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Abstract— This paper studies convergence of two consensus
algorithms for double-integrator dynamics with intermittent
interaction in a sampled-data setting. The first algorithm
guarantees that a team of vehicles reaches consensus on their
positions with a zero final velocity while the second algorithm
guarantees that a team of vehicles reaches consensus on their
positions with a constant final velocity. We show conditions on
the sampling period and the control gain such that consensus is
reached using these two algorithms over, respectively, an undi-
rected interaction topology and a directed interaction topology.
In particular, necessary and sufficient conditions are shown in
the case of undirected interaction while sufficient conditions are
shown in the case of directed interaction. Consensus equilibria
for both algorithms are also given.

I. INTRODUCTION

Distributed multi-vehicle cooperative control has received

significant attention in the control community in recent years.

Consensus plays an important role in achieving distributed

multi-vehicle cooperative control. The basic idea of consen-

sus is that a team of vehicles reaches an agreement on a

common value by negotiating with their neighbors. Con-

sensus algorithms for single-integrator kinematics have been

studied extensively in the literature (see [1] and references

therein).

Taking into account the fact that equations of motion

of a broad class of vehicles require a double-integrator

dynamic model, consensus algorithms for double-integrator

dynamics are studied in [2]–[9]. In particular, [2]–[4] derive

conditions on the interaction topology and the control gains

under which convergence is guaranteed. Refs. [5], [6] study

formation keeping problems while [7]–[9] study flocking of

multiple vehicle systems. All these algorithms are studied in

a continuous-time setting.

In multi-vehicle cooperative control, vehicles may only

be able to exchange information periodically but not con-

tinuously, which results in discrete-time or sampled-data

formulation. Current discrete-time consensus algorithms are

primarily studied for first-order kinematic models [10]–[12].

The algorithms are essentially distributed weighted averaging

algorithms [13]–[15]. Few works study consensus algorithms

for double-integrator dynamics in a sampled-data setting with

a notable exception in [16], where a sampled-data algorithm

is studied for double-integrator dynamics through average-

energy-like Lyapunov functions. The analysis in [16] is
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limited to an undirected interaction topology. However, in

cooperative control applications, information flow may often

be directed, either due to heterogeneity, nonuniform commu-

nication powers, or sensing with a limited field of view. The

case of directed interaction is much more challenging than

that of undirected interaction.

In this paper, we study convergence of two sampled-data

consensus algorithms for double-integrator dynamics. The

first algorithm guarantees that a team of vehicles reaches

consensus on their positions with a zero final velocity while

the second algorithm guarantees that a team of vehicles

reaches consensus on their positions with a constant final

velocity. We show conditions on the sampling period and

the control gain such that consensus is reached using these

two algorithms over, respectively, an undirected interaction

topology and a directed interaction topology. In particular,

necessary and sufficient conditions are shown in the case of

undirected interaction while sufficient conditions are shown

in the case of directed interaction. Consensus equilibria for

both algorithms are also given. In contrast to [16], our

analysis is based on algebraic graph theory and matrix theory

rather than a Lyapunov approach. Our results generalize the

convergence conditions derived in [16].

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Notions

It is natural to model interaction among vehicles by

directed or undirected graphs. Suppose that a team consists

of n vehicles. A weighted graph G consists of a node set

V = {1, . . . , n}, an edge set E ⊆ V × V , and a weighted

adjacency matrix A = [aij ] ∈ R
n×n. An edge (i, j) in a

weighted directed graph denotes that vehicle j can obtain

information from vehicle i, but not necessarily vice versa. In

contrast, the pairs of nodes in a weighted undirected graph

are unordered, where an edge (i, j) denotes that vehicles i

and j can obtain information from one another. Weighted

adjacency matrix A of a weighted directed graph is defined

such that aij is a positive weight if (j, i) ∈ E , while

aij = 0 if (j, i) 6∈ E . Weighted adjacency matrix A of a

weighted undirected graph is defined analogously except that

aij = aji, ∀i 6= j, since (j, i) ∈ E implies (i, j) ∈ E .

A directed path is a sequence of edges in a directed graph

of the form (i1, i2), (i2, i3), . . ., where ij ∈ V . An undi-

rected path in an undirected graph is defined analogously. A

directed graph has a directed spanning tree if there exists at

least one node having a directed path to all other nodes. An

undirected graph is connected if there is an undirected path

between every pair of distinct nodes.
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Let the (nonsymmetric) Laplacian matrix L = [ℓij ] ∈
R

n×n associated with A be defined as [17] ℓii =
∑n

j=1,j 6=i aij and ℓij = −aij , i 6= j. For an undirected

graph, L is symmetric positive semi-definite. However, L
for a directed graph does not have this property. In both the

undirected and directed cases, 0 is an eigenvalue of L with

associated eigenvector 1n, where 1n is the n × 1 column

vector of all ones.

B. Continuous-time Consensus Algorithms for Double-

integrator Dynamics

Consider vehicles with double-integrator dynamics given

by

ṙi = vi, v̇i = ui, i = 1, . . . , n, (1)

where ri ∈ R
m and vi ∈ R

m are, respectively, the position

and velocity of the ith vehicle, and ui ∈ R
m is the control

input.

A consensus algorithm for (1) is studied in [3], [18] as

ui = −
n∑

j=1

aij(ri − rj) − αvi, i = 1, . . . , n, (2)

where aij is the (i, j)th entry of weighted adjacency matrix

A associated with graph G and α is a positive gain introduc-

ing absolute damping. Consensus is reached for (2) if for all

ri(0) and vi(0), ri(t) → rj(t) and vi(t) → 0 as t → ∞.

A consensus algorithm for (1) is studied in [2] as

ui = −
n∑

j=1

aij [(ri − rj) + α(vi − vj)], i = 1, . . . , n, (3)

where aij is defined as in (2) and α is a positive gain

introducing relative damping. Consensus is reached for (3)

if for all ri(0) and vi(0), ri(t) → rj(t) and vi(t) → vj(t)
as t → ∞.

C. Sampled-data Consensus Algorithms for Double-

integrator Dynamics

In a sampled-data setting, following [16], we let

ui(t) = ui[k], kT ≤ t ≤ (k + 1)T, (4)

where k denotes the discrete-time index, T denotes the

sampling period, and ui[k] is the control input at t = kT .

Discretizing (1) with sampling period T , gives

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k]

vi[k + 1] = vi[k] + Tui[k], (5)

where ri[k] and vi[k] are the position and velocity of the ith

vehicle at t = kT .

We study the following two algorithms

ui[k] = −
n∑

j=1

aij(ri[k] − rj [k]) − αvi[k], (6)

which corresponds to continuous-time algorithm (2) and

ui[k] = −
n∑

j=1

aij [(ri[k] − rj [k]) + α(vi[k] − vj [k])], (7)

which corresponds to continuous-time algorithm (3). Note

that [16] shows conditions for (7) over an undirected in-

teraction topology through average-energy-like Lyapunov

functions. Relying on algebraic graph theory and matrix

theory, we will show necessary and sufficient conditions for

convergence of both (6) and (7) over an undirected interac-

tion topology and show sufficient conditions for convergence

of both (6) and (7) over a directed interaction topology.

In the remainder of the paper, for simplicity, we suppose

that ri ∈ R, vi ∈ R, and ui ∈ R. However, all results still

hold for ri ∈ R
m, vi ∈ R

m, and ui ∈ R
m by use of the

properties of the Kronecker product.

III. CONVERGENCE ANALYSIS OF THE SAMPLED-DATA

ALGORITHM WITH ABSOLUTE DAMPING

In this section, we analyze algorithm (6) over, respectively,

an undirected and a directed interaction topology. Before

moving on, we need the following lemmas:

Lemma 3.1 (Schur’s formula): Let A,B, C,D ∈ R
n×n.

Let M =

[
A B

C D

]

. Then det(M) = det(AD−BC), where

det(·) denotes the determinant of a matrix, if A, B, C, and

D commute pairwise.

Lemma 3.2: Let L be the nonsymmetric Laplacian ma-

trix (respectively, Laplacian matrix) associated with directed

graph G (respectively, undirected graph G). Then L has

a simple zero eigenvalue and all other eigenvalues have

positive real parts (respectively, are positive) if and only if

G has a directed spanning tree (respectively, is connected).

In addition, there exist 1n satisfying L1n = 0 and p ∈ R
n

satisfying p ≥ 0, pTL = 0, and pT 1 = 1.1

Proof: See [19] for the case of undirected graphs and [12]

for the case of directed graphs.

Lemma 3.3: [20, Lemma 8.2.7 part(i), p. 498] Let A ∈
R

n×n be given, let λ ∈ C be given, and suppose x and

y are vectors such that (i) Ax = λx, (ii) AT y = λy, and

(iii) xT y = 1. If |λ| = ρ(A) > 0, where ρ(A) denotes the

spectral radius of A, and λ is the only eigenvalue of A with

modulus ρ(A), then limm→∞(λ−1A)m → xyT .

Using (6), (5) can be written in matrix form as

[
r[k + 1]
v[k + 1]

]

=

[

In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In

]

︸ ︷︷ ︸

F

[
r[k]
v[k]

]

, (8)

where r = [r1, . . . , rn]T , v = [v1, . . . , vn]T , and In denote

the n× n identity matrix. To analyze (8), we first study the

property of F . Note that the characteristic polynomial of F

1That is, 1n and p are, respectively, the right and left eigenvectors of L
associated with the zero eigenvalue.
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is given by

det(sI2n − F )

= det

([

sIn − (In − T 2

2 L) −(T − αT 2

2 )In

TL sIn − (1 − αT )In

])

= det
(
[sIn − (In − T 2

2
L)][sIn − (1 − αT )In]

− (TL[−(T − αT 2

2
)In])

)

= det

(

(s2 − 2s + αTs + 1 − αT )In +
T 2

2
(1 + s)L

)

where we have used Lemma 3.1 to obtain the second to the

last equality.

Letting µi be the ith eigenvalue of −L, we get det(sIn +
L) =

∏n

i=1(s − µi). It thus follows that det(sI2n −
F ) =

∏n

i=1

(

s2 − 2s + αTs + 1 − αT − T 2

2 (1 + s)µi

)

.

Therefore, the roots of det(sI2n − F ) = 0 (i.e., the eigen-

values of F ) satisfy

s2 + (αT − 2 − T 2

2
µi)s + 1 − αT − T 2

2
µi = 0. (9)

Note that each eigenvalue of −L, µi, corresponds to two

eigenvalues of F , denoted by λ2i−1 and λ2i.

Without loss of generality, let µ1 = 0. It follows from (9)

that λ1 = 1 and λ2 = 1−αT . Therefore, F has at least one

eigenvalue equal to one. Let [pT , qT ]T , where p, q ∈ R
n, be

the right eigenvector of F associated with eigenvalue λ1 =

1. It follows that

[

In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In

] [
p

q

]

=

[
p

q

]

.

After some manipulation, it follows from Lemma 3.2 that

we can choose p = 1n and q = 0n, where 0n is the n × 1
column vector of all zeros. Similarly, it can be shown that

[pT , ( 1
α
− T

2 )pT ]T is a left eigenvector of F associated with

eigenvalue λ1 = 1.

Lemma 3.4: Using (6) for (5), ri[k] → rj [k] → pT r[0] +
( 1

α
− T

2 )pT v[0] and vi[k] → 0 as k → ∞ if and only if one

is the unique eigenvalue of F with maximum modulus.

Proof: (Sufficiency.) Note that x = [1T
n ,0T

n ]T and y =
[pT , ( 1

α
− T

2 )pT ]T are, respectively, a right and left eigen-

vector of F associated with eigenvalue one. Also note

that xT y = 1. If one is the unique eigenvalue with

maximum modulus, then it follows from Lemma 3.3

that limk→∞ F k →
[
1n

0n

]

[pT , ( 1
α

− T
2 )pT ]. Therefore,

it follows that limk→∞

[
r[k]
v[k]

]

= limk→∞ F k

[
r[0]
v[0]

]

=
[
r[0] + ( 1

α
− T

2 )pT v[0]
0n

]

.

(Necessity.) Note that F can be written in Jordan canonical

form as F = PJP−1, where J is the Jordan block matrix.

If ri[k] → rj [k] → pT r[0] + ( 1
α
− T

2 )pT v[0] and vi[k] → 0

as k → ∞, it follows that limk→∞ F k →
[
1n

0n

]

[pT , ( 1
α
−

T
2 )pT ], which has rank one. It thus follows that limk→∞ Jk

has rank one, which implies that all but one eigenvalue

are within the unit circle. Noting that F has at least one

eigenvalue equal to one, it follows that one is the unique

eigenvalue of F with maximum modulus.

A. Undirected Interaction

In this subsection, we show necessary and sufficient

conditions on α and T such that consensus is reached

using (6) over an undirected interaction topology. Note that

all eigenvalues of L are real for undirected graphs.

Lemma 3.5: The polynomial

s2 + as + b = 0, (10)

where a, b ∈ C, has all roots within the unit circle if and

only if all roots of

(1 + a + b)t2 + 2(1 − b)t + b − a + 1 = 0 (11)

are in the open left half plane (LHP).

Proof: By applying bilinear transformation s = t+1
t−1 [21],

polynomial (10) can be rewritten as (t + 1)2 + a(t + 1)(t−
1) + b(t − 1)2 = 0, which implies (11). Note that the

bilinear transformation maps the open LHP one-to-one onto

the interior of the unit circle. The lemma follows directly.

Lemma 3.6: Suppose that undirected graph G is con-

nected. All eigenvalues of F , where F is defined in (8),

are within the unit circle except one eigenvalue equal to one

if and only if α and T are chosen from the set

Sr =
⋂

∀µi≤0

{(α, T )| − T 2

2
µi < αT < 2, }, 2 (12)

where
⋂

denotes the intersection of sets.

Proof: When undirected graph G is connected, it follows

from Lemma 3.2 that µ1 = 0 and µi < 0, i = 2, . . . , n.

Because µ1 = 0, it follows that λ1 = 1 and λ2 = 1 − αT .

To ensure |λ2| < 1, it is required that 0 < αT < 2.

Let a = αT − 2 − T 2

2 µi and b = 1 − αT − T 2

2 µi. It

follows from Lemma 3.5 that for µi < 0, i = 2, · · · , n, the

roots of (9) are within the unit circle if and only if all roots

of

−T 2µit
2 + (T 2µi + 2αT )t + 4 − 2αT = 0 (13)

are in the open LHP. Because −T 2µi > 0, the roots of (13)

are always in the open LHP if and only if T 2µi + 2αT > 0
and 4 − 2αT > 0, which implies that −T 2

2 µi < αT < 2,

i = 2, . . . , n. Combining the above arguments proves the

lemma.

Theorem 3.1: Suppose that undirected graph G is con-

nected. Let p be defined in Lemma 3.2. Using (6) for (5),

ri[k] → rj [k] → pT r[0] + ( 1
α
− T

2 )pT v[0] and vi[k] → 0 as

k → ∞ if and only if α and T are chosen from Sr, where

Sr is defined by (12).

Proof: The statement follows directly from Lemmas 3.4

and 3.6.

2Note that Sr is nonempty.
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B. Directed Interaction

In this subsection, we show sufficient conditions on α and

T such that consensus is reached using (6) over a directed

interaction topology. Note that the eigenvalues of L may be

complex for directed graphs, which makes the analysis more

challenging.

Lemma 3.7: [22], [23] All the zeros of the complex

polynomial P (z) = zn +α1z
n−1 + . . .+αn−1z +αn satisfy

|z| ≤ r0, where r0 is the unique nonnegative solution of the

equation rn − |α1|rn−1 − . . . − |αn−1|r − |αn| = 0. The

bound r0 is attained if αi = −|αi|.
Corollary 3.2: All roots of polynomial (10) are within the

unit circle if |a|+ |b| < 1. Moreover, if |a+ b|+ |a− b| < 1,

all roots of (10) are still within the unit circle.

Proof: According to Lemma 3.7, the roots of (10) are within

the unit circle if the unique nonnegative solution s0 of s2 −
|a|s − |b| = 0 satisfies s0 < 1. It is straightforward to show

that s0 =
|a|+

√
|a|2+4|b|

2 . Therefore, the roots of (10) are

within the unit circle if

|a| +
√

|a|2 + 4|b| < 2. (14)

We next discuss the condition under which (14) holds. If

b = 0, then the statements of the corollary hold trivially.

If |b| 6= 0, we have
(|a|+

√
|a|2+4|b|)(−|a|+

√
|a|2+4|b|)

−|a|+
√

|a|2+4|b|
< 2.

After some computation, it follows that condition (14) is

equivalent to |a| + |b| < 1. Therefore, the first statement

of the corollary holds. For the second statement, because

|a| + |b| ≤ |a + b| + |a − b|, if |a + b| + |a − b| < 1, then

|a|+ |b| < 1, which implies that the second statement of the

corollary also holds.

Lemma 3.8: Suppose that directed graph G has a directed

spanning tree. Let Re(·) and Im(·) denote, respectively, the

real and imaginary part of a number. There exist positive α

and T such that Sc ∩ Sr is nonempty, where

Sc =
⋂

∀Re(µi)<0 and Im(µi) 6=0

{(α, T )||1+T 2µi|+|3−2αT | < 1},

(15)

and Sr is defined by (12). If α and T are chosen from Sc∩Sr,

then all eigenvalues of F are within the unit circle except

one eigenvalue equal to one.

Proof: For the first statement, we let αT = 3
2 . When

Re(µi) < 0 and Im(µi) 6= 0, |1 + T 2µi| + |3 − 2αT | <

1 implies |1 + T 2µi| < 1 because αT = 3
2 . It thus

follows that 0 < T <

√
−2Re(µi)

|µi|
, ∀Re(µi) < 0 and

Im(µi) 6= 0. When µi ≤ 0, −T 2

2 µi < αT < 2
can be simplified as −T 2µi < 3

2 because αT = 3
2 .

It thus follows that 0 < T <
√

3
−µi

, ∀µi ≤ 0. Let

Tc =
⋂

∀Re(µi)<0 and Im(µi) 6=0

{

T |0 < T <

√
−2Re(µi)

|µi|

}

and Tr =
⋂

∀µi≤0

{

T |0 < T <
√

3
−µi

}

.3 It is straightfor-

ward to see that Tc∩Tr is nonempty. Recalling that αT = 3
2 ,

it follows that Sc ∩ Sr is nonempty as well.

3When µi = 0, T > 0 can be chosen arbitrarily.

For the second statement, note that if directed graph G has

a directed spanning tree, then it follows from Lemma 3.2

that µ1 = 0 and Re(µi) < 0, i = 2, . . . , n. Note that µ1 =
0 implies that λ1 = 1 and λ2 = 1 − αT . To ensure that

|λ2| < 1, it is required that 0 < αT < 2. When Re(µi) < 0
and Im(µi) 6= 0, it follows from Corollary 3.2 that the roots

of (9) are within the unit circle if |1+T 2µi|+|3−2αT | < 1,

where we have used the second statement of Corollary 3.2 by

letting a = αT − 2 − T 2

2 µi and b = 1 − T 2

2 µi − αT . When

µi < 0, it follows from the proof of Lemma 3.6 that the

roots of (9) are within the unit circle if −T 2

2 µi < αT < 2.

Combining the above arguments proves the second statement.

Theorem 3.3: Suppose that directed graph G has a di-

rected spanning tree. Let p be defined in Lemma 3.2.

Using (6) for (5), ri[k] → rj [k] → pT r[0]+ ( 1
α
− T

2 )pT v[0]
and vi[k] → 0 as k → ∞ if α and T are chosen from Sc∩Sr,

where Sc and Sr are defined by (15) and (12), respectively.

Proof: The statement follows directly from Lemma 3.4 and

Lemma 3.8.

IV. CONVERGENCE ANALYSIS OF THE SAMPLED-DATA

ALGORITHM WITH RELATIVE DAMPING

In this section, we analyze algorithm (7) over, respectively,

an undirected and an directed interaction topology.

Using (7), (5) can be written in matrix form as
[
r[k + 1]
v[k + 1]

]

=

[

In − T 2

2 L TIn − T 2

2 L
−TL In − αTL

]

︸ ︷︷ ︸

G

[
r[k]
v[k]

]

. (16)

A similar analysis to that for (8) shows that the roots of

det(sI2n − G) = 0 (i.e., the eigenvalues of G) satisfy

s2− (2+αTµi +
1

2
T 2µi)s+1+αTµi −

1

2
T 2µi = 0. (17)

Similarly, each eigenvalue of −L, µi, corresponds to two

eigenvalues of G, denoted by ρ2i−1 and ρ2i. Without loss

of generality, let µ1 = 0, which implies that ρ1 = ρ2 = 1.

Therefore, G has at least two eigenvalues equal to one.

Lemma 4.1: Using (7) for (5), ri[k] → rj [k] → pT r[0] +
kTpT v[0] and vi[k] → vj [k] → pT v[0] for large k if and

only if G has exactly two eigenvalues equal to one and all

other eigenvalues have modulus smaller than one.

Proof: (Sufficiency.) Note from (17) that if G has ex-

actly two eigenvalues equal to one (i.e., ρ1 = ρ2 =
1), then −L has exactly one eigenvalue equal to zero.

Let [pT , qT ]T , where p, q ∈ R
n, be the right eigenvec-

tor of G associated with eigenvalue one. It follows that
[

In − T 2

2 L TIn − T 2

2 L
−TL In − αTL

] [
p

q

]

=

[
p

q

]

. After some computa-

tion, it follows that eigenvalue one has geometric multiplicity

equal to one even if it has algebraic multiplicity equal to two.

It also follows from Lemma 3.2 that we can choose p = 1n

and q = 0n. In addition, a generalized right eigenvector

associated with eigenvalue one can be chosen as [0T
n , 1

T
1T

n ]T .

Similarly, it can be shown that [0T
n , TpT

n ]T and [pT ,0T
n ]T

are, respectively, a left eigenvector and generalized left

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA06.4

3968



eigenvector associated with eigenvalue one. Note that G

can be written in Jordan canonical form as G = PJP−1,

where the columns of P , denoted by pk, k = 1, . . . , 2n,

can be chosen to be the right eigenvectors or generalized

right eigenvectors of G, the rows of P−1, denoted by qT
k ,

k = 1, . . . , 2n, can be chosen to be the left eigenvectors or

generalized left eigenvectors of G such that pT
k qk = 1 and

pT
k qℓ = 0, k 6= ℓ, and J is the Jordan block diagonal matrix

with the eigenvalues of G being the diagonal entries. Note

that ρ1 = ρ2 = 1 and Re(ρk) < 0, k = 3, . . . , 2n. Also

note that we can choose p1 = [1T
n ,0T

n ]T , p2 = [0T
n , 1

T
1T

n ]T ,

q1 = [pT ,0T
n ]T , and q2 = [0T

n , TpT
n ]T . It follows that

Gk → PJkP−1 →
[
1n 0n

0n
1
T
1n

] [
1 k

0 1

] [
pT 0T

n

0T
n TpT

]

=
[
1npT kT1npT

0n 1npT

]

. Therefore, it follows that ri[k] →
rj [k] → pT r[0] + kTpT v[0] and vi[k] → vj [k] → pT v[0]
for large k.

(Necessity.) Note that G has at least two eigenvalues equal

to one. If ri[k] → rj [k] → pT r[0] + kTpT v[0] and vi[k] →
vj [k] → pT v[0] for large k, it follows that F k has rank two

for large t, which in turn implies that Jk has rank two for

large k. It follows that G has exactly two eigenvalues equal

to one and all other eigenvalues have modulus smaller than

one.

A. Undirected Interaction

In this subsection, we show necessary and sufficient con-

ditions on α and T such that consensus is reached using (7)

over an undirected interaction topology.

Lemma 4.2: Suppose that undirected graph G is con-

nected. All eigenvalues of G are within the unit circle except

two eigenvalues equal to one if and only if α and T are

chosen from the set

Qr =
⋂

∀µi<0

{(α, T )|T
2

2
< αT < − 2

µi

}. (18)

4

Proof: Because undirected graph G is connected, it follows

that µ1 = 0 and µi < 0, i = 2, · · · , n. Note that ρ1 =
ρ2 = 1 because µ1 = 0. Let a = −(2+αTµi + 1

2T 2µi) and

b = 1 + αTµi − 1
2T 2µi. It follows from Lemma 3.5 that for

µi < 0, i = 2, . . . , n, the roots of (17) are within the unit

circle if and only if all roots of

−T 2µit
2 + (T 2µi − 2αTµi)t + 4 + 2αTµi = 0, (19)

are in the open LHP. Because −T 2µi > 0, the roots of (19)

are always in the open LHP if and only if 4 + 2αTµi >

0 and T 2µi − 2αTµi > 0, which implies that T 2

2 < αT <

− 2
µi

, i = 2, . . . , n. Combining the above arguments proves

the lemma.

Theorem 4.1: Suppose that undirected graph G is con-

nected. Let p be defined in Lemma 3.2. Using (7), ri[k] →
rj [k] → pT r[0] + kTpT v[0] and vi[k] → vj [k] → pT v[0]

4Note that Qr is nonempty.

for large k if and only if α and T are chosen from Qr, where

Qr is defined by (18).

Proof: The statement follows directly from Lemmas 4.1

and 4.2.

B. Directed Interaction

In this subsection, we show sufficient conditions on α

and T such that consensus is reached using (7) over a

directed interaction topology. Note again that the eigenvalues

of L may be complex for directed graphs, which makes the

analysis more challenging.

Lemma 4.3: Suppose that Re(µi) < 0 and Im(µi) 6= 0.

All roots of (17) are within the unit circle if α
T

> 1
2 and

αT < φ(µi), where φ(µi)
△
= − 8Im(µi)

2

|µi|4(T−2α)2 − 2Re(µi)
|µi|

.

Proof: As in the proof of Lemma 4.2, all roots of (17) are

within the unit circle if and only if all roots of (19) are in

the open LHP. Letting s1 and s2 denote the roots of (19), it

follows that

s1 + s2 = 1 − 2
α

T
(20)

and

s1s2 = − 4

µiT 2
− 2

α

T
. (21)

Noting that (20) implies that Im(s1)+Im(s2) = 0, we define

s1 = a1+jb and s2 = a2−jb, where j is the imaginary unit.

Note that s1 and s2 have negative real parts if and only if

a1 + a2 < 0 and a1a2 > 0. Note from (20) that a1 + a2 < 0
is equivalent to α

T
> 1

2 . We next show conditions on α and T

such that a1a2 > 0 holds. Substituting the definitions of s1

and s2 into (21), gives a1a2+b2+j(a2−a1)b = − 4
µiT 2 −2 α

T
,

which implies that

(a2 − a1)b =
4Im(µi)

|µi|2T 2
(22)

a1a2 + b2 =
−4Re(µi)

|µi|2T 2
− 2

α

T
. (23)

It follows from (22) that b = 4Im(µi)
|µi|2T 2(a2−a1)

. Consider also

the fact that (a2−a1)
2 = (a2 +a1)

2−4a1a2 = (1−2 α
T

)2−
4a1a2. After some manipulation, (23) can be written as

4(a1a2)
2 + Aa1a2 − B = 0. (24)

where A
△
= 4( 4Re(µi)

|µi|2T 2 +2 α
T

)−(1−2 α
T

)2 and B
△
= ( 4Re(µi)

|µi|2T 2 +

2 α
T

)(1 − 2 α
T

)2 + 16Im(µi)
2

|µi|4T 4 . It follows that A2 + 16B =

[4( 4Re(µi)
|µi|2T 2 +2 α

T
)+(1−2 α

T
)2]2+ 16Im(µi)

2

|µi|4T 4 ≥ 0, which implies

that (24) has two real roots. Therefore, sufficient conditions

for a1a2 > 0 are B < 0 and A < 0. Because
16Im(µi)

2

|µi|4T 4 > 0,

if B < 0, then 4( 4Re(µi)
|µi|2T 2 +2 α

T
) < 0, which implies A < 0 as

well. Therefore, we only need to find conditions to guarantee

B < 0. After some computation, it follows that αT < φ(µi)
implies B < 0. Combining the previous arguments proves

the lemma.

Lemma 4.4: Suppose that directed graph G has a directed

spanning tree. There exist positive α and T such that Qc∩Qr
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is nonempty, where

Qc =
⋂

∀Re(µi)<0 and Im(µi) 6=0

{

(α, T )|1
2

<
α

T
, αT < φ(µi)

}

,

(25)

where φ(µi) is defined in Lemma 4.3 and Qr is defined

by (18). If α and T are chosen from Qr ∩ Qc, then all

eigenvalues of G are within the unit circle except two

eigenvalues equal to one.

Proof: For the first statement, we let α > T > 0. When

Re(µi) < 0 and Im(µi) 6= 0, it follows that α
T

> 1
2 holds

apparently. Note that α > T implies (T − 2α)2 > α2.

Therefore, a sufficient condition for αT < φ(µi) is

αT < −8Im(µi)
2

|µi|4α2
− 2Re(µi)

|µi|2
. (26)

To ensure that there are feasible α > 0 and T > 0
satisfying (26), we first need to ensure that the right side

of (26) is positive, which requires α >
2|Im(µi)|

|µi|
√

−Re(µi)
. It

also follows from (26) that T < − 8Im(µi)
2

|µi|4α3 − 2Re(µi)
|µi|2α

,

∀Re(µi) < 0 and Im(µi) 6= 0. Therefore, (25) is ensured

to be nonempty if α and T are chosen from, respec-

tively, αc =
⋂

∀Re(µi)<0 and Im(µi) 6=0{α|α >
2|Im(µi)|

|µi|
√

−Re(µi)
}

and Tc =
⋂

∀Re(µi)<0 and Im(µi) 6=0{T |T < − 8Im(µi)
2

|µi|4α3 −
2Re(µi)
|µi|2α

and 0 < T < α}. Note that (18) is ensured to

be nonempty if α and T are chosen from, respectively,

αr = {α|α > 0} and Tr =
⋂

∀µi<0{T |0 < T < 2α and T <

− 2
µiα

}. It is straightforward to see that both αc ∩ αr and

Tc∩Tr are nonempty. Combining the above arguments shows

that Qc ∩ Qr is nonempty.

For the second statement, note that if directed graph G
has a directed spanning tree, it follows from Lemma 3.2 that

µ1 = 0 and Re(µi) < 0, i = 2, . . . , n. Note that µ1 = 0
implies that ρ1 = 1 and ρ2 = 1. When Re(µi) < 0 and

Im(µi) 6= 0, it follows from Lemma 4.3 that the roots of (17)

are within unit circle if α
T

> 1
2 and αT < φ(µi). When

µi < 0, it follows from Lemma 4.2 that the roots of (17)

are within unit circle if T 2

2 < αT < − 2
µi

. Combining the

above arguments shows that all eigenvalues of G are within

the unit circle except two eigenvalues equal to one if α and

T are chosen from Qc ∩ Qr.

Theorem 4.2: Suppose that directed graph G has a di-

rected spanning tree. Using (7), ri[k] → rj [k] → pT r[0] +
kTpT v[0] and vi[k] → vj [k] → pT v[0] for large k if α and

T are chosen from Qc ∩ Qr, where Qc and Qr are defined

in (25) and (18), respectively.

Proof: The proof follows directly from Lemma 4.2 and

Lemma 4.4.

V. CONCLUSION

We have studied the sampled-data consensus algorithms

for double-integrator dynamics. Two sampled-date consensus

algorithms with, respectively, absolute damping and relative

damping have been studied over both undirected and directed

interaction topologies. Necessary and sufficient conditions

for convergence are given in the undirected case while

sufficient conditions for convergence are given in the directed

case. The final consensus equilibria for both algorithms have

also been given.
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