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Abstract— We investigate the asymptotic properties of a
recursive kernel density estimator associated with the driven
noise of multivariate ARMAX models in adaptive tracking. We
establish an almost sure pointwise and uniform strong law of
large numbers as well as a pointwise and multivariate central
limit theorem. We also carry out a goodness-of-fit test together
with some simulation experiments.

I. INTRODUCTION

Since the pioneer work of Aström and Wittenmark [1], a

wide range of literature is available on parametric estimation

and adaptive tracking for linear regression models [3], [4], [5]

[8], [12], [13], [14], [15]. However, only few references may

be found on nonparametric estimation in adaptive tracking

[19], [20], [21],[24]. Our goal is to investigate the asymptotic

properties of a kernel density estimator associated with the

driven noise of a linear regression in adaptive tracking and

to carry out a goodness-of-fit test. Consider the multivariate

ARMAX model of order (p, q, r) given, for all n ≥ 0, by

A(R)Xn = B(R)Un + C(R)εn, (1)

where Xn, Un, and εn are the d-dimensional system output,

input, and driven noise, respectively. Denote by R the shift-

back operator and set

A(R) = Id − A1R − · · · − ApR
p,

B(R) = B1R + · · · + BqR
q,

C(R) = Id + C1R + · · · + CrR
r,

where Ai, Bj , and Ck are unknown matrices and Id is the

identity matrice of order d. For the sake of simplicity, we

shall assume that the high frequency gain matrix B1 is known

with B1 = Id. Hence, the unknown parameter of the model

is given by

θ t = (A1, . . . , Ap, B2, . . . , Bq, C1, . . . , Cr).

Relation (1) can be rewritten as

Xn+1 = θ tΨn + Un + εn+1, (2)

where Ψn = (Xp
n, Uq

n, εr
n)

t
with

Xp
n = (Xt

n, . . . ,Xt
n−p+1),

Uq
n = (U t

n−1, . . . , U
t
n−q+1),

εr
n = (εt

n, . . . , εt
n−r+1).
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The most common way for estimating θ is to make use of the

extended least-squares (ELS) algorithm given, for all n ≥ 0,

by

θ̂n+1 = θ̂n + S−1
n Φn(Xn+1 − Un − θ̂ t

nΦn)t,

ε̂n+1 = Xn+1 − Un − θ̂ t
nΦn,

where the initial value θ̂0 is arbitrarily chosen, the vector

Φn = (Xp
n, Uq

n, ε̂r
n)

t
with ε̂r

n = (ε̂t
n, . . . , ε̂t

n−r+1) and

Sn =
n∑

i=0

ΦiΦ
t
i + S,

where S is a positive definite and deterministic matrix

introduced in order to avoid useless invertibility assumption.

The crucial role played by the control Un is to regulate the

dynamic of the process (Xn) by forcing Xn to track step

by step a bounded predictable reference trajectory x∗
n. Via

the certainty equivalence principle [1], the adaptive tracking

control Un is given, for all n ≥ 0, by

Un = x∗
n+1 − θ̂ t

n Φn. (3)

By substituting (3) into (2), we obtain the closed-loop system

Xn+1 − x∗
n+1 = πn + εn+1, (4)

where

πn = θ tΨn − θ̂ t
nΦn.

In all the sequel, we shall assume that the driven noise

(εn) is a sequence of centered independent and identically

distributed random vectors with positive definite covariance

matrix Γ and unknown probability density function denoted

by f . Our purpose is to study the asymptotic properties of

a recursive kernel density estimator (RKDE) of f given, for

all x ∈ R
d and n ≥ 1, by

f̂n(x) =
1

n

n∑

i=1

1

hd
i

K

(
Xi − x∗

i − x

hi

)
, (5)

where the kernel K is a chosen density function and the

bandwidth (hn) is a sequence of positive real numbers

decreasing to zero. Since the pioneer works of Parzen [17]

and Rosenblatt [22], the asymptotic properties of such a

kernel estimator have been widely investigated in the context

of independent and identically distributed random variables

as well as for mixing random variables. We refer the reader to

[9], [10], [23] for some excellent books on density estimation

for stationary processes. Although the stability of ARMAX

models in adaptive tracking has been deeply investigated in

the literature [8], [11], one can realize that kernel density

estimation results are not available in adaptive tracking.
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Our purpose is to establish the almost sure pointwise and

uniform convergence of f̂n to f as well as a pointwise law of

iterated logarithm (LIL) and a pointwise multivariate central

limit theorem (CLT). A goodness-of-fit test for f based on f̂n

is also provided together with some simulation experiments.

II. ON THE KERNEL

We shall now propose three different choices for the kernel

function K. The kernel K is a nonnegative function, bounded

with compact support, satisfying
∫

Rd

K(t)dt = 1 and

∫

Rd

K2(t)dt = τ2.

For example, for some s > 0 and some known positive

constants as, bs, cs, one can make use of the uniform kernel

on the sphere of R
d with radius s,

K(t) = as1I(‖t‖≤s),

the Epanechnikov kernel with scaling factor s,

K(t) = bs

(
1− ‖ t‖2/s2

)
1I(‖t‖≤s),

and the Gaussian kernel with truncation level s,

K(t) = cs exp
(
− ‖ t‖2/2

)
1I(‖t‖≤s).

III. MAIN RESULTS

First of all, we shall make use of the classical assumptions

of causality and passivity and the traditional smoothness

hypothesis on the probability density function f .

Causality [A1]. For all z∈C with |z|≤1, det(z−1B(z)) 6=0.

Passivity [A2]. For all z ∈ C with |z| = 1, det(C(z)) 6= 0
and C−1(z) > 1

2Id.

Density [A3]. The function f is positive and differentiable

with bounded gradient.

We shall now present several asymptotic results for the

RKDE f̂n of f recently obtained by Bercu and Portier

[6], the first one dealing with the almost sure convergence

properties of f̂n.

Theorem 1: Assume that [A1] to [A3] hold and suppose

that (εn) has finite moment of order a > 2. In addition,

assume that nhd
n tends to infinity faster than (log n)2 and

n∑

i=1

hi = O(nhn).

Then, for any x ∈ R
d, f̂n(x) converges a.s. to f(x). If the

bandwidth (hn) satisfies max(nhd+2
n , nbhd

n) = o(log log n)
for some b ∈]2/a, 1[, we also have

lim sup
n→∞

(
nhd

n

2 log log n

)1/2∣∣∣f̂n(x)−f(x)
∣∣∣≤ τ2 ‖f ‖∞ a.s.

Moreover, assume that the kernel K is Lipschitz and that

the bandwidth (hn) is given by hn = n−α with α ∈]0, 1/d[.
Then, f̂n converges a.s. to f , uniformly on all compact sets

of R
d and, for any β ∈](1 + c)/2, 1[ with c = max(b, αd),

we have the almost sure uniform rates of convergence

sup
x∈Rd

∣∣∣f̂n(x)−f(x)
∣∣∣ = O

(
n−α

)
+ o

(
nβ−1

)
a.s.

Remark 1: The bandwidth condition associated with the

almost sure pointwise convergence is clearly not restrictive

and it is satisfied when hn = n−α with α ∈]0, 1/d[. In this

particular case, the bandwidth condition required for the LIL

is satisfied if α ∈]δ, 1/d[ with δ = max(1/(d + 2), b/d).
Remark 2: In the particular case of controlled autoregres-

sive process

Xn+1 = A1Xn + · · · + ApXn−p+1 + Un + εn+1, (6)

the assumptions [A1] and [A2] are clearly useless and the

associated prediction errors sequence (πn) satisfies

n∑

i=0

‖πi ‖2= O(log n) a.s. (7)

Thanks to this sharp result on the sequence (πn), we only

have to assume that max(nhd+2
n , hd

n log n) = o(log log n)
for the LIL. This bandwidth condition is immediately satis-

fied when hn = n−α with α ∈]1/(d + 2), 1/d[. Moreover,

for the uniform convergence, it is only necessary to assume

that β ∈](1 + αd)/2, 1[. All of the above is also true for the

scalar nonlinear controlled autoregressive process

Xn+1 = θ ϕ(Xn, . . . ,Xn−p+1) + Un + εn+1 (8)

under suitable moment assumption on (εn) and as soon as

the function ϕ : R
p → R does not increase to infinity faster

than a polynomial of degree < 4, see [5]. One more time,

we are able to deduce such results because the associated

prediction errors sequence (πn) satisfies (7).

The second result is related to the CLT for f̂n.

Theorem 2: Assume that [A1] to [A3] hold and suppose

that (εn) has finite moment of order a > 2. Moreover,

assume that (hn) satisfies max(nhd+2
n , nbhd

n) = o(1) for

some b ∈]2/a, 1[, together with

lim
n→∞

hd
n

n

n∑

i=1

h−d
i = ℓh (9)

for some finite constant ℓh > 0. Then, for any x ∈ R
d, we

have the pointwise CLT

√
n hd

n

(
f̂n(x) − f(x)

) L−→ N
(
0, τ2ℓhf(x)

)
. (10)

In addition, let x1, . . . , xN be N distinct points of R
d and

denote Gn(xi) =
√

n hd
n(f̂n(xi) − f(xi)) and its limit

G(xi) = N (0, τ2ℓhf(xi)). Then, we also have

(Gn(x1), . . . , Gn(xN ))
L−→ (G(x1), . . . , G(xN )) (11)

where G(x1), . . . , G(xN ) are independent.

Remark 3: Convergence (10) is identical to the one ob-

tained by Duflo [11] for stationary processes. Besides, it

is worthless to require the bandwidth condition (9) for the
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nonrecursive KDE of f , and ℓh has to be replaced by 1 in

(10). Finally, if hn = n−α, it is necessary to assume that

α ∈]δ, 1/d[ with δ = max(1/(d+2), b/d) and we obviously

have ℓh = (1 + αd)−1. In addition, for the controlled

autoregressive processes given by (6) or (8), we only have

to assume that α ∈]1/(d + 2), 1/d[.
Remark 4: When the density function f belongs to

C2(Rd) with a bounded second derivative and for sym-

metric kernel K, we can relax the bandwidth condition by

max(nhd+4
n , nbhd

n) = o(1).

IV. APPLICATION TO A GOODNESS-OF-FIT TEST

We shall now propose a statistical test associated with

the probability density function f based on our convergence

results for f̂n. We wish to test

H0 : 〈〈f = f0 〉〉 vs H1 : 〈〈f 6= f0 〉〉

where f0 is a given probability density function. It is well-

known that such a goodness-of-fit test is very important and

it has been widely investigated in time series analysis since

the pioneer works of Kolmogorov-Smirnov and Cramér-

Von Mises. Indeed, many statistical procedures require the

assumption of normality for the driven white noise. Conse-

quently, a goodness-of-fit test for the white noise density is

of particular interest. However, no such a statistical test is

available in the adaptive tracking framework although several

situations require the normality assumption on the driven

white noise. Our purpose is to provide a goodness-of-fit test

for f based on the RKDE f̂n. Such an approach has been

already used by Bickel and Rosenblatt [7]. Indeed, for an in-

dependant and identically distributed sample, they proposed

a statistical test based on the integrated quadratic deviation

between the true density and a KDE of f . This approach

has been extended to the scalar autoregressive framework

by Lee and Na [16] and more recently by Bachmann and

Dette [2]. However, due to some technical reasons, it seems

impossible to extend this approach to our adaptive tracking

context. Therefore, we propose a new strategy and we carry

out a goodness-of-fit test for f based on the multivariate CLT

for f̂n together with the LIL. Our statistical test consists of a

suitably normalized sum of the quadratic deviation between

the true density and the RKDE f̂n evaluated on N distinct

points of R
d. More precisely, it is defined by

Tn(N) =
1

τ2ℓh

N∑

j=1

(
f̂n(xj) − f0(xj)

)2

f̂n(xj)
,

where x1, . . . , xN are N distinct points of R
d. We shall make

use of

σ2 =
1

τ2ℓh

N∑

j=1

(f(xj) − f0(xj))
2

f(xj)
,

λ2 =
1

τ2ℓh

N∑

j=1

(f2(xj) − f2
0 (xj))

2

f3(xj)
.

Theorem 3: Assume that [A1] to [A3] hold and suppose

that (εn) has finite moment of order a > 2. Moreover,

assume that the bandwidth (hn) shares the same assumptions

as in Theorems 1 and 2. Then, under H0,

nhd
n Tn(N)

L−→ χ2(N). (12)

Moreover, under H1 and if one can find some point x of R
d

in
{
x1, x2, . . . , xN

}
such that f(x) 6= f0(x), then Tn(N)

converges a.s. towards σ2. In addition, we also have
√

n hd
n

(
Tn(N) − σ2

) L−→ N
(
0, λ2

)
. (13)

Remark 5: According to these asymptotic results, it is

possible to construct a goodness-of-fit test associated with

f . On the one hand, under the null hypothesis H0, we

can approximate for n large enough the distribution of

nhd
n Tn(N) by a χ2(N) one. On the other hand, under the

alternative hypothesis H1, if σ2 is positive, nhd
n Tn(N) goes

a.s. to infinity, which guarantees that the asymptotic power

of our test is equal to 1. From a practical point of view,

the null hypothesis H0 will be rejected at level δ whenever

nhd
n Tn(N) > aδ where aδ stands for the (1 − δ) quantile

of the χ2(N) distribution. Finally, one can observe that the

weak convergence (13) allows us to evaluate the probability

of the type II error of our test.

Remark 6: It is also possible to make use of the test

statistic Zn(N) defined by

Zn(N) =
1

τ2ℓh

N∑

j=1

(
f̂n(xj) − f0(xj)

)2

f0(xj)
.

In that case, Theorem 3 holds with

σ2 =
1

τ2ℓh

N∑

j=1

(f(xj) − f0(xj))
2

f0(xj)
,

λ2 =
4

τ2ℓh

N∑

j=1

(f(xj) − f0(xj))
2f(xj)

f2
0 (xj)

.

This statistical test should improve the empirical level under

H0, but it should certainly degrade the empirical power under

H1. Nevertheless, it is easier to compute than Tn(N) because

it allows one to avoid the division by f̂n(xj), which can be

equal to zero due to the use of a compactly supported kernel.

V. SIMULATIONS

The goal of this section is illustrate our asymptotic results

by simulations. We shall investigate the finite sample proper-

ties of our statistical test under both hypothesis H0 and H1

without some bootstrap procedure as it is usual in this context

of nonparametric tests. Since it has never been experimented,

we shall not restrict ourselves to models of form (2), but we

will also consider some closely related stationary models.

Our goal is to show that our statistical test behaves pretty

well in many different situations. The different models that

we will study are given as follows.

(AR) Xn+1 = θXn + εn+1,

(ARX) Xn+1 = θXn + Un + εn+1,
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(NARX) Xn+1 = θX2
n + Un + εn+1,

where (εn) is a sequence of centered independent and iden-

tically distributed random variables with probability density

function f . We have arbitrarily chosen the values θ = 7/10,

θ = 2, and θ = 1/2 for the AR, ARX and NARX models,

respectively. We consider three choices of noise distributions,

given in Figure 1, that we combine two by two in order to

study the performances of our statistical test under both H0

and H1. The first one is the standard normal distribution

f0(x) =
1√
2π

exp

(
−x2

2

)
.

The second one is the normalized double exponential distri-

bution

f1(x) =
1√
2

exp
(
−
√

2 |x|
)

.

The last one is the standardized chi-square distribution with

twelve degrees of freedom

f2(x) =
9

5
(x +

√
6)5 exp

(
−
√

6(x +
√

6)
)

1I(x≥−
√

6).

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Noise distributions

Gaussian          
Double exponential
Chi square        

Fig. 1. Noise distributions

For AR, ARX, and NARX models, we estimate the

unknown parameter θ by use of the standard least squares

estimator θ̂n. For AR model, the probability density function

f is estimated using the RKDE given by (5) where Xn −x∗
n

is replaced by Xn − θ̂nXn−1. For ARX and NARX models,

the adaptive control Un is given by Un = −θ̂nXn and

Un = −θ̂nX2
n, respectively.

For each model and each test of H0 against H1, we base

our estimations on 800 independent realizations of sample

sizes n = 200 and n = 1000. We are interested in the

empirical level under H0 to be compared with the theoretical

level equal to 5% and the empirical power under H1, as well

as the closeness between the simulated distribution of our

statistical test and the corresponding theoretical distribution.

The implementation of our statistic test Tn(N) requires the

choice of design points together with the specification of a

bandwidth and a kernel for the RKDE f̂n. The RKDE f̂n is

constructed by use of the Epanechnikov kernel

K(t) =
3

4
(1 − t2)1I(|t|≤1)

TABLE I

AR MODEL. RESULTS UNDER H0 AND H1 WITH TEST LEVEL 5%.

EMPIRICAL LEVEL IN BOLD AND PERCENTAGE OF CORRECT DECISIONS.

n = 200, N = 8 n = 1000, N = 22

Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0

4.5%

0 .045
31.2% 25.6%

3.7%

0 .023
99.8% 98.8%

Gf1 49.7%
5.7%

0 .032
73.1% 100%

4.8%

0 .019
100%

Gf2 19.3% 54.6%
3.7%

0 .045
96.6% 100%

3.8%

0 .013

and the bandwidth hn = n−1/3. For the denominator of

Tn(N), we use the Gaussian kernel and the usual bandwidth

hn = n−1/5. Via this choice, we avoid a possible division by

zero and we provide a smoother version for the estimation

of f . Finally, for ARX and NARX models, we use a short

learning period of τ = 100 time steps. This learning period

allows us to forget the transitory phase.

For the choice of N and the points x1, · · · , xN , we use the

design points selection rule proposed by Poggi and Portier

and fully described in [18]. More precisely, we proceed as

follows. Starting from an estimate of the distribution of the

driven noise, we choose N equidistant points x1 · · · , xN so

that the density at those points is not too small and in such

a way that they are sufficiently distant to ensure sufficient

accuracy in the use of the multivariate CLT. Typically, we

choose points x1, · · · , xN such that the distance between two

neighboring points is 4n−1/3. This last condition allows us to

make sure that the independence property in the multivariate

CLT, which asymptotically holds, remains true for small

to moderate sample sizes. We take N = 8 and N = 22
equidistant points for sample sizes n = 200 and n = 1000,

respectively. It should be noted that only a few number of

points is needed to make a decision.

The abbreviations Gf0, Gf1, and Gf2 mean that the driven

noise (εn) is generated with the normal f0 distribution, the

double exponential f1 distribution, and the chi-square f2

distribution, while Hf0, Hf1, and Hf2 mean that we are

testing the assumptions H0 : 〈〈f = f0 〉〉, H0 : 〈〈f = f1 〉〉, and

H0 : 〈〈f = f2 〉〉, respectively. Finally, as we have chosen

a test level α = 5% and we have generated 800 trials,

the Kolmogorov-Smirnov fitting statistic in italic has to be

compared with the value 0.048.

We shall now comment on the test results contained in

Tables I to III. First of all, one can verify that our statistical

test behaves pretty well under H0. Indeed, for each model

and each noise distribution, the empirical level is close to the

5% theoretical value level as one can realize with the values

in bold. In addition, the simulated distribution of n2/3Tn(N)
is close to the χ2(N) distribution as one can observe with the

values in italic of the Kolmogorov-Smirnov fitting statistic

to be compared with the critical value at 5% equal to 0.048.

Next, one can verify that the empirical power increases with

the sample size, from 20% to 40% for n = 200, to 96% to

100% for n = 1000 : it is more difficult to decide between f0
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TABLE II

ARX MODEL. RESULTS UNDER H0 AND H1 WITH TEST LEVEL 5%

AND LEARNING PERIOD τ = 100. EMPIRICAL LEVEL IN BOLD AND

PERCENTAGE OF CORRECT DECISIONS.

n = 200, N = 8 n = 1000, N = 22

Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0

3.8%

0 .042
35.7% 28%

3.7%

0 .018
99.7% 98.2%

Gf1 45.8%
5.5%

0 .053
71.5% 100%

5%

0 .022
100%

Gf2 21.2% 54.5%
3.2%

0 .029
96.7% 100%

5.1%

0 .029

TABLE III

NARX MODEL. RESULTS UNDER H0 AND H1 WITH TEST LEVEL 5%

AND LEARNING PERIOD τ = 100. EMPIRICAL LEVEL IN BOLD AND

PERCENTAGE OF CORRECT DECISIONS.

n = 200, N = 8 n = 1000, N = 22

Hf0 Hf1 Hf2 Hf0 Hf1 Hf2

Gf0

3%

0 .037
37.1% 28.5%

4.3%

0 .037
99.5% 98.6%

Gf1 44.6%
5.2%

0 .021
72% 100%

5.1%

0 .017
100%

Gf2 19.8% 58.3%
3.7%

0 .021
97.2% 100%

5%

0 .039

and f2 than between f1 and f2, which is the easier situation.

Finally, if one superimpose the four tables, one can observe

that the results for the different models are almost the same.

In conclusion, our statistical test behaves pretty well for small

to moderate sample sizes and for a large class of models.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Test statistic with f
0

Test statistic with f
1

Test statistic with f
2

Chi−squared with 13 df

Fig. 2. Power of the goodness of fit test

Figure 2 illustrates the empirical level and power of our

test for the NARX model. We base our estimation on 800
trials of sample size n = 500 with N = 13 equidistant

points. The driven noise (εn) is generated with the normal

distribution f0, and we are successively testing the assump-

tions Hf0, Hf1, and Hf2. On the one hand, when we test

the hypothesis Hf0, we can observe that the distribution

of our statistical test n2/3Tn(N) is superimposed with the

χ2(N) one. It clearly illustrates the good approximation

of the distribution of n2/3Tn(N) by a χ2(N) one under

Hf0 for moderate sample size. On the other hand, when we

test the hypothesis Hf1 as well as Hf2, we can effectively

see that the distribution of our statistical test n2/3Tn(N) is

totally different from the χ2(N) one. Finally, the power of

separation of our statistical test is clearly significant.

VI. CONCLUSION

We have carried out a sharp analysis of the convergence

of a RKDE associated with the driven noise of multivariate

ARMAX models in adaptive tracking. A goodness-of-fit test

based on our RKDE was also provided. Surprisingly, one can

realize that only few papers deal with nonparametric estima-

tion in adaptive tracking. We hope that this contribution will

be a starting point for further investigation on nonparametric

estimation by the control community.
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