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Abstract— The purpose of this paper is to observe that a
feedback interconnection is equivalent to a cascaded inter-
connection “if you twist your eyes”. We establish conditions
under which a feedback interconnected (time-invariant or
non-autonomous) system can be regarded as a cascaded
time-varying system. The “technique” finds motivation in
numerous particular applications, notably, in output feedback
(observer-based) control where two subsystems are feedback
interconnected and it results desirable to analyze the system
as a cascade. Indeed, cascaded-based design allows for consid-
erably simple controllers that exploit the physical structure of
the system and sufficient conditions for stability of cascaded
systems are often easier to apply than finding strict Lyapunov
functions. As an illustration of how to use our main results
we revisit a recently published article on a problem that, to
the best of our knowledge, remains open for many years: to
establish uniform global asymptotic stability of the closed-
loop system for robot manipulators via (dynamic) position
feedback.

I. INTRODUCTION

A. Problem formulation

Consider the feedback-interconnected system

Σ1 : ẋ1 = f1(t, x1) + g(t, x1, x2) (1a)

Σ2 : ẋ2 = f2(t, x1, x2) (1b)

where, for i ∈ {1, 2}, all functions are Lipschitz with respect to
xi ∈ Rni uniformly in t hence, for any pair of initial conditions,
solutions are locally defined. We denote the initial conditions
by (t◦, x◦) ∈ R × Rn1+n2 where x◦ := [x>1◦, x>2◦]

> and the
solutions

x(t, t◦, x◦) :=

„
x1(t, t◦, x◦)
x2(t, t◦, x◦)

«
.

The problem we are interested in is to establish sufficient con-
ditions for uniform global asymptotic stability bypassing the
often difficult to apply Lyapunov’s direct method. Our approach
is to regard the feedback-interconnected system (Σ1, Σ2) as a
cascade –cf. Fig. (1) To that end, we regard Eq. (1b) as an
equation of the state x2 where f2 depends on the parameter x1.
Correspondingly, the parameterized solutions of Σ2 are denoted
by x2(t, t◦, x2◦, x1). When the parameter x1 takes the values
generated by the solution x1(·) of (1a) we obtain the cascaded
system

Σ′1 : ξ̇1 = f1(t, ξ1) + g(t, ξ1, ξ2)ξ2 (2a)

Σ′2 : ξ̇2 = f2(t, x1(t), ξ2) (2b)
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Fig. 1. A feedback interconnection is equivalent to a cascaded system
“if you twist your eyes”

where we have used the compact notation x1(t) to denote a
solution of (1a) with initial conditions (t′◦, x◦). That is, for each
pair (t′◦, x◦) we define f̃2(t, ξ2) := f2(t, x1(t, t

′
◦, x◦), ξ2) and

rewrite (2b) as

Σ′2 : ξ̇2 = f̃2(t, ξ2) . (3)

The function f̃2 is parameterized by the initial conditions (t′◦, x◦)
and, specifically, by x1◦. By the regularity properties of fi and g
it follows that the solutions ξ(t, t′◦, ξ◦) with ξ◦ = (ξ1◦, ξ2◦) are
locally defined from the initial time max{t◦, t′◦}. Furthermore,
for each pair of initial conditions (t′◦, ξ◦) = (t◦, x◦) the solutions
of the cascaded system (2a), (3) i.e., ξ(t, t◦, x◦), coincide for all
t ≥ t◦ with those of the feedback-interconnected system (1) i.e.,
ξ(t, t◦, x◦) ≡ x(t, t◦, x◦).

Such observation is useful in cases when analyzing the dynam-
ics of (2) is an easier task than studying (1); for instance, we can
conclude that x = 0 is a UGAS equilibrium for (1) if ξ = 0 is
UGAS for (2) however, we emphasize that ‘U’ in ‘UGAS for (2)’
stands for ‘uniformity with respect to the initial conditions and
the parameter x1◦. The interest of this is that to study the stability
of (2a), (3) –hence of (1)– we can rely on theorems for cascaded
systems –cf. [1] and references therein (such as [2]), as opposed
to classical Lyapunov theory which is stymied by the difficulty of
finding a strict Lyapunov function.

Generally speaking, under the following hypotheses:
Assumption 1 x1 = 0 is a UGAS equilibrium for

ẋ1 = f1(t, x1) (4)

Assumption 2 x2 = 0 is a UGAS equilibrium for

ẋ2 = f̃2(t, x2); (5)

to establish UGAS of the cascade (2a), (3) it is sufficient and
necessary that the solutions are uniformly globally bounded. The
necessity is obvious (as UGAS ⇒ UGB), sufficiency was estab-
lished for autonomous systems in [3], [4] and for time-varying
systems in [5].

In the context of interest here, the function f̃2 (resp. f2)
depends on the trajectories x1(t) (resp. on the parameter x1)
therefore, properties such as stability and attractivity (rate of
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convergence) of the null solution ξ2 = 0 of (3) depend on
x1◦. Furthermore, for the solutions of (3) to make any sense the
trajectories x1(t) must exist at least locally. While local existence
may be implied by common appropriate regularity assumptions
(Lipschitz) forward completeness is not obvious in general. To
illustrate this point, consider the system

ẋ1 := −x1 + 2x2
1 sat(x2) (6a)

ẋ2 := −[1 + x2
1]x2 . (6b)

where sat(·) denotes a smooth saturation function with satura-
tion level, one (e.g., tanh(·)). Assumption 1 holds and, defining
V (x2(t)) := 0.5x2(t)

2 yields V̇ (x2(t)) ≤ −2V (x2(t)) hence,

|x2(t)| ≤ e−(t−t◦) .

One is tempted to conclude that Assumption 2 also holds how-
ever, strictly speaking, this bound holds only on the interval of
existence of x1(·) which is finite for certain choices of initial
conditions. All we can say is that “as long as solutions exist, x2(t)
tends to zero”.

Consequently, theorems on stability of cascades do not apply
directly on systems of the form (2a), (3). In this note we take a step
back (with respect to existing literature on UGAS of cascades) in
the stability analysis of cascades and lay conditions for forward
completeness and uniform boundedness of the solutions of (2) –
hence of (1). Under these conditions one may apply theorems on
stability of cascaded systems to analyze the qualitative behavior
of (1).

B. A motivating example

The example of Eq. (6) illustrates the type of results we seek;
for further motivation we emphasize now a stability problem
that naturally appears in the context of observer-based certainty-
equivalence output feedback control –cf. e.g., [6] and which
may be treated (under appropriate conditions) using theorems on
cascaded systems. Consider the system

ẋ = A(y)x + B(y)u (7)

y = h(x) (8)

with control u ∈ Rn, unmeasurable state x ∈ Rn and measurable
output y = h(x); for simplicity let all functions be smooth. The
control goal is to design an observer-based certainty equivalence
controller to drive the state to zero. Furthermore, it is desired to
establish uniform global asymptotic stability of the closed-loop
system, under the condition that u = u∗(x, y) renders the origin
of

ẋ = A(y)x + B(y)u∗(x, y) (9)

UGAS. Let x̂ denote an estimate of x and x̄ := x̂−x. The system
in closed loop with the certainty-equivalence control u∗(x̂, y) is
written as

ẋ = f1(t, x) + g(t, x, x̄) (10)

where

f1(t, x) := A(h(x))x + B(h(x))u∗(x, h(x))

g(t, x, x̄) := B(h(x)) [ û∗(x, x̄)− u∗(x, h(x)) ] (11)

û∗(x, x̄) := u∗(x̂, h(x)) = u∗(x̄ + x, h(x)) .

Clearly, (10) is of the form (1a) with x1 := x and x2 := x̄. On
the other hand, it is fairly standard to design an observer for (7)
by defining

˙̂x = A(y)x̂ + B(y)u− L(y)[h(x̂)− h(x)] (12)

where L is the observer gain. Subtracting (7) from (12) we obtain

˙̄x = A(y)x̄− L(y)[h(x̂)− h(x)] (13)

which may be written as (1b) with

f2(t, x1, x2) := A(h(x1))x2 − L(h(x1))[h(x2 + x1)− h(x1)]
(14)

To establish stability of the closed-loop system (10), (11), (14)
relying on classical Lyapunov theory may become a considerably
difficult task and often leads to unnecessarily conservative condi-
tions on design gains or restrictions on the domain of attraction.
Instead, one may follow the reasoning explained in the previous
section i.e., to regard the feedback interconnected system (10),
(14) as a cascade. To that end, we write
(

ẋ = A(y)x + B(y)u∗(x, y) + B(y) [ û∗(x, x̄)− u∗(x, y) ]

y := h(x) (15a)
˙̄x = A(y(t))x̄− L(y(t))[h(x̄ + x(t))− y(t)] . (15b)

That is, Eq. (15b) is of the form (3). In general, even if we dispose
of V2(t, x2) that satisfies the usual assumptions of Lyapunov’s
direct method, as illustrated for system (6), strictly speaking, the
conclusion is valid only on the interval of existence of x(·) hence
of y(t) and, respectively, of the right-hand side of (15b). To cir-
cumvent this obstacle a common assumption in observer-design
theory is to suppose that state-trajectories are bounded; while this
seems a fairly reasonable assumption in observer design, it is too
restrictive in the context of output feedback certainty-equivalence
control. Indeed, the supposedly bounded trajectories h(x(t)) are
indirectly generated by x̄(t) and vice-versa. The main results of
this paper allow, but are not limited to, avoiding the restrictive
boundedness assumption.
Remark 1 In the example above, we have assumed that the
system is linear in the unmeasured states. Generally speaking, a
typical technical obstacle in the problem of observer design alone
is the presence of high order nonlinearities which depend on the
unmeasured states. In such cases, one may rely on other types of
restrictions such as sector bounds (see e.g., [7], [8] for passivity-
based designs), Lipschitz continuity (see, e.g., [9] for an early
high-gain design and [10], [11] for more recent references). Other
approaches consist in finding coordinate transformations such that
the system dynamics becomes linear in the unmeasured variables
(see, e.g., [12], [13]).

II. MAIN RESULTS

A. Forward completeness

In our analysis we consider system (1b) as a parameterized
with parameter x1 ∈ Rn1 . Then, the solutions of (1b) with initial
conditions (t◦, x2◦) ∈ R×Rn2 are denoted for each fixed x1, by
x2(t, t◦, x2◦, x1).
Assumption 3 Let t◦ ≥ 0 and tmax ∈ [t◦,∞]. Assume that the
solutions of (1) are defined on [t◦, tmax). More precisely, there
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exist class K functions σ11, σ12, σ21, σ22 and positive constants
c11, c22 such that for all t ∈ [t◦, tmax)

|x1(t, t◦, x◦)| ≤ σ11(t− t◦) + σ12(|x◦|) + c12 (16a)

|x2(t, t◦, x2◦, x1)| ≤ σ21(t− t◦) + σ22(|x2◦|) + c22 (16b)

and σi1(t− t◦) →∞ as t → tmax.

The functions σ above are independent of the initial conditions
and, moreover, σ2i are independent of the “parameter” x1. In
the particular case when tmax = +∞, Assumption 3 becomes
a condition of forward completeness, uniform in the initial con-
ditions. Furthermore, for system (1b) it is assumed that forward
completeness holds uniformly for any value of x1 (the divergence
rate is independent of x1). Following [14] we see that this holds
if and only if there exists a positive definite radially unbounded
function V2(t, x2) such that, for all x1 ∈ Rn1 ,

V̇ (t, x2) :=
∂V2

∂t
+

∂V2

∂x2
f2(t, x1, x2) ≤ V (t, x2) .

Finding such a function V2 is a hard task in general however,
walking down the lines of [15], one can also impose the following
condition with obvious changes. For the sequel the assumption
given below is stated for system Σ1.
Assumption 4 There exists a C1 positive definite radially un-
bounded function eV : R×Rn1 → R≥0, α1 ∈ K∞ and continuous
non-decreasing functions α4, α′4 : R≥0 × R→ R≥0 such that

eV (t, x1) ≥ α1(|x1|)

and defining,

ėV (1a)(t, x1) :=
∂ eV
∂t

+
∂ eV
∂x1

[f1(t, x1) + g(t, x1, x2)]

we have

ėV (1a)(t, x1) ≤ α4(|x1|)α′4(|x2|) ; (17a)Z ∞

a

dṽ

α4(α
−1
1 (ṽ))

= ∞ (17b)

Lemma 1 Let Assumptions 3 and 4 hold. Then, the solutions are
defined for all t ≥ t◦; more precisely, (16) holds with tmax = +∞.

Proof Define ṽ(t) := eV (t, x1(t)) and let

x∗2 := sup
t∈[t◦,tmax)

{|x2(t)|} . (18)

On the interval of existence we have, from (17a),

˙̃v(t) ≤ α4(|x1(t)|)α′4(x∗2) . (19)

Without loss of generality let ṽ(t◦) > 0; observe that
lim

t→tmax
ṽ(t) = +∞ and integrate on both sides of (19) from

t◦ → tmax to obtain

Z ∞

ṽ(t◦)

dṽ

α4

`
α−1

1 (ṽ)
´ = α′4(x

∗
2)

Z tmax

t◦
dt .

By assumption, the first integral is infinite; hence tmax = +∞. ¥

B. Boundedness of solutions

According with [5, Lemma 2] uniform boundedness of solu-
tions is a sufficient condition (necessity is evident) for UGAS of
time-varying nonlinear cascades satisfying Assumptions 1 and 2.
In this section we present sufficient conditions for uniform global
boundedness based on conditions which are, to some extent,
refinements of Assumptions 1 and 2 for system (1).
Assumption 5 We dispose of a C1 function V : R×Rn1 → R≥0,
α1, α2 ∈ K∞ and a positive semidefinite function W such that

α1(|x1|) ≤ V (t, x1) ≤ α2(|x1|) (20a)
∂V

∂t
+

∂V

∂x1
f1(t, x1) ≤ −W (x1) (20b)

for all t ∈ [t◦, tmax) and all x1 ∈ Rn1 .

Note that for tmax = +∞ Assumption 1 implies the existence of
V and W positive definite such that Assumption 5 holds.
Assumption 6 There exists γ ∈ KL such that the solutions
x2(t, t◦, x2◦, x1) of the parameterized system (1b) satisfy

|x2(t, t◦, x2◦, x1)| ≤ γ(|x2◦|) ∀ t ∈ [t◦, tmax) (21)

with γ independent of the initial conditions and the parameter x1.

Assumption 6 holds, for instance, if there exists a positive definite
radially unbounded function V2(t, x2) such that, defining v2(t) :=
V2(t, x2(t)) we have

|x2(t)| ≥ η =⇒ v̇2(t) ≤ 0

for all x1 ∈ Rn1 .
We reconsider the main theorems on boundedness (hence on

stability) from [5]. The first theorem is reminiscent of the case
when the “function f1 in (1a) majorates the function g”.
Theorem 1 Consider the system (1) under the following hypothe-
ses.

(i) Assumption 5 holds;
(ii) Assumption 6 holds;

(iii) for each x2 ∈ Rn2 and all t ≥ 0

∂V (t, x1)

∂x1
g(t, x1, x2) = o(W (x1)) .

Then, the solutions of (1) are uniformly globally bounded.

Proof Let tmax determine the maximal interval of existence of
x1(·). By assumption –cf. item (iii), for any ε > 0 there exists
ηε > 0 such that

|x1| ≥ ηε ⇒
˛̨
˛̨∂V (t, x1)

∂x1
g(t, x1, x2)

˛̨
˛̨ < εW (x1)

For any r let c∗ := γ(r) where γ is generated by Assumption 6.
Fix r arbitrarily and let ε above be such that ε < 1/c∗ ; define ηε

accordingly. Define

LgV :=
∂V (t, x1)

∂x1
g(t, x1, x2)

[LgV ](t) :=
∂V (t, x1(t))

∂x1
g(t, x1(t), x2(t)) .

From Assumption 5 we have

V̇(1a)(t, x1) ≤ −W (x1) +

˛̨
˛̨∂V (t, x1)

∂x1
g(t, x1, x2)

˛̨
˛̨ .
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so, defining v(t) := V (t, x1(t)) and w(t) := W (x1(t)) we have,
on the interval of existence of solutions,

v̇(t) ≤ −w(t) + [LgV ](t) . (22)

Assume that the solutions grow unboundedly, moreover, assume
that as t → tmax we have |x1(t)| → ∞. Hence, there exists t∗max ∈
[0, tmax − t◦) such that |x1(t◦ + t∗max)| = ηε and

v̇(t) ≤ −(1− ε)w(t) ∀ t ∈ [t◦ + t∗max, tmax) .

By continuity, the inequality above holds also at t = tmax. The
argument can be repeated for any tmax ≥ t◦ and any r > 0; it
follows that tmax may be infinite and the trajectories x1(t) exist
for all t ≥ t◦ + t∗max all t◦ ≥ 0 and all t∗max ≥ 0. Moreover,
v̇(t) ≤ 0 for all t ≥ t◦ + t∗max. From this and (20a) it follows that
the trajectories x1(t) of (1a) are uniformly globally bounded. The
result follows considering, in addition, (21). ¥

We now make a statement for the case when the functions f1

and g are of the same order with respect to x1 for each fixed x2,
uniformly in t.
Assumption 7 There exists β ∈ KL such that the solutions
x2(t, t◦, x2◦, x1) of (5) satisfy

|x2(t, t◦, x2◦, x1)| ≤ β(|x2◦| , t− t◦) ∀ t ∈ [t◦, tmax). (23)

Assumption 7 holds, for instance, if there exists a positive definite
radially unbounded function V2(t, x2) such that, defining v2(t) :=
V2(t, x2(t)) we have on the interval of existence,

v̇2(t) ≤ −α3(|x2(t)|)α′3(|x1(t)|)
where α3 ∈ K and there exists c > 0 such that α′3− c ∈ K. Then,
Assumption 7 holds is a consequence of the comparison Lemma
–cf. [16] and the bound (16a).
Theorem 2 Consider system (1) under the following conditions:

(i) Assumptions 4, 5 and 7 hold;
(ii) there exist α5, α′5 ∈ K such that

|[LgV ]| ≤ α5(|x1|)α′5(|x2|)
and for each r > 0 there exist λr, ηr > 0 such that

t ≥ 0, |x1| ≥ ηr =⇒ α5(|x1|) ≤ λrW (x1)

Then, the solutions of (1) are uniformly globally bounded.

Proof Assumption 7 implies (16b). From this and Assumption
4 it follows, by Lemma 1 that the system is uniformly forward
complete that is, Assumption 3 holds with tmax = +∞. Fix r > 0
arbitrarily and let it generate λr , ηr by item (ii). From Assumption
7 and forward completeness, there exists tη ≥ 0 such that

α′5 ◦ β(|x2◦| , t◦ + tη) ≤ 1

λr
; β(|x2◦| , t◦ + tη) ≤ r

hence,

|[LgV ](t)| ≤ α5(|x1(t)|)
λr

∀ t ≥ t◦ + tη .

Invoking forward completeness and assuming that |x1(t)| → ∞
as t →∞ it follows that there exists t′η such that

˛̨
x1(t◦ + t′η)

˛̨
≥

ηr . From (22) we obtain v̇(1)(t) ≤ 0 for all t ≥ t◦+t′η . Integrating
and using (20a) the result follows. ¥

The last theorem of this section parallels [5, Theorem 5]; we
consider the case when the function f1 is majorized by g with
respect to x1.

Theorem 3 Let

(i) Assumptions 4, 5 and 6 hold;
(ii) there exist α5, α′5 and ϕ ∈ K such that

α′4(s) ≤ α5(s)α
′
5(s) ,

Z ∞

t◦
α′5(|x2(t, t◦, x2◦, x1)|)dt ≤ ϕ(|x2◦|) ∀x1 ∈ Rn1 , t ≥ t◦ ≥ 0 .

Then, the solutions of (1) are uniformly globally bounded.

Proof We follow similar lines as for the proof of [5, Theorem 5].
Firstly, uniform forward completeness follows as for Theorem 2
above. For UGB, consider the function eV from Assumption 4 and
the function γ from Assumption 6. Define

Vnew(t, x1) :=

Z max{eV (t,x1),a}

a

dv

α4(α−1(v))

which is radially unbounded, in view of (17b) and properness of
eV . Correspondingly, for all x2◦ such that |x2◦| < r, we define
vnew(t) := Vnew(t, x1(t), r). The upper-right Dini derivative of
vnew yields

D+vnew ≤
˙̃v

α4(α−1(ṽ))
.

From (17a) and item (ii) we have

˙̃v(t) ≤ α4(α
−1(ṽ))α5(|x2(t)|)α′5(|x2(t)|) .

From Assumption 6 and for any r > 0 we have

˙̃v(t) ≤ α4(α
−1(ṽ))α5(γ(r))α′5(|x2(t)|) .

hence, D+vnew ≤ α5(γ(r))α′5(|x2(t)|) for all t ≥ t◦. Inte-
grating the latter on both sides, from t◦ to ∞ and using item
(ii) of the theorem we obtain vnew(t) ≤ α5(γ(r))ϕ(|x2◦|) ≤
α5(γ(r))ϕ(γ(r)) for any r > 0, t◦ ≥ 0 and all t ≥ t◦. UGB
of x1(t) follows using the last bound with r = |x2◦| and recalling
that Vnew is radially unbounded. ¥

C. Stability

Now, we make the following statements on uniform global
asymptotic stability of (x1, x2) = (0, 0) for system (1) under
the relaxed Assumption 7 and which follow as corollaries of the
previous theorems.
Proposition 1 For system (1a) let Assumptions 1, 5 and item (iii)
of Theorem 1 hold. For system (1b) let Assumption 7 hold. Then,
the origin of (1) is UGAS.

Proof Assumption 7 implies Assumption 6. UGB follows from
Theorem 1. Since the system is forward complete, by Assumption
7 the origin of (1b) is UGAS, uniformly in the parameter x1.
Setting x1 = x1(t, t◦, x◦) for any pair of initial conditions and
following the discussion below (3) we have that the solutions of
(1) coincide with those of (2) for appropriate choices of initial
conditions. UGAS follows in view of Assumption 1 by invoking
[5, Lemma 2]. ¥

The proofs of the following statements follow similar lines:
Proposition 2 Under Assumption 1 and the conditions of Theo-
rem 2 the origin of (1) is UGAS.
Proposition 3 Under Assumptions 1, 7 and the conditions of
Theorem 3 the origin of (1) is UGAS.
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III. APPLICATION: SEPARATION PRINCIPLE
FOR EL SYSTEMS

For illustration we revisit a stability and control problem of
output feedback control that has remained open for many years.
It consists in establishing uniform global asymptotic stability
for a robot manipulator in closed loop with a position-feedback
dynamic controller. Our main purpose here is to comment the
main result from [17]; to that end we need to introduce some
notation and the formal statement of the problem.

Consider Euler-Lagrange systems i.e.,

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (24)

where, in our notation, the matrix C(q, q̇) contains the terms
corresponding to centrifugal and Coriolis effects, and the vector
g(q) corresponds to potential forces (e.g. gravitational). It is
assumed that all functions are smooth, uniformly bounded and
with bounded partial derivatives2

Problem 1. Let t 7→ q∗ be a smooth bounded function with
bounded derivatives which is given as a reference trajectory.
Assume that only q is available for measurement. Define the
tracking errors:

q̃ := q − q∗; ˙̃q := q̇ − q̇∗ .

It is required to design a dynamic output-feedback controller

τ = (t, ζ, q) (25a)

ζ̇ = fζ(t, ζ, q) (25b)

such that the origin of the closed-loop system, (24)–(25) i.e.,
(ζ, ˙̃q, q̃) = (0, 0, 0) is UGAS.
Controller of [17]. In that reference a certainty-equivalence
controller and an observer are proposed. Besides some imple-
mentation obstacles that we shall not discuss here, the stability
proof which appeals to theorems for cascaded systems but skips
any argument about boundedness or forward completeness of the
system. We present the main result from [17] in a summarized
fashion and in the context of the present paper, thereby filling in a
gap seemingly overlooked in the latter reference.
State feedback controller. Assuming that both q̇ and q are mea-
sured the control input is given by

τ = g(q) + D(q)[q̈∗ + α̇] + C(q, q̇)[q̇∗ + α]−K2z2 −Hz1

(26a)

z1 := [q̃>, ν]; z2 := ˙̃q − α; α := −K1z1 (26b)

ν̇ = q̃ . (26c)

According to [17], K2 = K>
2 > 0 and K1 is chosen such that

A−BK1 is Hurwitz and the pair (A−BK1, B) is strictly positive
real. Hence, for any Q = Q> > 0 there exists P = P> > 0 such
that P (A−BK1)+(A−BK1)

>P = −Q; the matrix H is fixed
to be H> := PB. To write the closed-loop system under the state
feedback we introduce the following notation:

z1 := [z>11 z>12]
>; x1 := [z>1 , z>2 ] (27a)

q(t, x1) := z12 + q∗(t), q̇(t, x1) := z2 −K1z1 + q̇∗(t) (27b)

2For matrix-valued functions, let us say that these assumptions hold on
each of their elements.

So we can write the closed-loop system in the form (4) with

f1(t,x1) :=»
(A−BK1)z1 + Bz2

−D(q(t, x1))
−1 [ C(q(t, x1), q̇(t, x1)) + K2z2 + Hz1 ]

–

(28)

As shown in [17] the total time derivative of

V (t, x1) :=
1

2

“
z>1 Pz1 + z>2 D(q(t, x1))z2

”
(29)

yields
V̇ (t, x1) = −1

2

“
z>1 Qz1 + z>2 K2z2

”
(30)

where the usual properties of Euler-Lagrange systems have
been used: boundedness of D(·) from above and below; skew-
symmetry of Ḋ(·) − 2C(·, ·); besides strict real-positivity of
(A−BK1, B) and the stability of (A−BK1). Hence, Assumption
(5) holds and, moreover with W in (20b) positive definite and
radially unbounded and tmax = +∞ . Yet, in general, tmax may
be finite when the observer and certainty-equivalence control is
used. To see further, let us recall the observer from [17].
The observer and the estimation error dynamics. The observer is
given by

˙̂q = q̂2 + h1(q̃, χ) + K−1
o2 Ko1q̃ (31a)

˙̂q2 = D(q)−1 [ τ + h2(t, q̃, χ) + Ko2q̃ (31b)

−C(q, q̂2 + h1(q̃, χ))[q̂2 + h1(q̃, χ)] ] . (31c)

We do not make explicit all definitions of the symbols above
for space constraints; for this, the reader is invited to see the
original reference [17] however, we make the following fitting
observations about the observer (31). The functions hi are chosen
so that the observer asymptotically tracks the unmeasured state
trajectories. In [17] it is mentioned that t 7→ χ is a “bounded
function to be determined”; as a matter of fact, χ(t) is required to
be solution of the differential equation:

χ̇ = −kχ(χ− cosh(ξ̂>ξ̂)) + 2 sinh(ξ̂>ξ̂)ξ̂> ˙̂
ξ (32)

where
ξ̂ := q̂2 + h1(q̃, χ) .

For the purposes of the main remarks we want to make here, it is
convenient to observe that

ξ̂ = −K−1
o2 Ko1q̃ + (−ξ̃ + K−1

o2 Ko1q̃ + (q̇∗(t) + z2 −K1z1)) .
(33)

The estimation errors are

x2 := [q̃>, ξ̃>, e>χ ]>

and the estimation error dynamics, following [17], is

˙̃q = ξ̃ −K−1
o2 Ko1q̃ (34a)

˙̃
ξ = D(q)−1

h
−Ko2q̃ − [C(q, q̇) + C(q, ξ̂)]ξ̃

i

−k̄o1ξ̃ − γ cosh
„˛̨
˛ξ̂
˛̨
˛
2
«

ξ̃ − γξ̃eχ (34b)

ėχ = −kχeχ (34c)

where we have kept the notation of [17]; the symbols γ, k̄χ, k̄o1

are positive design parameters; the variables q, q̇ and ξ̂ which
appear in (34) are functions of time and the tracking errors x1

–cf. Eqs. (27b) and (33). Hence, the system (34) is of the form
(1b).
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In [17] it is shown that for the estimation error dynamics the
function

V2(t, x1, x2) :=
1

2

“
ξ̃>D(q(t, x1))ξ̃ + q̃>Ko2q̃

”

satisfies

V̇2(t, x1, x2) ≤− α1 |q̃|2 − α2

˛̨
˛ξ̃
˛̨
˛
2

−
“
γdm cosh

“˛̨
˛ξ̂(t, x1, x2)

˛̨
˛
”
− CB

˛̨
˛ξ̂(t, x1, x2)

˛̨
˛
” ˛̨
˛ξ̃
˛̨
˛
2

.

(35)

We stress the following: the function V2 is considered here as
a function of the state x2, time t and the parameter x1. While
it is clear that V2 also depends on x1 it is bounded from above
and below by functions of |x2| only. Even though ξ̂ is function
of x1 and t, the term in brackets is always negative, uniformly in
t, x1 and x2. We conclude that V̇2 is negative definite however,
one cannot conclude UGAS of x2 = 0 since (35) is valid only
on the interval of existence of solutions but we may conclude that
Assumption 7 holds.

Now, assuming that χ(t), defined as a solution of (32), is
bounded is an abusive (and unnecessary) assumption when we
consider the overall certainty-equivalence controller (34) and (26)
with the state estimates i.e.,

τ̂ := g(q) + D(q)[q̈∗ + ˙̂α] + C(q, ˙̂q)[q̇∗ + α]−K2ẑ2 −Hz1

(36a)
˙̂α := −K1[q̄,

> ˙̂q>− q̇∗(t)>]>; ẑ2 := ˙̂q − q̇∗ − α . (36b)

As shown in [17] the closed-loop system with the certainty-
equivalence controller (36) yields

ẋ1 = f1(t, x1) + g(t, x1, x2)

where f1 is given by (28) and

g(t, x1, x2) :=`−K12+D−1(q(t, x1))[C(q(t, x1), q̇
∗(t)−K1z1)−K2]

´
Lx2

(37)

where all matrices K(·) and L are constant design parameters of
appropriate dimensions. The Coriolis matrix C(x, y) is globally
Lipschitz in y uniformly in x and the induced norm |D(·)| is
uniformly bounded from above and below. From this, we obtain
that g(t, x1, x2) = O(|x1|) for each x2, uniformly in t. A simple
calculation shows that V defined in (29) and g above satisfy item
(ii) of Theorem 2. Item (i) of the theorem also holds: Assumption
4 holds with α4(s) ∝ α1(s) ∝ s2 hence α4 ◦ α1(s) ∝ s;
Assumption 5 holds in view of (30). By Theorem 2 the solutions
are uniformly globally bounded.

Finally, by Proposition 2 and in view of (29), (30) –the SPR
assumption, the origin of the closed-loop system is UGAS. As a
matter of fact, since all Lyapunov functions are “quadratic” one
may conclude uniform global exponential stability. This claim is
made in [17, Proposition 3].

IV. CONCLUSION

Stability analysis via Lyapunov’s direct method is challenging
in general for nonlinear time-varying systems. Besides, while
the existence of a Lyapunov function is a well-known necessary

condition for UGAS, sufficiency is at the basis of methods which
(when they apply) often lead to unnecessarily restrictive assump-
tions or complex nonlinear controllers (universal formula, back-
stepping, etc.) A non-systematic alternative is that of cascades-
based analysis and design. We have established conditions under
which feedback interconnected systems may be regarded as cas-
cades. As an illustration of the utility of our main results we have
revisited a recent work on output feedback control of mechanical
systems.
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output tracking control of a class of Euler-Lagrange systems,”
in Proc. 39th. IEEE Conf. Decision Contr., (Sydney, Australia),
pp. 2478–2483, 2000.

[9] J. Gauthier, H. Hammouri, and S. Othman, “A simple observer
for nonlinear systems –application to bioreactors,” IEEE Trans. on
Automat. Contr., vol. 37, no. 6, pp. 875–880, 1992.

[10] L. Praly, “Asymptotic stabilization via output feedback for lower-
triangular systems with output dependent incremental rate,” IEEE
Trans. on Automat. Contr., vol. 48, no. 6, pp. 1103–1108, 2003.

[11] L. Praly and Z. Jiang, “Linear output feedback with dynamic high
gain for nonlinear systems,” Syst. & Contr. Letters, vol. 53, no. 2,
pp. 107–116, 2004.
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