
Decomposition of existence and stability analysis of periodic solutions of

systems with impacts: application to bipedal walking robot

L. Fridman, Y. Aoustin, and F. Plestan

Abstract— The decomposition of the problem of existence
and stability for fast periodic solutions of singularly perturbed
nonlinear systems with the impact effects is considered. With
this aim, theorem for existence and stability of fixed points for
corresponding Poincaré sections is proved. These results are
applied for the decomposition of the control design problem
for bipedal robots with heavy torsos.
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I. INTRODUCTION

The stability analysis of periodic nonlinear systems with

the time of impulse depending on state variables is a hard

task in many applications such as for walking gaits [10],

[14], [13], [2]. The impulsive impact for the walking gait

does not allow the use of standard methods for analysis

of periodic solutions based on linearization. The use of

Poincaré sections seems to be a good choice [1], [13],

[2], [8]. Previous works have still proposed solutions for

different robots as Raibert’s one-legged hopper [9], [18],

bipeds without torso [13], [12], [23], and five-link bipeds

(with torso, legs with knees) [8], [16], [17], [21]. Ones of

the more accomplished results [1], [13], [2], [21] consist

in designing the control strategy (with, in particular, the

finite time convergence property) such that the application of

Poincaré sections method to three- and five-link is simplified:

it yields an algorithm which allows, through the calculation

of a continuous map from a subinterval of IR to itself, to

conclude on the stability of the walking gait. The problem

of stability for slow periodic solutions of impulse systems

could be decomposed using the central manifold technique

[13]. The case of the heavy torso implies that the central

integral manifold technique could not be used because the

fast motions in this case are oscillating. The fast motions

have an oscillatory behavior and then the central manifold

technique could not be used. This last point implies that

mathematical tools are needed allowing controllers design

for the torso and the legs separately. The majority of existing

results on impulse control are limited to open-loop control
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[19], [4], [20]. Recent publications ([6] and associated refer-

ences) deal the active singularity. Then here passive impact

is considered, i.e. the impulse time depends on state variables

and there are no applied torques at the impact. For smooth

singularly perturbed systems with fast periodic solutions, the

averaging theorem has been proposed in [22] using Lyapunov

methods. For systems with discontinuous right hand sides

[15], the analogous of the averaging theorem is proved in

terms of fixed points of the Poincaré sections. Singularly

perturbed impulse systems were considered in [3] where

value of impulses are computed at preprogrammed time

moments. There exists another way to consider singularly

perturbed systems with measurable fast motions based on

averaging technique (see [11] and references there in as

one of the recent one). But the cyclic motions are not

considered. However decomposition existence and stability

of periodic solutions for singularly perturbed systems with

impacts is an important task. In this paper, dynamics of the

biped walking with the heavy torso is rewritten in the form

of singularly perturbed system with impacts. The problem

of existence and stability of the fast periodic motions is

reduced to the problem of existence and stability of a fixed

point of Poincaré sections. A decomposition theorem is

proved claiming that from the existence and exponential

orbital stability of a periodic solution of the fast system and

existence and exponential stability of equilibrium point of the

averaging slow equations, one can conclude the existence and

orbital exponential stability of the periodic solutions of the

original singularly perturbed impulse system. Obtained result

is applied on a biped with heavy torso. From a technical point

of view for a biped it is better to place the actuator, the gear

ratio boxes such as the center of mass is upper the hip joints

to get the smallest inertial forces for the legs. Then biped

with a heavy torso is not a particular unrealistic case.

The paper is organized as follows. Section II displays the

bipedal robot. Section III presents the theoretical contribution

of the paper, through the development of a stability analysis

based on Poincaré sections of a nonlinear dynamic system

written under singular perturbations formalism. Section IV

presents the application of the previous contribution.

II. MODEL OF THE BIPEDAL ROBOT

Models are displayed for a bipedal robot (Figure 1) which

is a three-link biped with two identical legs without knee,

a torso, and two actuators at the hips between each leg and

the torso.
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Fig. 1: Diagram of a three-link biped.

A. Dynamic model

Let us introduce qe = [qt X Z]t with (X ,Z) the Cartesian

coordinates of the actuated hips, and q = [q1 q2 q3]
t the

three orientation angles of the legs and the torso for the

biped without contact with the ground. For the three-link

biped the dimension of qe is 5. The stance (resp. swing) leg

is leg 1 (resp. 2), and the angles are defined positive for

the counter clockwise motion. Links are assumed massive

and rigid, the joint are revolute and ideal; therefore, friction

effects in the joints are neglected. Let Γ = [Γ1 Γ2]
t

denote the

torques applied to the hips by the actuators, and R = [Rt
1 Rt

2]
t

with R j = [R jN R jT ]t ( j = 1,2) the forces applied to the j-

leg tip following the tangential and horizontal axes to the

ground.

B. General and reduced dynamic models

A general dynamic model is given by

Deq̈e + Heq̇e + Ge = BeΓ+ Jt
RR (1)

De(q) (5 × 5) is the symmetric positive inertia matrix,

He(q, q̇) (5×5) is the Coriolis and centrifugal effects matrix

and Ge(qe) (5×1) is the gravity effects vector. Be (5×2) is

a constant matrix composed of 1 and 0 and JR(qe) (5× 4)

is the Jacobian matrix converting the external forces into the

corresponding joint torques.

Assume that during the swing phase of the motion, the

stance leg is acting as a pivot i.e., there is no slipping of the

swing leg. Then there are only three independent generalized

coordinates in single support to define the configuration of

the biped.In consequence, in single support the dynamics of

the biped can be modeled by the following matrix equation:

Dq̈+ Hq̇+ G = BΓ (2)

Matrix D(q) (3 × 3) is the symmetric positive inertia,

H(q, q̇) (3×3) is the Coriolis and centrifugal effects matrix,

and G(q) (3×1) is the gravity effects vector. B (3×2) is a

constant matrix composed of 1 and 0. Equation (2) can be

written as

ẋ =

[

q̇

D−1(−Hq̇−G + BΓ)

]

= f (x)+ g(x) ·Γ

(3)

with x = [qt q̇t ]t . The state space is taken such that x ∈ X ⊂
IR 2(n−2) = {x | q ∈M , q̇ ∈ N }, with M = (−π,π) n−2 and

N = {q̇ ∈ IRn | |q̇| < q̇M < ∞}.

C. Some considerations about dynamics of swing leg and

stance leg with the torso

Let L and m be respectively the length and the mass

of each leg. The three-link biped is assumed to have two

identical legs. Let I be the moment of inertia of each leg,

around the axis parallel to the joint axis and passing through

the leg mass center, and r the position of the mass center

of each leg from the hips. The torso is characterized by its

mass m3, its moment of inertia I3 and the position from the

hips of its center of mass r3. If torso mass m3 is much larger

than legs mass m, element D11 of D can be approximated by

m3L2. Let D̄ be the matrix equal to D with D11 chosen equal

to m3L2. Taking into account the properties of the definite

positive matrices, since D is definite positive, then D̄ is also

definite positive and its inverse matrix exists. From structural

analysis of D̄−1, it yields that term w22 is the single term

depending on m2
3 and m3I3. From (3), one concludes that for

a three-link biped with a heavy trunk, the motions of the

stance leg together with the torso are slow with respect to

dynamics of the swing leg ones.

D. Passive impact model

The walking gait defined later will be such as the motion

of the swing leg is not symmetric to the one of the stance

leg. But the fact that there is no knees, when the two legs

will be vertical we will consider that the swing leg touches

the ground without impact. An impact will be taken only into

account at the end of the single support, when the swing leg

will reaches its final configuration. Let T denote the impact

time. An impact occurs when state trajectories evolve in set

S defined as

S = {x ∈ X | q2(T ) = −q1(0) } (4)

with q2(T ) and q1(0) respectively the final and initial orien-

tations of the swing and stance legs.

The impact is assumed to be a passive, i.e. without

torques applied in the inter-link joints, absolutely inelastic

and that the legs do not slip. Given these hypotheses, the

ground reactions at T can be considered as impulsive forces

acting on only the swing leg and defined by Dirac delta-

functions R2 = IR2
δ(t−T ) with IR2

= [IR2N
IR2T

]t the vector of

magnitudes of impulsive reaction [10]. Impact equations are

obtained through the integration of (1) for the infinitesimal

time. The torques supplied by the actuators at the joints and

Coriolis and gravity forces have finite values: thus, they do

not influence the impact. Consequently, the impact equations

can be written as

De(q̇
+
e − q̇−e ) = Jt

R2
IR2

, (5)

qe being the configuration of the biped at t = T and q̇−e
and q̇+

e are the angular velocities just before and just after

the impact. The swing leg after the impact becomes the

supporting leg. Its tip velocity becomes zero after the impact

Jt
R2

q̇+
e = 0 (6)
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E. Nonlinear model all over the step

The overall biped model can be expressed as,

ẋ = f (x)+ g(x)Γ, for x− 6∈ S
x+ = ∆ [x−] , for x− ∈ S .

(7)

with x− = [q−t q̇−t ]t and x+ = [q+t q̇+t ]t .

III. DECOMPOSITION THEOREM

A. Preliminaries

Consider a nonlinear system with impact effects

ζ̇ = f̄ (ζ), for ζ− 6∈ S̄
ζ+ = ∆̄ [ζ−] , for ζ− ∈ S̄ .

(8)

with ζ∈ Z ⊂ IRk+1 the state vector and ∆̄ the impact function.

Let y ∈ Ω ⊂ IR (Ω is a closed compact set) be the scalar

variable which characterizes that an impact occurs1 such that

y = 0. Then, at the impact, system (8) is evolving in

S̄ = {ζ ∈ Z | y(T ) = 0}. (9)

Defining κ ∈ Ωk ⊂ IRk (Ωk is a closed compact set), system

(8) is rewritten as

dκ/dt = G(κ,y), dy/dt = F(κ,y) (10)

with initial conditions

κ(0) = κ0, y(0) = 0 (11)

and G : IRk × IR → IRk, F : IRk × IR → IR, F,G ∈C2(Ωk ×Ω),
κ0 ∈ Ωk. Denote that solutions of system (10) smoothly

depend on initial conditions. Suppose that, for all κ0 ∈ Ωk,

there exists a time instant T (κ0) as the smallest positive root

of the equation

y(T (κ0)) = 0 (12)

and, moreover,

dy

dt

[

T (κ0)
]

= F(κ(T (κ0)),0) 6= 0. (13)

From implicit function theorem, one gets T ∈ C1(Ωk) and

then T is a continuous function in κ(0) = κ0. Define the

solution of Cauchy problem (10)-(11) on [0,T (κ0)). Suppose

that the system has an impact at T (κ0) defined by

κ(T (κ0)+) = ∆̄r

[

κ(T (κ0)−)
]

(14)

with ∆̄r ∈C1(Ωk) being a “reduced” part of ∆̄. Then, define

the Poincaré section P such that

P(κ0) = κ
(

T (κ0)+
)

= ∆̄r

[

κ(T (κ0)−)
]

(15)

of the set Ωk into itself. Remark that operator P is smooth

on Ωk as a composition of the smooth maps. Considering

the solution of system (10) with the initial conditions

κ
(

T (κ0)+
)

= ∆̄r

[

κ(T (κ0)−)
]

, y(0) = 0 (16)

and applying the same process, one defines the solution of

system (10)-(14) for all t ≥ T (κ0), i.e. for all t ∈ [0,∞).

1For the previous walking biped, variable y is defined as y = q2(t)+q1(0)
with an impact occurring when y = 0.

Define a function {κ0(t),y0(t)} as a T0−periodic solution

of the system if there exists a constant T0 > 0 such that

{κ0(t + T0),y0(t + T0)} = {κ0(t),y0(t)} for all t ∈ [0,∞).
Define the set O = {{κ0(t),y0(t)},t ≥ 0} a periodic orbit

of system (10)-(14).

From [13], a periodic orbit is stable in Lyapunov sense if, for

every ε > 0, there exists an open neighborhood V of O such

that, for every κ0 ∈ V , for a solution {κ(t),y(t)} of (10)-

(14), dist({κ(t),y(t)},O ) < ε for all t ≥ 0. O is attractive

if there exists an open neighborhood V of O such that

for every κ0 ∈ V , there exists a solution satisfying initial

conditions κ(0) = κ0 and limt→∞ dist({κ(t),y(t)},O ) = 0.

O is asymptotically stable in the sense of Lyapunov if it is

both stable and attractive. In the sequel of the paper, the

qualifier “in the sense of Lyapunov” will be systematically

assumed if it is not explicitly made.

To prove the existence of an isolated periodic orbit O , it

is sufficient to show that the Poincaré section P(κ0) has an

isolated fixed point κ∗ = P(κ∗), corresponding to O . O is

locally exponentially orbitally stable if
∣

∣

∣

∣

∣

∣

∣

∣

∂P

∂κ0

∣

∣

∣

∣

∣

∣

∣

∣

κ0=κ∗
< 1. (17)

B. Fast periodic oscillations in systems with impact

Consider now a nonlinear system with impact effects

ζ̇ = f̄ (ζ), for ζ− 6∈ S̄ , ζ+ = ∆̄ [ζ−] , for ζ− ∈ S̄ . (18)

with ζ ∈ Z ⊂ IRm+k+1 the state vector. Suppose that its

dynamics can be represented by the singularly perturbed

system in the form

µ
dκ

dt
= G(κ,y,z), µ

dy

dt
= F(κ,y,z), ż = H(κ,y,z)

(19)

with z ∈ Ωm ⊂ Rm, Ωm a compact set, F,G,H ∈C2(Ωk×Ω×
Ωm), and µ > 0 a small parameter. Rewrite system (19) in

the “fast time” τ = t/µ as

dκ

dτ
= G(κ,y,z),

dy

dτ
= F(κ,y,z),

dz

dτ
= µH(κ,y,z)

(20)

Consider the subsystem describing only fast motions in (20)

dκ̄/dτ = G(κ̄, ȳ,z)

dȳ/dτ = F(κ̄, ȳ,z)

z ∈ Ωm is a parameter

(21)

Denote {κ(τ,κ0,z0,µ), y(τ,κ0,z0,µ), z(τ,κ0,z0,µ)} and

{κ̄(τ,κ0,z), ȳ(τ,κ0,z)} the solutions of systems (20) and (21)

respectively with initial conditions respectively

y(0) = ȳ(0) = 0, κ(0) = κ0, z(0) = z0, κ̄(0) = κ0. (22)

Assume that, for all κ0 ∈ Ωk, z ∈ Ωm, there exists a time

instant T (κ0,z) as the smallest positive root of the equation

ȳ(T (κ0,z),κ0,z) = 0 (23)
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and moreover

dȳ

dτ

[

T (κ0,z),κ0,z
]

6= 0. (24)

As previously, note that, from implicit function theorem, one

gets T ∈C1(Ωk ×Ωm). Suppose that, at T (κ0,z), an impact

occurs. It yields

κ̄(T (κ0,z)+,κ0,z) = ∆̄r

[

κ̄(T (κ0,z)−,κ0,z)
]

(25)

with ∆̄r ∈ C1(Ωk) being a “reduced” part of ∆̄.

Let the Poincaré section define as κ1 = P(κ0,z) =
∆̄r

[

κ̄(T (κ0,z)−,κ0,z)
]

of the set Ωk into itself, generated

by the system (21),(23) and (25).

C. Main theorem

Suppose that for all z ∈ Ω̄m

A1. The Poincaré section P(κ0,z) has an isolated fixed

point κ∗(z) = P(κ∗(z),z), corresponding to the isolated

T0(z)-periodic solution {ȳ0(τ,z), κ̄0(τ,z)} for system

(21)-(23)-(25) and

Det

[

∂P

∂κ0

]

κ0=κ∗
6= 0.

A2.

∣

∣

∣

∣

∣

∣

∣

∣

∂P

∂κ0

∣

∣

∣

∣

∣

∣

∣

∣

κ0=κ∗
< 1.

A3. An average system
dz̄

dt
= p(z̄) with

p(z̄) =
1

T (z̄)

Z T (z̄)

0
H(ȳ0(τ, z̄), κ̄0(τ, z̄), z̄)dτ (26)

has an isolated asymptotically stable equilibrium point z̄∗

such that p(z̄∗) = 0 and the eigenvalues of the matrix
dp

dz̄
(z̄∗),

denoted as ν j(z̄
∗) (1 ≤ j ≤ m), are negative, i.e. ν j(z̄

∗) < 0.
Let us describe an impact in the systems (19) and (20). From

implicit function theorem, it follows that there exists a small

µ0 such that, for all κ0 ∈Ωk, z0 ∈Ωm, µ∈ [0,µ0], there exists

such a time instant T µ(κ0,z0,µ) as a smallest positive root

of the equation

y(T µ(κ0,z0,µ),κ0,z0,µ) = 0 (27)

Suppose that an impact in the system (20) and consequently

in the system (19) occurs. It yields

κ(T µ(κ0,z0,µ)+,κ0,z0,µ) = ∆̄r

[

κ(T µ(κ0,z0,µ)−,κ0,z0,µ)
]

.
(28)

Theorem 1: Under conditions A1-A2-A3, system (19),

(27), and (28) has a locally exponentially orbitally stable

isolated periodic solution with the period µ(T (z̄∗)+ O(µ)).

IV. APPLICATION TO A THREE-LINK BIPED

For the three-link biped, a cyclic reference walking gait is

obtained assuming that the closed-loop system is perfectly

tracking reference trajectories depending on q1 for the two

output variables q2 and q3. The fast part of the system

is displayed by the swing leg whereas the slow part is

represented by the stance leg and the trunk. From numerical

results, the objective consists in showing the influence of the

trunk mass on the orbital stability.

A. Description of the cyclic walking gait

The cyclic walking gait is designed on a horizontal plan

for three-link biped (Figure 1) composed of single support

phases and impacts. It is assumed that the closed-loop

system is perfectly tracking reference trajectories by using a

nonlinear decoupling controller [13] coupled to a finite time

convergence control law [5]. When the swing leg impacts

the ground, the stance leg which was previously in contact

takes off. It yields that the two legs have a symmetrical

role over a full step. The objective of the walking gait

consists in transferring the robot during the swing phase

from a given initial configuration to a given final one. In

these boundary configurations, both legs are on the ground

and define instantaneous configurations. Taking into account

the unilateral constraints, there is an infinite number of

solutions to design this cyclic walking gait for the biped.

Since the biped has only two actuators for three degrees of

freedom in single support, this is an underactuated system.

Furthermore, numerical tests show that for a three-link biped

during a “natural” walking gait, the evolution of the absolute

orientation of the stance leg q1 is monotonous [1], [13]. Then,

in order to have the desired final configuration of the biped at

the impact, the swing leg and torso reference trajectories are

defined as functions of absolute orientation q1 of the stance

leg (see [2]) as (i ∈ {2,3})

qi,re f = ai0 + ai1q1 + ai2q2
1 + ai3q3

1 + ai4q4
1 (29)

The five coefficients of qi,re f (i ∈ {2,3}) are computed from

initial and final configurations, initial and final velocities and

an intermediate configuration. The initial orientation q1(0),
q2(0) and the final orientation q1(T ), q2(T ) of the two legs

are such that q1(0) = −q1(T ), q1(T ) = q2(0) and q2(T ) =
q1(0). The initial and final values of torso orientation are

such that q3(0) = q3(T ). The final velocities of the biped are

chosen such that q̇1(T ) = q̇2(T ) and q̇3(T ) = 0. Intermediate

configurations of both legs are chosen such that q1 = q2 = 0

which leads to a20 = 0. The behavior of q1 results from the

dynamics of the biped. If variables q2 and q3 are exactly

tracking their desired trajectories

q2 = q2,re f (q1), q3 = q3,re f (q1) (30)

By applying the total angular momentum theorem in S1 (see

Figure 1), one gets a simplified dynamic model for the biped

during the swing phase [1], [2]

σ̇S1
= −Mg [xG(q1)− xS1

] , q̇1 =
σS1

fσ(q1)
(31)

with M the biped mass, g the gravity acceleration, xG(α) and

xS1
the horizontal components of respectively the position of

biped’s mass center and the stance leg tip, σS1
the angular

momentum.

B. Orbital stability of the walking gait

1) Stability analysis of fast dynamics: As q1 has a

monotonous behavior over one step, from (31), one gets [7]:

dσ2
S1

dq1
= −2Mg[xG(q1)− xS1

] fσ(dq1). (32)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC05.6

5241



From (32), one gets

σ2
S1

(q1(T ))−σ2
S1

(q1(0))

= f 2
σ(q1(T ))q̇2

1(T )− f 2
σ(q1(0))q̇2

1(0)
(33)

A linear relation between the velocity q̇−1 and the velocity

q̇+
1 can be obtained [2]

q̇+
1 = J · q̇−1 → q̇−1 = J−1q̇+

1 = J q̇+
1 (34)

Let Q ns , the square velocity (q̇1(0))2 (or (q̇+
1 )2) at the start of

the half step number ns. From (33)-(34), one gets the next

value Q ns+1, which is the initial velocity for the half step

number ns + 1, which gives

f 2
σ(q1(T ))J 2Q ns+1 − f 2

σ(q1(0))Q ns = Fσ(q1(T )) (35)

Formula (35) gives the relation between values Q ns and Q ns+1

Q ns+1 = P(Q ns) = Q ns+1 =
[

Fσ(q1(T ))+ f 2
σ(q1(0))Qns

f 2
σ(q1(T))J 2

]

(36)

From (36), the Poincaré return map can be constructed in the

plane (Q ns ,Q ns+1). Let Q ∗ be the equilibrium (fixed) point

of the transformation (36), i.e. Q ∗ = P(Q ∗). From (36), it

yields

Q ∗ =

[

Fσ(q1(T ))

f 2
σ(q1(T ))J 2 − f 2

σ(q1(0))

]

(37)

Reference trajectories (29)) imply that the biped behavior

depends on q1 and q̇1. Then, the orbital stability problem

is a one-dimension one. The equations (36) and (37) are

scalar, which leads to contraction condition (17). Namely, in

the current case, dP
dQns

(Q ∗) is exactly dP
dκ0 (κ∗) of (17), i.e.

dP

dκ0
(κ∗) =

f 2
σ(q1(0))

f 2
σ(q1(T ))J 2

=

[

σ+
S2

(q1(0))
]2

[

σ−
S1

(q1(T ))
]2

(38)

In the next section, for a given bipedal, it is proved that, for

a trunk mass equals to 10kg, there exists a fixed point, and

that the following inequality is verified in a neighborhood of

the fixed point [7] and [8]:
∣

∣

∣

∣

∣

σ+
S2

(q1(0))

σ−
S1

(q1(T ))

∣

∣

∣

∣

∣

=
∣

∣

∣
σ+

S2
(q1(0))

∣

∣

∣
/
∣

∣

∣
σ−

S1
(q1(T ))

∣

∣

∣
= δ < 1 (39)

From this, it means that Assumptions A1 and A2 are fulfilled:

it yields that fast dynamics allow a stable periodic motion.

2) Stability analysis of slow dynamics: Denote q̄2 the

average value of fast dynamics q2(q1,q3) with respect to slow

dynamics. Then, given the reference trajectories previously

described and from the point-of-view of slow dynamics, a

control objective is stated through the output variables

y1 = q̄2 −q2,re f (q1), y2 = q3 −q3,re f (q1) (40)

There exists control law Γ ensuring that y1 and y2 converge

to zero. Then, as q̄2 is stable and y1 → 0, given that q2,re f

is a polynomial in q1, it yields that q1 is stable. From this

latter point, by the same way applied to y2, it yields that q3

is stable. Assumption A3 is fulfilled.

C. Simulation results

Results are displayed in case of torso mass equals to 10

kg. An analysis of the influence of torso mass is made, which

validates previous theory. The torso mass is acting not only

on the fast dynamics but also the value of fixed point and

step period. The variations of period and fixed point value

are directly linked to the m3 mass variations.

1) Numerical parameters of the biped and simulations:

For the robot legs, which are identical, the physical param-

eters are m1 = m2 = m = 0.4 kg, I1 = I2 = I = 0.406kg.m2,

r1 = r2 = r = 0.215m and L1 = L2 = L = 0.68m. For

these simulations m3 = 10kg. The duration T of the step

is equal to 0.2310 s. Figure 2 shows that the behavior

of q1 is monotone. At the beginning of the step and at

the impact, symmetrical orientation of both legs is such

that q1(0) = q2(T ) = 0.2269 rd. Initial and final absolute

orientations of the torso are q3(0) = q3(T ) = −0.1396 rd.

Its intermediate orientation during the step is chosen to

0.2094 rd. The amplitude of the angular velocity of the

swing leg are greater than the case of the stance leg (Figure

3. The founded initial angular velocities of both legs and

torso equal: q̇1(0) = −1.5623 rd/s, q̇1(0) = −1.5623 rd/s

and q̇3(0) = −0.8015 rd/s. The final velocities are chosen

as q̇1(T ) = q̇2(T ) = −1.8599 rd/s and q̇3(T ) = 0.0 rd/s.

Inequality (39) is fulfilled given that δ = 0.8377.There exists

an attraction basin w.r.t. q̇1(0) such that the walking gait

converges to the nominal cyclic gait. As a matter of fact, the

Poincaré map Q ns+1 = P(Q ns) numerically establishes that

the biped converges to a stable periodic walking gait if the

initial velocity q̇1(0) is such that

q̇1(0) ∈ [−2.5534 rd · s−1,−1.5492 rd · s−1]

If q̇1(0) < −2.5534 rd · s−1, the biped moves back to its

initial configuration: the initial module of angular momentum

around the contact point S1 is not sufficiently large [7].

If q̇1(0) > −1.5492 rd · s−1, the vertical component of the

ground reaction in the supporting leg tends to zero which

implies the biped is losing the contact with the ground. The

fixed point Q ∗ = 2.4408 (rd · s−1)2 corresponds to the time

square of the nominal initial velocity q̇1(0)∗.
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Fig. 2: Torso mass equals 10kg: q1, q2, q3 (rd) versus time (s).
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Fig. 3: Torso mass equals 10kg: q̇1, q̇2, q̇3 (rd/s) versus time (s).

2) Analysis of m3-influence: Suppose now that torso

mass m3 is very large (in the worst case, suppose that

m3 = ∞). From (3)-(20), it yields that parameter µ can be

viewed as 1/m3. Simulations display that biped motions

are stable for large masses; furthermore, the period of the

walking gait T µ as well as the fixed point of corresponding

Poincaré map continuously depend on the parameter µ, as

shown by Table I. As a matter of fact, state the reference

point (first line of Table I) as the case when µ is the smallest

(µ = 0,000005 for m3 = 20000 kg). From numerical results

displayed in Table I, it can be:

Q ∗ ≈ Q ∗
m3=2 105 + 4µ, µ/100 ≈ T µ −Tm3=2 105

The deviation of the period and the fixed point of the

Poincaré map smoothly depends on the small parameter µ.

µ = 1
m3

T µ (sec) Q ∗(s−1) Q ∗−Q ∗
m3=2 105 T µ −Tm3=2 105

(s−1)

5 10−6 0.22842089 2.882387 0 0

5 10−5 0.22842138 2.882187 −0.0002 0.000000480

5 10−4 0.22842623 2.880168 −0.0022 0.000005332

5 10−3 0.22847908 2.859961 −0.0224 0.000058180

10−2 0.22854679 2.837449 −0.0449 0.000125898

TABLE I: Deviation of the period and the fixed point w.r.t. m3.

V. CONCLUSIONS

The decomposition of the problem of existence and sta-

bility for periodic solutions of singularly perturbed nonlinear

systems with the impacts is considered. The decomposition

theorem for the problem of existence and stability of the

fixed points for corresponding Poincaré sections are given.

These results are applied for the decomposition of the control

design problem for a biped with a heavy torso. Its behavior

can be described as a singularly perturbed system with the

small parameter inverse to the mass of the torso and fast

periodic oscillations of the swing leg and slow dynamics

corresponding to the stance leg and torso. The simulations

show that the periodic trajectory of the biped smoothly

depends on the small parameter. This allows to conclude the

control for the swing leg and for stance leg and torso could

be designed separately.
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