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Abstract— Initial-state opacity emerges as a key property
in numerous security applications of discrete event systems
including key-stream generators for cryptographic protocols.
Specifically, a system is initial-state opaque if the membership
of its true initial state to a set of secret states remains uncertain
(opaque) to an outside intruder who observes system activity
through a given projection map. In this paper, we consider
the problem of constructing a minimally restrictive opacity-
enforcing supervisor (MOES) which limits the system’s behav-
ior within some pre-specified legal behavior while enforcing
the initial-state opacity requirement. To tackle this problem,
we extend the state-based definition of initial-state opacity to
languages and characterize the solution to MOES in terms of
the supremal element of certain controllable, observable and
opaque languages. We also derive conditions under which this
supremal element exists and show how the initial-state estimator,
which was introduced in our earlier work for verifying initial-
state opacity, can be used to implement the solution to MOES.

I. INTRODUCTION

The exchange of vital information over shared cyber-

infrastructures has increased concerns about the vulnerability

of such systems to intruders and other malicious entities.

As a result, various notions of security and privacy have

received considerable attention from researchers. Opacity is

a security notion that aims at determining whether a given

system’s secret behavior (i.e., a subset of the behavior of the

system that is considered critical and is usually represented

by a predicate) is kept opaque to outsiders [1], [2]. More

specifically, this requires that an intruder (modeled as an

observer of the system’s behavior) is never able to establish

(with absolute certainty) the truth of the predicate.

In our earlier work [1], [3], we considered opacity with

respect to predicates that are state-based. More specifically,

given a discrete event system (DES) that can be modeled as

a (possibly non-determinstic) finite automaton with partial

observation on its transitions, we considered a scenario

where the intruder’s observability power can be modeled
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through the set of observable transitions (which is the subset

of system transitions that are observable to outsiders). By

partitioning the set of system states into secret and non-secret

states, we considered, analyzed and characterized the notion

of initial-state opacity in [3]. Initial-state opacity requires

that, regardless of the underlying activity in the system, the

sequence of (observable) transitions seen by the intruder

never allows him/her to unambiguously determine that the

initial state of the system belonged to the set of secret states.

In [3], we developed a method for verifying initial-state

opacity using an initial-state estimator.

In this paper, we consider the problem of designing a

supervisor which can: (i) limit the system’s behavior within

some pre-specified legal behavior, and (ii) enforce initial-

state opacity requirements by disabling at any given time

(and based on the partial observations seen so far) the least

number of possible events (i.e., the supervisor is minimally

restrictive). We show that the solution to our problem is

the supremal element (if one exists) of a set of languages

which can be characterized as the intersection of controllable,

observable, and initial-state opaque languages. We argue

that, under certain conditions, the supremal element exists

and derive a formulation for it. Moreover, assuming that the

given legal behavior is regular (i.e., it can be described via

a finite state machine), we show that the supremal element

is also regular. In addition we propose a procedure that uses

the initial-state estimator construction of [3] to enforce this

supremal element, and effectively integrating the verification

and control problems.

There has been some related work on the design of

supervisors to enforce various types of security properties in

DES [4], [5], [6], [7]. Following a language-based approach,

the authors of [4] consider multiple observers with different

observation capabilities (modeled through natural projection

maps); opacity in this setting requires that no observer is

able to determine whether the actual trajectory of the system

belongs to the secret language assigned to that observer.

The control problem seeks a supervisor that enforces such

opacity for all observers of the system. The case of one

particular observer is later considered in [5]. The authors

of [6] model the intruder as an entity which can override

the decision of the supervisor to disable certain events. The

authors of [7] consider the problem of non-interference for

timed automata. They partition the event set into public and

private events and define non-interference as the property

under which the system’s public behavior is not affected by

its private behavior.

In contrast to [4] and [5], opacity in our framework relies

on the partitioning of system states into secret and non-
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secret ones; this state-based formulation enables us to use

a state estimator to synthesize the supervisor. Compared to

[6], the intruder in our framework is passive (modeled as

an observer) and cannot change the system configuration or

model. Also, in this paper, we are not seeking to avoid states

as long as we can guarantee that entrance to these states

retains the property of initial-state opaqueness. Our system

model (untimed automaton) and our model of the intruder’s

capability (in terms of observability power) is different from

[7] which makes the two frameworks rather incomparable.

II. PRELIMINARIES AND NOTATIONS

Let Σ be an alphabet of symbols (also called elements or

events) and denote by Σ∗ the set of all finite-length strings of

elements of Σ, including the empty string ǫ (of length zero).

A language L ⊆ Σ∗ is a subset of finite-length strings from

Σ∗. For a string ω, ω denotes the prefix-closure of ω and is

defined as ω = {t ∈ Σ∗| ∃s ∈ Σ∗ : ts = ω}. The prefix

closure L of language L is the set of all prefix closures of

all strings in L. A language is prefix-closed if L = L [8].

A DES is modeled in this paper as a (possibly non-

determinstic) finite automaton G = (X, Σ, δ, X0), where

X = {0, 1, . . . , N − 1} is the set of states, Σ is the set

of events, δ : X × Σ → 2X is the (possibly partial) state

transition function and X0 ⊆ X is the set of possible initial

states. The function δ can be extended from the domain

X×Σ to the domain X×Σ∗ in the routine recursive manner

δ(i, ts) :=
⋃

j∈δ(i,t) δ(j, s), for t ∈ Σ and s ∈ Σ∗ with

δ(i, ǫ) := i. We use L(G, i) to denote the set of all traces that

originate from state i of G (so that L(G) =
⋃

i∈X0
L(G, i)).

The prefix-closed language E is regular if there exists a finite

automaton G such that L(G) = E.

The product of two automata G1 = (X1, Σ1, δ1, X01)
and G2 = (X2, Σ2, δ2, X02) is the automaton G1 ×
G2 := AC(X1 × X2, Σ1 ∩ Σ2, δ1×2, X01 × X02) where

δ1×2((i1, i2), α) := δ1(i1, α)× δ2(i2, α) if α ∈ Σ1 ∩Σ2 and

is undefined otherwise, and AC denotes the accessible part

of the automaton (i.e., the set of states reachable from the set

of initial states via some string s ∈ Σ∗). The construction of

the product automaton implies that L(G1 ×G2) = L(G1)∩
L(G2) [8].

We assume that only a subset Σobs of the events in Σ
can be observed and monitored, and adopt the common

assumption that Σ can be partitioned into two sets, Σobs

and Σuo. The natural projection PΣobs
: Σ∗ → Σ∗

obs can

be used to map any trace executed in the system to the

sequence of observations associated with it. This projection

is defined recursively as PΣobs
(σs) = PΣobs

(σ)PΣobs
(s), for

σ ∈ Σ and s ∈ Σ∗, with PΣobs
(σ) = σ if σ ∈ Σobs and

PΣobs
(σ) = ǫ if σ ∈ Σuo ∪ {ǫ} (where ǫ represents the

empty string [8]). In the sequel, the index Σobs in PΣobs

will be dropped if it is clear from context. For any string s,

P−1(s) denotes all of the strings in Σ∗ that have projection

s.

In the Ramadge and Wonham framework introduced in

[9], it is further assumed that the event set Σ can be

partitioned into the sets of controllable events (Σc) and

uncontrollable events (Σuc), and control is achieved by

means of a supervisor which at any given time can enable

or disable one or more controllable events. Formally, given

a system G, a feasible supervisor νo (subscript o denotes

the partial observation) for G is a map νo : P (L(G)) →
{Σ′ ⊆ Σ|Σuc ⊆ Σ′} which defines the set of events Σ

′

that

remain enabled after observing a particular string from the

system (note that Σ′ necessarily includes all uncontrollable

events). If we denote the closed-loop system by νo/G, the

minimally restrictive feasible supervisor problem (MS) is

defined as the design of a feasible supervisor νo such that:

(i) L(νo/G) ⊆ E for a given (prefix-closed) language E that

describes desirable behavior, and (ii) L(νo/G) is as large as

possible (i.e., for any other feasible supervisor ν′
o such that

L(ν′
o/G) ⊆ E, we have L(ν′

o/G) ⊆ L(νo/G)).
The solution to the MS problem can be expressed in terms

of certain controllable and observable languages. A language

K ⊆ L(G) is controllable [8] with respect to L(G) and Σuc

if KΣuc ∩ L(G) ⊆ K. Also, K is said to be (L(G), P )–
observable [8] if for all s ∈ Σ∗ and σ ∈ Σ, sσ /∈ K and

sσ ∈ L(G) implies P−1(P (s))σ ∩ K = ∅.
If we exclude requirement (ii) (that the supervisor is

minimally restrictive) the following theorem from [8] char-

acterizes all solutions to the supervisory control problem for

certain prefix-closed languages.

Theorem 1 ([8]): Given a prefix-closed language K ⊆
L(G), K 6= ∅, there exists a feasible supervisor νo for G
such that L(νo/G) = K if and only if: (i) K is controllable

with respect to L(G) and Σuc, and (ii) K is observable with

respect to (L(G), P ).
The existence of a minimally restrictive feasible supervisor

is not guaranteed in general. However, if we choose to im-

plement only normal sublanguages of E, then the minimally

restrictive supervisor exists [10]. Formally, K is said to be

(L(G), P )-normal if K = L(G)∩P−1(P (K)). Note that in

the special case when Σc ⊆ Σobs, the notions of observability

and normality become equivalent for a controllable language

[8]. For any E ⊆ L(G), we define N (E)(C(E)) to be

the set of all prefix-closed sublanguages of E that are

normal (controllable). The set CN (E) ≡ C(E) ∩ N (E) is

closed under union and hence there exists a unique supremal

element supCN (E) under the partial order of set inclusion

for this set. We denote supCN (E) by E↑CN . Using this,

we can formulate the solution ν↑CN
o to MS, when limited to

normal sublanguages of E, as E↑CN . The following lemma

(taken from [11]) characterizes this solution. In the sequel,

the superscript ↑Co denotes the supremal controllable and

prefix-closed sublanguage with respect to P (L(G)) and Σuc,

and the superscript ↑N denotes the supremal prefix-closed

and normal sublanguage with respect to (L(G), P ).
Lemma 1 ([11]): For any prefix-closed language E ⊆

L(G), we have E↑CN = L(G) ∩ P−1((P (E↑N ))↑Co).
Another approach for defining supervisory control prob-

lems is the state-based approach where, instead of specifying

the legal behavior as a prefix-closed language E, a set of

forbidden states is provided via some predicate R : X →
{0, 1} with R(x) = 0 capturing the fact that x is a forbidden
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state. This set of forbidden states needs to be avoided via

a state-feedback supervisor νs : X → {Σ′ ⊆ Σ|Σuc ⊆
Σ′} (Chapter 7 of [8]). The controller determines what

controllable events to disable given the state the system

is in. It can be shown that there exists a state-feedback

supervisor such that all states x for which R(x) = 1 can

be visited under supervision, if and only if R is controllable

[8], i.e., if and only if it satisfies the following: (i) if state

m satisfies R then m is reachable from the initial state of

G via a string of states satisfying R, and (ii) at any of

the visited states, uncontrollable events take the system to

states which again satisfy R. If R is not controllable, we

can seek a controllable predicate that best approximates R
from below. Specifically, we say the predicate R1 refines R2

if for all x ∈ X , R1(x) = 1 implies R2(x) = 1. Now define

CR(R) to be the set of all predicates that are controllable

and refine R. Then CR(R) is closed under union and hence

has supremal element supCR(R) (denoted by R↑CR). Let

ν↑CR
s be the state-feedback supervisor that synthesizes the

predicate supCR(R). Also denote by R/G the accessible

part of automaton G when all the states that do not satisfy

R are removed. Then, for any predicate R, we have [8]

L(ν↑CR
s /G) = L↑C(R/G). (1)

In other words, to find the state-feedback supervisor to

synthesize the predicate supCR(R), one can first remove

all states that do not satisfy R and then find the supremal

controllable sublanguage of the closed-behavior of the re-

maining graph.

III. PROBLEM FORMULATION

In this section we recall the definition of initial-state

opacity from [3] and the construction of the initial-state

estimator (introduced in that paper) to verify this property.

Definition 1 (Initial-State Opacity): Given a (possibly

non-determinstic) finite automaton G = (X, Σ, δ, X0), a

projection map P with respect to the set of observable

events Σobs, and a set of secret states S ⊆ X , automaton G
is initial-state opaque with respect to S and P (or (S, P,∞)
initial-state opaque) if for all i ∈ X0 ∩ S:

∀t ∈ L(G, i), ∃j ∈ X0 − S, ∃s ∈ L(G, j), P (s) = P (t).

According to Definition 1, system G is (S, P,∞) initial-state

opaque if for every string t that originates from an initial

state in the set of secret states S there exists a string s that

originates from an initial state outside S and has the same

projection as t.
To verify initial-state opacity we can model the intruder

with a state estimator, called the initial-state estimator (ISE),

which uses the notion of a state mapping to reconstruct the

states from which the sequence of observations seen up to

this point could have been initiated [3]. A state mapping is

a set whose elements are pairs of states: the first component

of each element (pair) is the starting state and the second

component is the ending state. The composition operation

on state mappings is defined in [3] as follows: each element

in the first state mapping can be combined with an element

δuo α

0 1

2

β

3

δuo

α β

Fig. 1. DES G discussed in Example 1.

in the second mapping if the ending state of the former

one is the same as the starting state of the latter one; the

result is a new pair with the starting state taken to be the

starting state of the first state mapping and the ending state

taken to be the ending state of the second state mapping.

The ISE in [3] utilizes state mappings as follows: each state

of the ISE is associated with a unique state mapping and,

since the initial state assumes nothing about the state of the

system, the mapping associated with this initial state is the

mapping {(xi, xi)|xi ∈ X0} where starting and ending states

are identical for all states in X0. When the first observation

is made, the induced state mapping corresponding to that

observation is composed with the initial state mapping; the

resulting state mapping becomes the next state of the state

estimator. The induced state mapping for any observation s
is defined in [3] as the state mapping whose pairs consist of

starting and ending states such that there exists a sequence

of events that starts from the starting state and ends at the

ending state, while producing observation s. For subsequent

observations, the current state of the ISE transitions into the

state associated with the mapping that can be obtained via the

composition of the previous state mapping and the mapping

induced by the new observation. In this way we can build a

structure which, at any time and based on the observations

seen so far, gives information about possible pairs of starting

(initial) states and ending (current) states through the state

mappings associated with each of its states. Note that this

structure is guaranteed to be finite and has at most 2N2

states

where N is the number of states of the DES G (and thus

N2 is the number of different pairs of starting and ending

states).

As mentioned before, the ISE can be used to verify initial-

state opacity. In [3], it was shown that DES G is initial-

state opaque if and only if for each of the state mappings

associated with reachable states in its ISE, the set of starting

states contains at least one element outside S. The following

example demonstrates how the ISE can be used to verify

initial-state opacity.

Example 1: Consider the automaton G of Figure 1 with

Σobs = {α, β}. Figure 2 shows the ISE for this sys-

tem. The initial uncertainty is assumed to be equal to

the state space and hence the initial state of the ISE m0

is the state mapping {(0, 0), (1, 1), (2, 2), (3, 3)}. Upon

observing α, the next state of the ISE becomes m′ =
{(0, 0), (0, 1), (0, 2), (0, 3), (2, 1), (2, 3)} ≡ m1. Observe

that α can be observed only from states 0 and 2; moreover,

if the initial state was 0, the current state can be any of

the states in {0, 1, 2, 3} but if the initial state was 2, the

current state could only be {1, 3}. Mapping m1 summarizes

this information with its pairs (on the right of Figure 2 we

use a graphical way to describe the pairs associated with

the ISE). Using this approach for all possible observations
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Fig. 2. ISE corresponding to G discussed in Example 1.

(from each state), the ISE construction can be completed (by

composing the state mapping associated with the given state

with the mapping induced by each possible observation) as

shown in Figure 2. This system is not ({1}, P,∞) initial-

state opaque due to the existence in the ISE of state m6 =
{(1, 0), (1, 1), (1, 2), (1, 3)} whose set of starting states ({1})

is strictly within S. In other words, observing βα(α + β)∗

completely determines the initial state as state 1 which is

within the set of secret states (and, hence, violates initial-

state opacity). �

In this paper, using the verification method introduced in

[3], we construct a feasible supervisor to limit the behavior

of the system within a pre-specified legal behavior while

enforcing initial-state opacity and while disabling the least

possible number of controllable events. Before defining this

problem formally, we need to clarify one issue. Opacity is

defined to be a property of the states of the given finite

automaton; however, the application of supervisory control

to the system modifies the original structure of the automaton

and hence its states. The remedy to this problem is to find

a way to map states of the supervised system to states of

the original system and, hence, re-define the set of secret

states for the system under supervision to include all those

states that are mapped to secret states in the original system.

The following definition uses the product operator to map

the states and hence extends the definition of opacity to the

supervised system.

Definition 2 (Initial-State Opacity for Supervised System):

Given a (possibly non-deterministic) finite automaton

G = (X, Σ, δ, X0), a projection map P with respect

to the set of observable events Σobs, and a set of

secret states S ⊆ X , we say that (possibly non-

determinstic) automaton G′ = (X ′, Σ′, δ′, X ′
0) is

(S, P,∞) initial-state opaque with respect to G if

Gp = G′ ×G = (Xp, Σp, δp, X0p) is (Sp, P,∞) initial-state

opaque where X0p = {(x′
o, xo)|x′

o ∈ X ′
o, xo ∈ Xo} and

Sp = {(x, y) ∈ X0p|x ∈ X ′
0, y ∈ S}.

Using Definition 2, initial-state opacity is enforced under

supervision if νo/G (the supervised system) is (S, P,∞)
initial-state opaque with respect to G. Note that this def-

inition requires νo/G to be regular. A feasible supervisor

that achieves this property is called an opacity-enforcing

feasible supervisor for the system and is denoted by νop.

Next, we define the minimally restrictive opacity-enforcing

feasible supervisor (MOES) problem.

Definition 3 (MOES): Given a (possibly non-

determinstic) finite automaton G = (X, Σ, δ, X0), a

set of controllable events Σc, Σc ⊆ Σobs, a projection map

P with respect to the set of observable events Σobs, a set

of secret states S ⊆ X , and a prefix-closed and regular

language E ⊆ L(G), find an opacity-enforcing feasible

supervisor νop for G such that (i) L(νop/G) ⊆ E, and (ii)

L(νop/G) is as large as possible.

IV. SOLUTION TO MOES

A. Characterizing the Solution to MOES

In order to characterize the solutions to MOES using

machinery that already exists in the literature on supervisory

control (e.g., [8], [9]) we need to bring in a language-based

formulation of the state-based notions of initial-state opacity.

Definition 4 (Language-Based Definition of Opacity):

Given a (possibly non-determinstic) finite automaton

G = (X, Σ, δ, X0), a projection map P with respect to the

set of observable events Σobs, and a set of secret states

S ⊆ X , we say that language K ⊆ L(G) is (S, P,∞)
initial-state opaque with respect to G if for all i ∈ X0 ∩ S,

and t ∈ L(G, i) ∩ K̄

∃j ∈ X0 − S, s ∈ L(G, j) ∩ K̄, P (s) = P (t). (2)

Based on Definition 4, language K is (S, P,∞) initial-state

opaque with respect to G if for each string t in K that can

originate from a secret state in G, there exists at least another

string s in K that has the same projection as t and originates

from a non-secret state in G. The following lemma relates

Definition 4 to Definition 2 for a regular language K .

Lemma 2: Given a prefix-closed and regular language

K ⊆ L(G) and the (possibly non-determinstic) finite au-

tomaton GK = (XK , ΣK , δK , X0K) such that L(GK) = K ,

K is (S, P,∞) initial-state opaque with respect to G if and

only if GK is (S, P,∞) initial-state opaque with respect to

G.

Using the notion of initial-state opacity for languages, we

now characterize all opacity-enforcing feasible supervisors

and derive the solution to MOES.

Theorem 2: Given a prefix-closed and regular language

K ⊆ L(G), K 6= ∅, there exists an opacity-enforcing feasible

supervisor νop for G such that L(νop/G) = K, if and only

if: (i) K is controllable with respect to L(G) and Σuc; (ii) K
is observable with respect to (L(G), P ); (iii) K is (S, P,∞)
initial-state opaque with respect to G.

Proof: Follows from Theorem 1 and Lemma 2.

For any E ⊆ L(G), define O(E) (P(E)) to be the

set of prefix-closed sublanguages of E that are observ-

able (initial-state opaque). Then, using Theorem 2, for any

supervisor νop that enforces initial-state opacity we have

L(νop/G) ⊆ COP(E) :=C(E)∩O(E)∩P(E). MOES as-

sumes that Σc ⊆ Σobs which implies that CO(E) = CN (E),
hence, L(νop/G) ⊆ CNP(E). Since MOES requires the

minimally restrictive opacity-enforcing feasible supervisor,

the solution to MOES could be the supervisor ν↑CNP
op such

that L(ν↑CNP
op /G) = supCNP(E) ≡ E↑CNP . In the next

section, we prove that such supremal element exists and

provide a formulation for it.
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B. Properties of Initial-State Opaque Languages

In this section, through various lemmas, we characterize

the language E↑CNP and hence obtain the solution to

MOES. The first lemma characterizes the set P(E).
Lemma 3: For any language E ⊆ L(G), we have P(E) =

{K ⊆ E| K = K, K ⊆ L(G) ∩ P−1(P (K ∩ L(G, X0 −
S)))}.

Proof: Define V ≡ K ∩ L(G, X0 − S) and W ≡
K ∩ L(G, X0 ∩ S). From the definition of P(E) it follows

that K ∈ P(E) implies that P (W ) ⊆ P (V ). Moreover, we

have K = V ∪W which implies that P (K) = P (V )∪P (W )
and since P (W ) ⊆ P (V ), we have P (K) = P (V ) and, thus

K ⊆ P−1(P (V )). Moreover, K ⊆ E ⊆ L(G), and hence

K ⊆ (L(G) ∩ P−1(P (V ))) which concludes the proof.

The next lemma states that the set of initial-state opaque and

prefix-closed sublanguages of E has a supremal element.

Lemma 4: P(E) is nonempty and closed under arbitrary

unions; in particular, the supremal element supP(E) exists

in P(E).
Assuming that E is prefix closed, the following theorem

derives a formulation for the supremal element E↑P of

P(E).
Theorem 3: For any prefix-closed language E ⊆ L(G),

we have E↑P = E ∩ P−1(P (E ∩ L(G, X0 − S))).
Proof: Due to space limitation, we only provide a

sketch of the proof. Define H ≡ E∩P−1(P (E∩L(G, X0−
S))). To prove the theorem, we show that: (a) every K ∈
P(E) is a subset of H , which follows from Lemma 3, and

(b) H ∈ P(E) which can be established by showing that:

(i) H is initial-state opaque, and (ii) H is prefix-closed.

Corollary 1: Normality is preserved under ↑P operator for

a prefix-closed and normal language E ⊆ L(G).
Proof: The proof is omitted due to space limitation.

Next we characterize the set NP(E) using Lemma 3.

Lemma 5: For any E ⊆ L(G), we have NP(E) = {K ⊆
E| K = K, K = L(G) ∩ P−1(P (K ∩ L(G, X0 − S)))}.

We complete the analysis on the properties of initial-

state opaque languages by considering the controllability

condition.

Lemma 6: Initial-state opacity is preserved under ↑CN

operator for any prefix-closed and normal language E ⊆
L(G).

The following theorem derives a formulation for E↑CNP .

Theorem 4: Given a prefix-closed and normal lan-

guage E ⊆ L(G), we have E↑CNP = L(G) ∩
P−1((P ((E↑N )↑P ))↑Co).

Proof: By Lemma 6, initial-state opacity is preserved

under ↑CN operator for normal languages; hence E↑CNP =
(E↑NP )↑CN . Also by Corollary 1, normality is preserved un-

der the ↑P operator for normal languages; therefore E↑NP =
(E↑N )↑P . Putting these two together, we have E↑CNP =
((E↑N )↑P )↑CN . Using Lemma 1, the proof is complete.

C. Implementing the Solution to MOES using the Initial-

State Estimator

MOES requires the minimally restrictive opacity-

enforcing feasible supervisor νop that can enforce the le-

gal behavior described via the prefix-closed language E.

Theorem 2 states that the solution to MOES boils down

to E↑CNP and Theorem 4 (assuming that E is nor-

mal) characterizes this solution as E↑CNP = L(G) ∩
P−1((P (E↑P ))↑Co). Observe that Theorem 3 characterizes

E↑P = E ∩P−1(P (E ∩L(G, X0 −S))) which implies that

E↑P can be implemented using projection and intersection

operations on languages. Also [11] gives a formulation for

the supremal controllable sublanguage E↑C (assuming that

E is prefix-closed) using concatenation, intersection and

complement operations on languages. For regular languages,

all these operations can be implemented using operations

on finite state machines [8]. Hence, since in MOES E is

assumed to be regular, E↑CNP can be obtained (and hence

the solution to MOES can be implemented) via certain

operations on automata describing E and G. This implies

that E↑CNP is regular. In this section, we take a different

approach for implementing the solution to MOES and

introduce an algorithm which uses the ISE structure to obtain

the solution. Observe that the ISE construction can be used

for verifying initial-state opacity and, hence, the proposed

algorithm integrates the verification and control problems.

In the sequel we assume, without loss of generality, that E
is normal (if this assumption is not satisfied, we can always

first compute E↑N using the results in [11] and then proceed

with the following).

Algorithm A: Given a (possibly non-determinstic) finite au-

tomaton G = (X, Σ, δ, X0), a set of controllable events Σc,

Σc ⊆ Σobs, a set of secret states S ⊆ X , and a prefix-closed,

normal and regular language E ⊆ L(G), E 6= ∅, describing

the legal behavior, we can obtain a minimally restrictive

supervisor ν↑CR
s for G via the following steps: (i) Construct

automaton GE = (XE , Σ, δE , X0E) such that L(GE) = E.

(ii) Construct Gp = GE × G = (Xp, Σ, δp, X0p); define

Sp ≡ {(x, y) ∈ X0p|x ∈ X0E , y ∈ S}. (iii) Construct the

ISE Gp
∞,obs corresponding to Gp. (iv) Construct the state-

feedback supervisor ν↑CR
s for Gp

∞,obs that avoids all states in

Gp
∞,obs for which the set of starting states of the associated

state mapping contains no state outside Sp; for this, first

define the predicate R to be true on such states, and then

construct the accessible part R/Gp
∞,obs of the ISE Gp

∞,obs

when all the states that do not satisfy R are removed. (v)

Check for controllability condition on the remaining graph.

Theorem 5: Given a prefix-closed, normal and regular

language E ⊆ L(G), the control action of the solution

ν↑CNP
op to MOES after observing s is the same as the control

action of the state-feedback supervisor ν↑CR
s (as synthesized

by Algorithm A) at the state reached in Gp
∞,obs via s.

Proof: We first show that steps (i)-(iv) implement

P (E↑P ). In [3], we showed that in the ISE G∞,obs for

G, P (L(G, X0 − S)) is characterized via the set of strings

in G∞,obs that start from the initial state and reach a state

in G∞,obs for which the associated state mapping contains

at least one state outside the set of secret states S in

its set of starting states. Using this result, we can argue

that P (E ∩ L(G, X0 − S)) is characterized via the set of
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strings in Gp
∞,obs (as constructed in Algorithm A) that start

from initial state Xp
0,obs and reach a state in Gp

∞,obs for

which the associated state mapping contains at least one

state outside Sp in its set of starting states. Theorem 3

states that E↑P = E ∩ P−1(P (E ∩ L(G, X0 − S))) which

implies that P (E↑P ) = P (E ∩ L(G, X0 − S)). This means

that one can implement P (E↑P ) by removing in the ISE

the states that do not satisfy R, i.e., L(R/Gp
∞,obs) =

P (E↑P ). Removing states and the associated labels from

ISE G∞,obs (i.e., evaluating R/Gp
∞,obs) might violate the

controllability condition, hence in step (v) the algorithm

implements (P (E↑P ))↑Co ; therefore, the state-feedback su-

pervisor ν↑CR
s synthesizes the predicate supCR(R). By (1),

L(ν↑CR
s /Gp

∞,obs) = (L(R/Gp
∞,obs))

↑Co = (P (E↑P ))↑Co .

Finally, to prove the theorem we need to show that

νop(s) ≡ ν↑CR
s (δp

∞,obs(X
p
0,obs, s)) is the solution to MOES

where δp
∞,obs(X

p
0,obs, s) denotes the state in Gp

∞,obs reached

via s. For this, we can equivalently prove that the transition

structure of the automaton G̃ ≡ ν↑CR
s /Gp

∞,obs can be used

to implement the solution to MOES as follows: a string s can

be executed in the closed loop system νop/G if its projection

P (s) belongs to L(G̃). For this, we show that: (i) G̃ is an

opacity-enforcing feasible supervisor, and (ii) L(G̃/G) =
E↑CNP . Note that automaton G̃ is a feasible supervisor

for G since L(G̃) is controllable with respect to P (L(G))
[8]. Moreover, L(G̃) is initial-state opaque by construction.

Hence, G̃ is an opacity-enforcing feasible supervisor. To

show (ii), note that the supervisor G̃ observes the behavior

through the projection map P ; therefore, the behavior of G̃
can be described via L(G̃/G) = L(G)∩P−1(L(G̃)). More-

over, L(G) ∩ P−1(L(G̃)) = L(G) ∩ P−1((P (E↑P ))↑Co) =
E↑CNP which results in L(G̃/G) = E↑CNP .

Example 2: Consider the DES G in Figure 1. Assume

that Σc = {β}. Also suppose that E = L(G) meaning that

the only requirement for the supervisor is to enforce initial-

state opacity. This implies that steps (i)-(iii) of Algorithm A

can be replaced by the construction of the ISE for G.

Figure 2 depicts this ISE for G (G∞,obs). As mentioned

in Example 1, this system is not ({1}, P,∞) initial-state

opaque due to the existence of state m6 in the ISE. To

obtain the minimally-restrictive feasible supervisor that en-

forces ({1}, P,∞) initial-state opacity, following step (iv)

of Algorithm A, we first remove from G∞,obs the state

that violates initial-state opacity, i.e., m6; Figure 3-a depicts

the accessible part of the remaining automaton R/G∞,obs.

Next, following step (v) of Algorithm A, we check for

controllability condition. At state m4, α is disabled which

is an uncontrollable event. Hence, access to state m4 should

be rejected earlier, which is accomplished by disabling β
at state m0. Figure 3-b depicts the automaton associated

with the supremal controllable sublanguage of the automaton

in Figure 3-a. Based on this, the supervisor does not allow

observing β as the first observation. Indeed, observing βα
determines the initial state to be state 1 which is a secret set

and hence violates initial-state opacity. �

m4

m0

m1

m2m3

α, βα, β

β α

αβ
β

α, β

m5

(a)

m1

m2m3

α, βα, β

αβ

α

m0

(b)

Fig. 3. (a) R/G∞,obs (b) G̃ ≡ ν↑CR
s /G∞,obs as well as the minimally

restrictive opacity-enforcing supervisor ν↑CNP
op for G in Figure 1.

V. CONCLUSIONS

In this paper, we consider the problem of designing

feasible supervisors that enforce initial-state opacity while

limiting the behavior of the system to a subset behavior,

called legal behavior and described by a prefix-closed lan-

guage E. We show that there always exists a solution to

this problem and characterize the set of solutions as the

set of sublanguages of E that are controllable, observable,

and initial-state opaque. We show that under the assumption

that Σc ⊆ Σobs, there always exists a minimally restrictive

solution to this problem and propose a method to find the

supremal of such languages (which is the solution of our

minimally restrictive supervisory control problem).

In the future, we are interested in introducing probability

metrics to this framework. The control problem can then

be connected to the design of control policies for stochastic

systems under suitable optimality criteria for probabilistic

opacity.
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