiral patterns. The results generalize
the Cartesian coordinate coupling case for single-integrator
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kinematics presented in [9] to account for dynamic models
and also generalize existing consensus algorithms for double-
integrator dynamics to achieve different collection motions.

II. BACKGROUND AND PRELIMINARIES
A. Graph Theory Notions

It is natural to model interaction among vehicles by
directed or undirected graphs. Suppose that a team consists
of n vehicles. A weighted graph G consists of a node set
YV ={1,...,n}, an edge set £ C V x V, and a weighted
adjacency matrix A = [a,;;] € R™*™. An edge (i,j) in a
weighted directed graph denotes that vehicle j can obtain
information from vehicle ¢, but not necessarily vice versa. In
contrast, the pairs of nodes in a weighted undirected graph
are unordered, where an edge (i,j) denotes that vehicles ¢
and j can obtain information from each another. Weighted
adjacency matrix A of a weighted directed graph is defined
such that a;; is a positive weight if (j,4) € &, while
a;; = 01if (j,i) ¢ €. Weighted adjacency matrix A of a
weighted undirected graph is defined analogously except that
a;j = aj;, Vi # j, since (j,4) € € implies (i, j) € £.

A directed path is a sequence of edges in a directed graph
of the form (iy,i2), (42,13),..., where i; € V. An undi-
rected path in an undirected graph is defined analogously. A
directed graph has a directed spanning tree if there exists at
least one node having a directed path to all other nodes. An
undirected graph is connected if there is an undirected path
between every pair of distinct nodes.

Let nonsymmetric Laplacian matrix £ = [{;;] € R™*"
associated with A be defined as ¢; = Z?:L#i a;; and
l;; = —a;;, © # j. For a weighted undirected graph, £ is
symmetric positive semi-definite. However, £ for a weighted
directed graph does not have this property.

B. Existing Consensus Algorithm

Consider vehicles with double-integrator dynamics given
by

7;i:viv ’UZ:’U,“ 2'21,...,’11, (1)

where r; € R™ and v; € R™ are, respectively, the position
and velocity of the ¢th vehicle, and u; € R™ is the control
input. A consensus algorithm for (1) is studied in [2], [10]
as

n
ui:—Zaij(ri—rj)—avi, i=1,....,n, (2
j=1

where a;; is the (4, j)th entry of weighted adjacency matrix
A associated with weighted directed graph G, and « is a

1012



47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

positive gain. Consensus is reached using (2) if for all r;(0)
and v;(0), r;(t) — 7;(t) and v;(t) — 0 as t — oo.

III. CONSENSUS FOR DOUBLE-INTEGRATOR DYNAMICS
WITH CARTESIAN COORDINATE COUPLING

In this section, we consider a consensus algorithm for
double-integrator dynamics (1) with Cartesian coordinate
coupling as

n
ui:—ZaijC(ri—rj)—avi, i=1,...,n, (3)
7j=1

where C' € R™*™ denotes a Cartesian coordinate coupling
matrix. Note that (2) corresponds to the case where C' = I,,,.
That is, using (2), the components of r; (i.e., the Cartesian
coordinates of vehicle ¢) are decoupled while using (3) the
components of r; are coupled. In this section, we focuses on
the case where C' is a rotation matrix while a similar analysis
can be extended to the case where C' is a general matrix.

Before moving on, we need the following lemmas and
definition:

Lemma 3.1: [11] Let U € RP*P, V € R9%9, X € RP*P,
andY € R7%9. Then (UQV)(XQY) =UXQVY.Let A €
RP*P have eigenvalues (3; with associated eigenvectors f; €
CP,i=1,...,p,and let B € R?*9 have eigenvalues p; with
associated eigenvectors g; € C9, j = 1,...,q. Then the pq
eigenvalues of A ® B are 3;p; with associated eigenvectors
fi®gni=1,....p,j=1,...,q.

Lemma 3.2: [12] Let £ be the nonsymmetric Laplacian
matrix associated with weighted directed graph G. Then £
has at least one zero eigenvalue and all nonzero eigenvalues
have positive real parts. Furthermore, £ has a simple zero
eigenvalue and all other eigenvalues have positive real parts
if and only if G has a directed spanning tree. In addition,
there exist 1,,, where 1,, is the n x 1 column vector of all
ones, satisfying £1,, = 0 and p € R" satisfying p > 0,
p’L=0,and pT1=1.!

Definition 3.1: Let u;, © = 1,...,n, be the ith eigenvalue
of —L with associated right eigenvector w; and left eigen-
vector v;. Also let arg(u;) = 0 for p; = 0 and arg(u;) €
(5, 37“) for all p; # 0, where arg(-) denotes the phase of a
number. Without loss of generality, suppose that p; is labeled
such that arg(p;) < arg(us) < --- < arg(u, ).

Lemma 3.3: (see e.g., [13]) Given a rotation matrix R €
R3%3, let a = [a1, az,a3)” and 6 denote, respectively, the
Euler axis (i.e., the unit vector in the direction of rotation)
and Euler angle (i.e., the rotation angle). The eigenvalues
of R are 1, ¥, and e~*?, where ¢ denotes the imaginary
unit, with the associated right eigenvectors given by, respec-

tively, ¢ = a, & = [(a + a3)sin®*(§), —ajazsin®(§) +
Lagsin(g)|sin(g)|,—a1a3s1n2(g) - Lagsin(gﬂsin(g)ﬂT,

and ¢3 = <o, where - denotes the complex conjugate of a
number. The associated left eigenvectors are, respectively,
w1 = 61, W2 = Gz, and w3 = .

IThat is, 1,, and p are, respectively, the right and left eigenvectors of £
associated with the zero eigenvalue.
21t follows from Lemma 3.2 that u1 = 0, wy = 1, and v; = p.
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Lemma 3.4: Let A € R™ ™ with eigenvalues ~; and
associated right and left eigenvectors ¢; and s;, respectively.

0
Alsolet B = | " " "
A —al,
zero matrix and « is a positive scalar. Then the eigenvalues

—aty/a?+4y;

, where 0,,«,, denotes the nxn

with associated

of B are given by (2;—1 =
qi ] and [(421'1'_"04)51}7

C2i—1G; Si

—a—+/a?+4y;
2

and left eigenvectors given by [ quq] and {(@i 1_ a)sl} ,
2iq; i

right and left eigenvectors [

respectively, and (o; = , with associated right

respectively,

Proof: Suppose that ¢ is an eigenvalue of B with an

associated right eigenvector , where f, g € C™. It follows

that [OTX” {:IJ E] = [g], which implies g = (f
and Af — ag = (g. It thus follows that Af = (¢® + () f.
Noting that Ag; = ~;q;, we let f = ¢; and (2+a( = ;. That
is, each eigenvalue of A, 7;, corresponds to two eigenvalues

—at/a2+4y;

of B, denoted by (2;—1,2i = —5 . Because g = (f,
it follows that the right eigenvectors associated with (o;_1
qi qi
C2i-1¢i C2iqi
analysis can be used to find the left eigenvectors of B
associated with (5;_1 and (s;. |

and (y; are, respectively, and . A similar

Theorem 3.2: Suppose that weighted directed graph G
has a directed spanning tree. Let the control algorithm
for (1) be given by (3), where r; = [z, 2]7 and
v; = [’Um,’l)yi,vzi]T. Let p;, w;, v;, and arg(u;) be defined
in Definition 3.1, p be defined in Lemma 3.2, and a =
[a1,az2,a3]”, sk, and @y, be defined in Lemma 3.3.

1) Suppose that C' = I3. Then all vehicles will even-

. . A
tually rendezvous if and only if a« > «af where a¢ =
|pi] sin® (arg(pi))

max; ~ cos(arg(u,)) + Lhe rendezvous position is given by
vz (0 vy, (0 v, (0
" (@(0) + ), 57 (o) + ) pr(e(0) + =)

“)

where z, y, z, vz, vy, and v, are, respectively, stack vectors
of s, Yis %, Vai» Vyi» and v,
2) Suppose that C' = R, where R is the 3 x 3 rotation matrix
defined in Lemma 3.3, and « > a°. Given |y;|, i = 2,...,n,
let ¢! € (Z,7) (respectively, ¥ € (m, 3)) be the solution
to [wi|sin®(¢;) + a®cos(yp;) = 0 if arg(w) € (5,7]
(respectively, arg(p;) € [m,3Z)). If |0] < 65, where
05 2 min, . ) e, 2x) (V7' — arg(p;)), then all vehicles will
eventually rendezvous at the position given by (4).

3) Under the assumption of 2), if || = 65 and
there exists a unique arg(y,) € [m,2F) such that
Yy — arg(pe) = 65, then all vehicles will eventually

move on circular orbits with center given by (4) and

period W The radius of the orbit for vehicle ¢ is
given by  2w,;pL[r(0)7,v(0)7)T]\/a3 + a?sin®*(§),
where  w,;) 1is the 4th component of w, and
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1 (0c + ) (v ® w2)
(20c.+a)vwew] sz Ve, ® wo
O = LM The relative radius of the orbits is equal
to the relative magnitude of wy(;). The relative phase of
the vehicles on their orbits is equal to the relative phase of
Wy(;)- The circular orbits are on a plane perpendicular to
Euler axis a.
4) If there exists a unique arg(u,) € g
such that ¢ — arg(u.) = 05 and 65 < 0] <
min, o efr, 38, e (Vi — arg(u;)), then the vehicles
will eventually move along logarithmic spiral curves
with center given by (4), growing rate Re(os), where
oy = =0tV with A\, = e, and period 2T

[Tm (o) *
The radius of the logarithmic spiral curve for vehicle @ {s

2wy pI [r(0)7, v(0)T]TeRe(e)t /a2 + a2 sin®(§), where
Ds = 1 (05 + a)(ve ® w2)
(20s+a)vfwewd c2 v, @ oy

radius of the logarithmic spiral curves is equal to the relative
magnitude of w, ;. The relative phase of the vehicles on
their curves is equal to the relative phase of wy;). The
curves are on a plane perpendicular to Euler axis a.

Proof: 1) For the first statement, if C' = I3, then (1) using (3)
can be written in matrix form as

Pe = } ,  where

fr, 3)

. The relative

T _ Onxn I, r
(| nfen) []e
~—_————
r
where 7 = [rT, ... ;7T and v = [v], ..., vT]T. It follows

from the proof of Theorem 5.1 in [10] that the vehicles
will eventually rendezvous if and only if I" defined in (5)
has a simple zero eigenvalue and all other eigenvalues
have negative real parts. Note from Lemma 3.4 that each
eigenvalue p; of —L corresponds to two eigenvalues of I’

—a+ty/a?+4p;

with associated right and

i T [0t -]

Ci—1w; v
respectively, and (p; = — Y W, with associated right
w; } and {(Czri-a)m}

given by (2;—1 =

left eigenvectors given by [

and left eigenvectors given by { Cort; v,
respectively, where i = 1,...,n.

Because weighted directed graph G has a directed span-
ning tree, it follows from Lemma 3.2 that —£ has a simple
zero eigenvalue and all other eigenvalues have negative real
parts. According to Definition 3.1, we let ©y = 0 and
Re(u;) < 0, 4 = 2,...,n. Note from Lemma 3.2 that
w; = 1, and v, = p. It thus follows that (; = 0 with

n

. . . . 1
associated right and left eigenvectors given by 0 and

n

[app]’ respectively, and (; = —a. Note that {, < 0 if

a > 0. Also noting that all y/«? + 4u; have nonnegative
real parts, it follows that all (o;, ¢ = 2, ..., n, have negative
real parts if o > 0. It is left to show conditions under which
C2i—1, t = 2,...,n, have negative real parts. Suppose that

o is the critical value for « such that (5,1, 1 = 2,...,n,

TuB12.2

is on the imaginary axis. Let (2,1 = n;t, where n; € R,
1= 2,...,n. After some manipulation, it follows that o =

\M_i\csgr}z(arg({ti)) and 7; = 2| sin(arg(ua)) 2,...,m It
s(arg(pq)) a
is straightforward to verify that if o > « (respectively, o <

o), then (2;_1, ¢ = 2,...,n, has a negative (respectively,
positive) real part. Therefore, all (3;_1, ¢ = 2,...,n, have
negative real parts if and only if o > max,—s . ,0].
Combining the above arguments shows that I" has a simple
zero eigenvalue and all other eigenvalues have negative real
parts if and only if a > a“.

Note that I can be written in Jordan canonical form as
SJS~1, where the columns of S, denoted by si, k =
1,...,2n, can be chosen to be the right eigenvectors or
generalized right eigenvectors of I' associated with eigen-
value ¢y, k = 1,...,2n, the rows of S~!, denoted by
hf, k = 1,...,2n, can be chosen to be the left eigen-
vectors or generalized left eigenvectors of I' associated
with eigenvalue (; such that h{sk = 1 and hfsz =
0, K # ¢, and J is the Jordan block diagonal matrix
with (;, being the diagonal entries. We can choose s; =
17,0017 and hy = [p?,Llp”]". Note that his, =

1. It thus follows that lim;_, r(t)
v(t)

I3) [;Egﬂ [(le [p” ipT]> ®I3} B’}Egg] which

implies that z;(t) — p"2(0)+ 4P v, (0), vi(t) — p"y(0)+
1pTu,(0). (1) — pT2(0) + 1pTv.(0), vailt) — 0,
Uyi(t) — 0, and v,;(t) — 0 as ¢ — oc. Equivalently, it
follows that all vehicles will eventually rendezvous at the
position given by (4).

2) For the second statement, using (3), (1) can be written
in matrix form as

|:7":| _ |: 03n><3n [3n :| |:’I":| (6)
0 —(L®R) —alsz,| |v|’
b

It follows from Lemmas 3.1 and 3.3 and Definition 3.1 that
the eigenvalues of —(L£ ® R) are ju;, puie'?, and p;e*? with
associated right eigenvectors w; ® ¢1, w; ® g2, and w; X ¢3,
respectively, and associated left eigenvectors v;Qw1, v;Qws,
and v; ® ws, respectively. That is, the eigenvalues of — (L ®
R) correspond to the eigenvalues of —L rotated by angles
0, 0, and —#6, respectively. Let Ay, £ = 1,...,3n, denote the
(th eigenvalue of —(£ ® R). Without loss of generality, let
Agi—2 = iy Azi—1 = pie'?, and Ag; = pie™?, i =1,...,n,
be the eigenvalues of — (£ ® R). Note from Lemma 3.4 that
each \j corresponds to two eigenvalues of ¥, defined in (6),

given by oox_1 2k = VA T VQQQH/\'“, k=1,...,3n. Because
w1 = 0, it follows that Ay = Ay = A3 = 0, which in turn
implies that 01 = 03 = 05 = 0 and 09 = 04 = 06 = —a.
Similar to the proof of the first statement, all oo, & =
1,...,3n, have negative real parts if & > 0. Given o > 0 and
Xi = |pile®esX) i =2 .. n, it and ¢¥ are the critical

values for arg(x;) € [0, 27) such that —ot 2&2+4Xi is on the

imaginary axis. In particular, if arg(y;) = ! (respectively,

—a+y/a?+4x;
i), then 5

= limy_oo (e ®

_, 2lpilsin(arg(y;) :
= - (respectively,
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LM), i=2,...,n If arg(x;) € (YL, %) (re-
spectively, arg(x;) € [0,91) U (%, 27)), then —2FV. 22X V;2+4X1‘

have negative (respectively, positive) real parts. Because

—a++/a2+4p;

a > af the first statement implies that all 5 s
i =2,...,n, have negative real parts, which in turn implies
that arg(u;) € (¥L,o%), i = 2,...,n. If |§] < 69, then
arg(Asi—2), arg(Asi—1), and arg(\s;) are all within (¢}, %),
which implies that o¢;_5, 0g;—3, and gg;—1, ¢ = 2,...,n, all
have negative real parts. Therefore, if |#| < 6, then X has
exactly three zero eigenvalues and all other eigenvalues have
negative real parts.

Similar to the proof of the first statement, we write X
in Jordan canonical form as M JM !, where the columns
of M, denoted by mg, £ = 1,...,6n, can be chosen to
be the right eigenvectors or generalized right eigenvectors
of ¥ associated with eigenvalue oy, the rows of M1,
denoted by pf, k = 1,...,6n, can be chosen to be
the left eigenvectors or generalized left eigenvectors of ¥
associated with eigenvalue o such that pfmk = 1 and
pgmg = 0, k # ¢, and J is the Jordan block diagonal
matrix with o, being the diagonal entries. Note that the
right and left eigenvectors of —(L£ ® R) associated with
eigenvalue \y = 0 are, respectively, 1,, ® ¢, and p ® wy,
where ¢ = 1,2, 3. It in turn follows from Lemma 3.4 that the
right and left eigenvectors of X associated with g9y_1 = 0

. 1, ®q ap K wy
are, respectively, " and , where ¢ =
P Y [ O3n p ® wy
2,3. We can choose mop_1 = 176® | and Pop—1 =
3n
p® —F
w‘fTQ , where ¢ = 1,2, 3. Note that pI, map1 =1
P& aw St

and p2e71m2k_1 =0, where k, ¢ = 1,2,3 and k # (. Noting
r(t)

that o9y_1 = 0, £ = 1, 2, 3, it follows that lim;_, o(#)

limy oo Me/tM ™! ngg] - (Z?:l Moe—1P3_1) [228;}
which implies that z;(t) — pTz(0) + 1pTv,(0), yi(t) —
pTy(O)""_épTUy(O)’ Zz(t) - pTZ(O)J'_EpTUZ(O)’ Uwi(t) -
0, vy (t) — 0, and v,;(t) — 0 as t — oco. Equivalently, it
follows that all vehicles will eventually rendezvous at the
position given by (4).

3) For the third statement, if § = 69 (respectively,
= —05) and there exists a unique arg(,) € [, 2F) such
that ¥ — arg(u,) = 05, then Ago—1 = pye’

= |ucle ¥
(respectively, As, = e = |pu.|e*¥~), which implies that

_ 21 40s,
O6ng = M— Vvartadae—1 LM (respectively,
O = —otv 2+4’\3~ = L2|“””‘gm(w s)). Noting that the

it follows that

complex elgenvalues of X are in pairs,
2\#n|sin(w )

> has an eigenvalue equal to 0g,—3 =

(respectively, gg,—1 = M) denoted by o, for
simplicity. In this case, 3 has exactly three zero eigenvalues,
two nonzero eigenvalues on the imaginary axis, and all
other eigenvalues have negative real parts. In the following,
we focus on 6 = 0 since the analysis for 6 = —0

is similar except that all vehicles will move in reverse
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directions. Note from Lemma 3.4 that the right and left
eigenvectors associated with og._3 are, respectively,
W @ |:(0'6r€—3 + @) (Ve ® w2)

and
0'65—3(10@ ®§2) Vi ® wo

Wy, @ G2

and
O6r—3(Ws ® §2):| i

(O6r—3 + ) (Ve @ w2)

We can choose mgx—3 =

P6r—3 (206x—3+a)vfw.w] s2 Ve ® o

Note that pl. _smg..3 = 1. Similarly, it follows
that m, and p, corresponding to o, are given by
me = Tgr_3 and p, = Pgr_3. It follows that

[ngﬁﬂ = {228;] - (i:?_l Mor—1P5 1) [2283} + c(t)

2l sin(s ) T

for large t, where c(t) = (e a Mer—3P6r—3 T
2| pp| sin(p¥)

e mupT) T(gg . Let ¢(t) be the kth compo-

nent of c(t), k = 1,...,

2| pue | sin (%)

6n. It follows that cg(;_1)4¢(t) =

2Re(e" ™ & twai)S2(0)Per—slr(0)T,v(0)T]T),  where
i=1,...,n,0=1,2,3, and gy denotes the £/th component

of G. After some manipulation, it follows that cg;_1)1¢(t) =
2l6a(0yiiyphe—[r(0)7, w(O)T| T cos(HTpELE
orgluoph s O 0O+ " arkls)
i 1,. n ¢ = 1,2,3. Therefore, it follows that
JUz(t) — plx(0) + 2pTv.(0) + czio(t), wi(t) —
P y(O) + i vy (0) + c3;-1(t), and 2;(t) — pTz(0) +
LpTv.(0) + c3i(t) for large ¢. After some manipulation,
it can be venﬁed that H c3i—2(t), czi—1(t), esi ()] ||
2w, iyph_5[r(0),0(0)7]7|\/ad + aZsin®(§),  which
is a constant. Therefore, it follows that all vehicles will
eventually move on circular orbits with center give by (4)
and period WM The radius of the orbit for vehicle 4
is given by 2[wy (i) pg._3[r(0)", v(0)7]"|\/a3 + a3 sin*(§)
The relative radius of the orbits is equal to the relative
magnitude of w,;). In addition, the relative phase of
the vehicles is equal to the relative phase of w, ;. Note
from Lemma 3.3 that Euler axis a is orthogonal to both
Re(s2) and Im(cy), where Re(-) and Im(-), representing,
respectively, the real and imaginary part of a number, are
applied componentwise. It can thus be verified that a is
orthogonal to [Cgifz(t),Cgifl(t),C:),i(t)]T, which 1mp11es
that the circular orbits are on a plane perpendicular to a.

4) For the fourth statement, if there exists a unique
arg(us) € [m,2F) such that ¢ — arg(p,) = 65 and
05 <0 < minyg(,)epr,22),i20 (Y5’ — arg(pi)) (respectively,
— Mg e, 55 )in (OF — a18()) < 0 < =07,
then g1 = e \,u,Q\eL(arg(””)*@) (respectively,
A3 = ke = |1 | €428 (s)=0)) " where
arg(us) + 0 > ¢ (respectively, arg(p,) — 0 > ¥¥),
which implies that og,_3 = Vi L

3
— 2 . .. . .
Ogr_q = —otvar+dls, ”“2+4’\“) has a positive real part. A similar

argument as above shows that ¥ has exactly three zero
eigenvalues and two eigenvalues with positive real parts and
all other eigenvalues have negative real parts. By following
a similar procedure to the proof of the third statement,
we can show that all vehicles will eventually move along

(respectively,
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logarithmic spiral curves with center given by (4), growing
rate Re(o._3), and period m The radius of
the logarithmic spiral curve for vehicle ¢ is given by
2wy P 5[r(0)7, v(0)T] T [eRe(or2)t /a2 B sin® (4).
The relative radius of the logarithmic spiral curves is equal
to the relative magnitude of wy;). In addition, the relative
phase of the vehicles on their curves is equal to the relative
phase of w,(;). A similar argument to that for the third
statement shows that the curves are on a plane perpendicular
to Euler axis a. |

Remark 3.3: Note that the first statement of Theorem 3.2
generalizes Theorem 5.1 in [10], which gives only a suffi-
cient condition for o, by giving a necessary and sufficient
condition. Unlike the single-integrator case, the critical value
for the Euler angle for double-integrator dynamics depend
on both « and L. The critical value for the Euler angle
in the double-integrator case is smaller than that for the
single-integrator case. When « increases to infinity, the
critical value for the Euler angle in the double-integrator
case approaches that for the single-integrator case. Note that
besides the network topology and the Euler angle, « plays
an important role in (3).

Example 3.4: To illustrate, consider four vehicles with
network topology G shown by Fig. 1. Let £ associated with
G be given by

1.5 0 -1.1 —-04

-12 1.2 0 0

—-0.1 -0.5 0.6 0 )
-1 0 0 1

It can be computed that 6 = 0.3557 rad. Let R be the
rotation matrix corresponding to Euler axis a = 7;[1,2,3]7
and Euler angle § = 0J. Fig. 2 shows the eigenvalues of
—L and — (£ ® R). Note that the eigenvalues of — (£ ® R)
correspond to the eigenvalues of —L rotated by angles 0, 6,
and —6. Fig. 3 shows the eigenvalues of . Note that each
eigenvalue of —(L ® R), Ak, correspond to two eigenvalues
of I, 02k—1,2k>» where O2k—1,2k — w, k =

1,...,12. Because § = 6, two nonzero eigenvalues of X
are located on the imaginary axis as shown in Fig. 2.

NV

Fig. 1. Network topology for four vehicles. An arrow from j to ¢ denotes
that vehicle ¢ can receive information from vehicle j.

IV. SIMULATION

In this section, we study collective motions of four vehi-
cles using (3). Suppose that the network topology is given
by Fig. 1 and £ is given by (7). Let 6%, 65, and a be
given in Example 3.4. Using (3), it can be computed that
af = 0.3626. We let « = a®+0.5. Also note that there exists
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Fig. 2. Eigenvalues of —L and —(£ ® R) with 6§ = 9. Circles denote
the eigenvalues of —£ while x-marks denote the eigenvalues of —(L£ ® R).
The eigenvalues of —(£ ® R) correspond to the eigenvalues of — L rotated
by angles 0, 6, and —#6, respectively. In particular, the eigenvalues obtained
by rotating 114 by angles 0, 6, and —6 are shown by, respectively, the solid
line, the dashed line, and the dashdot line.

a unique arg(ps) € [m, 2F) such that ¢§ — arg(pa) = 65

(i.e., kK = 4 in Theorem 3.2). Note that the right eigenvector
of —L associated with eigenvalue 4 is wy = [—0.2847 —
0.2820¢,0.7213, —0.2501 + 0.1355,0.4809 + 0.0837.]7.
Also note that p = [0.2502,0.1911,0.4587,0.1001]%".

Figs. 4, 5, and 6 show, respectively, the trajectories of
the four vehicles using (3) with 6 = 65 — 0.2, 0 = 04, and
6 = 05 + 0.2. Note that all vehicles eventually rendezvous
at the position given by (4) when § = 65 — 0.2, move on
circular orbits when § = 69, and move along logarithmic
spiral curves when 6 = 05 + 0.2. Also note that when
0 = 04, the relative radius of the circular orbits (respectively,
the relative phase of the vehicles) is equal to the relative
magnitude (respectively, phase) of the components of wy.
In addition, the trajectories of all vehicles are perpendicular
to Euler axis a in all cases. By comparing the simulation
results with those in [9], we note that the critical values for
the Euler angle, the period of the circular motion, and the
period and growing rate of the logarithmic spiral motion are
quite different in both cases even if the network topology
and £ are chosen to the same in both cases.

V. CONCLUSION

We have introduced Cartesian coordinate coupling to a
consensus algorithm by a rotation matrix in 3D for double-
integrator dynamics. The results generalize the results pre-
sented in the first part [9] of the two-part paper and ex-
isting results on consensus algorithms for double-integrator
dynamics. We have shown that the network topology, the
damping gain, and the value of the Euler angle all affect the
resulting collective motions and quantitatively characterize
the resulting collective motions. Simulation results have
shown the effectiveness of theoretical results.
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Fig. 3. Eigenvalues of 3 with 6 = 6. Squares denote the eigenvalues

= —atvartdh V;2+4>"‘ while diamonds denote the
eigenvalues computed by ogj, = —— YTk V;2+4’\k, k=1,...,12. In
particular, the eigenvalues of X correspond to A9 = pa, A11 = u4eb9,
and A2 = pge—“? are shown by, respectively, the solid line, the dashed
line, and the dashdot line. Because 0 = 0;, two nonzero eigenvalues of X
are on the imaginary axis.

computed by oop_1

—— Vehicle 1
= = Vehicle 2
= Vehicle 3
'+ Vehicle 4

Fig. 4. Trajectories of the four vehicles using (3) with 0 = 05 —0.2. Circles
denote the starting positions of the vehicles while the squares denote the
snapshots of the vehicles at 30 sec.
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