
  

  

Abstract—This paper presents a new technique for 

track-following control in hard disk drives, in order to achieve 

high tracking precision of magnetic read-write heads uniformly 

for a large number of disk drives. The main contribution of this 

paper is to propose a new technique to specify the uncertainty 

bound for voice-coil-motor and an iterative design procedure to 

design an optimal controller with robust stability. 

I. INTRODUCTION 

s the storage capacity of magnetic hard disk drives 

(HDDs) increases dramatically, the demand for 

positioning control accuracy of a read/write head of HDD is 

becoming more stringent. To achieve this goal, higher control 

bandwidth is necessary to attain sufficient positioning 

accuracy. However, it is difficult to design high bandwidth 

controllers, and at the same time guarantee robust stability. 

Robust controller design is widely used to reach the balance 

between performance and stability. The selection of nominal 

plant, performance weight and uncertainty weight are 

all-important and related. Guideline for choosing these 

weights is a largely un-solved problem for which only few 

results are available [1] – [8]. In this paper, it is assumed that 

the nominal plant and the performance weight have been 

selected, and focuses on choosing an uncertainty weight to 

maximize performance without compromising stability.  

The most commonly seen uncertainty in hard disk drive is 

the voice-coil-motor (VCM) bode variation from drive to 

drive. In this paper, it is assumed that a finite numbers of 

VCM bode, )(ωP , from multiple drives, which are dense 

enough to cover all the design uncertainty, are available. And 

if a given controller can stabilize every member in )(ωP , then 

the controller achieves robust stability. 

To design such a controller using robust synthesis 

technique, a classic way to specify uncertainty weight is the 

maximum perturbation radius (MPR) approach [1]. In 

practice, even though MPR weight is simple to calculate, it 

will introduce conservatism since the over-bounding 

operations guarantee only sufficient conditions for robust 

stability. Motivated by this fact, a critical perturbation radius 

(CPR) approach [2]–[4] was proposed for interval system. 

Unfortunately, the method can only be applied to system with 

parametric uncertainty, which limits its usage, especially to 
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HDD industry. Further study also reveals that even though 

CPR approach gives necessary and sufficient stability 

condition, it cannot be applied directly into design procedure, 

since there is no guarantee that the design can converge. This 

paper examines how to apply these approaches to HDDs, and 

proposes the critical perturbation frequency (CPF) and 

critical cone radius (CCR) concept, with which an innovative 

iterative robust synthesis approach is explored, which proves 

to be simple and effective. 

The paper is organized as follows. In Section 2, the robust 

track-following problem is formulated mathematically; the 

MPR and CPR [1,2] methods are reviewed, and the 

applications of these methods to HDD are explored. The CCR 

and CPF concepts are introduced in Section 3. Section 4 

presents an iterative robust control design methods that solve 

the formulated robust track-following problem. The 

convergence issue is also studied. Section 5 gives a simple 

example for the synthesis of a single-stage track-following 

controller using the proposed techniques. Readers are 

referred to [2]–[4] for more background on the CPR 

approach.  

II. PROBLEM FORMULATION 

Consider the track-following design problem depicted in 

Fig 1. Here, )(0 ωjP is a given nominal plant, )( ωjWp
is a given 

performance weight, )( ωjUncertain is the uncertainty weight to 

be selected to design a controller )( ωjC to optimize the robust 

performance for a finite number of VCM bodes depicted in 

Fig 2 (this paper will use this group of VCM bodes as the 

design example). 

The finite numbers of VCM bodes can be represented as  

{ }niCjjPjPjPP ii ...1,:)()()()()( 0 =∈+== δωδωωωω    (1) 

Here, at a specific frequency ω , )(ωP  are n complex 

numbers, representing the VCM bode responses. )( ωδ j  

belongs to an uncertainty set d, which is a group of complex 

values reflecting the distance of the given VCM bodes from 

nominal plant response, )(0 ωjP . Since there are only finite 

numbers of VCM bodes, )( ωδ j will have finite numbers of 
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Figure 1: Block diagram of the track following design system 
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samples at a specific frequency, which makes it bounded. Fig 

3 depicts the relationship of )(ωP , )(0 ωP , and )( ωδ j at one 

frequency point. 

Even though the design problem is presented with additive 

uncertainty, it can be shown that all the results in this paper 

can be easily applied to multiplicative uncertainty. 

A. Maximum Perturbation Radius (MPR) Uncertainty 

Weight 

The MPR uncertainty is defined in [1] and illustrated in 

Figure 4.  

The largest perturbation radius at a specific frequency ω is 

defined as 

)(max)()(
d

max ωδωδω jjjMPR ==      (2) 

Searching MPR for the linear uncertain system in (1) is 

very simple for there are only n values to be considered at 

each frequency. The traditional MPR approach will use a 

constant weight, which is the largest )(ωMPR  over all 

frequencies, 

∞
== )()(max)( maxmax ωδωδω

ω
jjMPR .   (3) 

To reduce conservatism, it is common practice to select a 

minimum-phase stable system, which covers the MPR at each 

frequency point, as the MPR additive uncertainty weight. 

Since MPR weight uses the smallest disk centered at nominal 

plant to cover uncertainty at each frequency, it does not care 

about its phase. So a minimum-phase stable MPR weight 

always exists, since it is always possible to convert 

right-plane zeros and poles to left-plane without affecting 

magnitude. 

Figure 5 showed how to select MPR weight based on the 

magnitude of uncertainty set )( ωδ j for HDDs. In the example 

given in Fig 2, there are n VCM bodes, hence for a selected 

nominal plant )(0 ωP , Fig 5 depicted the magnitude of the n 

)( ωδ ji
 in black lines. The upper bound of )( ωδ j  along the 

frequency defines the exact value of MPR. In Fig 5, a high 

pass filter was selected to cover the exact MPR weight, 

except at lower frequency. A high pass filter was chosen as 

MPR weight is because, firstly, lower frequency is the typical 

range for performance requirement; and, secondly, a high 

pass filter only adds two orders to the controller designed 

using a standard 
∞H synthesis package. 

It is obvious from Fig 4 that MPR weight only provides 

sufficient conditions for robust stability. The CPR method 

was proposed which is a necessary and sufficient frequency 

domain robustness analysis technique. 

B. Critical Perturbation Radius (CPR) Uncertainty 

Weight 

The CPR uncertainty is defined in [2] and [4] through the 

critical direction theory. It makes use of the following 

objects: 

1. The nominal open loop frequency-response 

)(*)()( 00 ωωω jCjPjOL = , where )(0 ωjP is the 

nominal plant frequency-response and )( ωjC is the 

controller frequency-response. 

 
Figure 2: Bode plots of VCM dynamics. Dotted line is the nominal 

plant. 

 
Figure 3: Nyquist plot of )( ωδ j , )(0 ωP , and )(ωP at one frequency 

point. The solid circle is the nominal plant, and the gray dots are n 

samples of )(ωP . 

 
Figure 4: Nyquist plot of MPR at a specific frequency. The solid circle 

is the nominal plant )(0 ωP , and the gray dots are n samples of )(ωP . 

MPR will use the smallest disk centered at )(0 ωP to cover )(ωP . 

 

 
Figure 5: Frequency response of additive MPR uncertainty weight and 

VCM Plants. The dark lines are magnitude of )( ωδ j . The gray line is 

the frequency response of the selected MPR weight. 
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2. The critical line, defined on the directed line which 

originates at the nominal point )(0 ωjOL  and passes 

through the critical point –1+j0. 

3. The critical direction 

)(1

)(1
)(

0

0

ω

ω
ω

jOL

jOL
jd

+

+
−=  

is a unit vector that defines the direction of critical 

line. 

4. The uncertainty value set 

{ }dsjjOLjOLjOL ∈+== )(:)()()()()( 0 δωδωωωωτ  

5. The critical uncertainty value set 

{ })()()()()( 0 ωαωωωωτ jdjOLjOLjOLc +== , 

for some 
+∈ℜα . 

6. The critical Perturbation radius (CPR) family 

{ })()()(max)( 0 ωτωαωαωρ
α

cc jdjOLz ∈+==
+∈ℜ

 

At every frequency, )( ωρ jc
represents the element of )(ωτ c

 

that is closet to the point –1+j0 along the critical direction, 

which is shown in Fig 6 [6]. The solid curve in Fig 6 

described the nominal system )(0 ωjOL within a pre-specified 

frequency range. The shaded polygon outlines the uncertainty 

family at a specific frequency point.  

Reference [2] shows the numerical calculation of )( ωρ jc
 

can be done when a description of the boundary of the value 

set is available. This information is not easily obtained in 

many applications, including HDDs. Another thing to be 

noticed is that the calculation of CPR requires the knowledge 

of controller frequency response, which makes any design 

approach using CPR to be done iteratively. The contribution 

of CPR is that it points out to remove the conservatism of 

MPR weight, it is important to pay attention to the phase of 

uncertainty system. Yet including the controller magnitude in 

uncertainty weight selection makes the design iteration 

vulnerable when it comes to convergence issue, since the 

magnitude of CPR is not bounded by the uncertain system 

itself any more. 

To be able to apply CPR concept to a wider range of 

applications that do not have parametric uncertainty, the 

paper proposes a new concept, critical cone radius (CCR). 

III. CRITICAL CONE RADIUS (CCR) AND CRITICAL 

PERTURBATION FREQUENCY (CPF) 

A. Critical Cone Radius (CCR) Uncertainty Weight 

To be able to apply the critical perturbation radius without 

parametric uncertainty model, this paper proposes the 

concept of critical perturbation cone (CPC),  









Θ<∈ℜ+∠== +

∧∧

θαωαωωωωων θ ,:*)()(*)()()()( 0

j

c ejdjCjPjPjP
 

which originates at the adjusted nominal 

point )(*)()( 00 ωωω jCjPjP ∠=
∧ , and span Θ degree away from the 

critical line, as illustrated in Fig 7. The solid circle in Fig 7 

represents the adjusted nominal response )(0 ωjP
∧

at a specific 

frequency point ω. For the same frequency point ω, the 

responses of the adjusted uncertainty family 

)(*)()( ωωω jCjPjP ∠=
∧

are plotted in light gray dots. The 

critical cone radius (CCR) is defined as, 

{ })(*)()(*)(max)( 0
,

ωνωαωωαωρ θ

αθ
c

j

c ejdjCjPz ∈+∠==
+ℜ∈Θ<

. 

At every frequency, )( ωρ jc
represents the element of 

)( ωjP
∧

 within )(ων c
that is closet to the point –1+j0. If none of 

the member from )( ωjP
∧

falls in the CPC, then the CCR is 

zero.  

Unlike CPR, CCR is defined on the plant bode families 

adjusted by controller phase, not on open loops. In other 

words, the magnitude of controller will not affect CCR, 

which makes CCR to be bounded by the magnitude of the 

uncertain family itself. This difference also means the 

necessary property of CPR does not apply to CCR weight.  

Another difference is, CCR is defined not along a line, but 

within a cone originated from the adjusted nominal plant, and 

centered along the critical line, whose angle is tunable. It is 

obvious that if the angle of the cone, Θ , is selected to be 180 

degree, then CCR weight becomes MPR weight. The function 

of Θ is two-folded. First it makes the CCR weight less 

sensible to measurement noise than CPR weight, especially 

when uncertainty system is non-convex. Second it makes the 

CCR applicable to non-parametric uncertain system, since the 

 
Figure 6: Nyquist plot of CPR at a specific frequency. 

 

 
Figure 7: Nyquist plot of CPC and CCR weight at a specific frequency 
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result does not depend on the precise location of one point 

along the boundary of uncertainty family, but on an area. For 

problem (1), as long as the VCM bode samples are dense 

enough, CCR weight can be used to substitute CPR.   

Calculating CCR weight for the linear uncertain system in 

(1) is very simple since there is only a subset of n values to be 

considered for each frequency. Figure 8 shows an example of 

CCR weight, calculated for the same design family as Figure 

5, using a specific controller. Θ  was set to be 10 degree.   

Comparing CCR weight in Fig 8 to MPR weight in Fig 5, it 

is obvious that CCR weight reduces conservatism at many 

frequency bands, for the selected controller. But at lower 

frequency (less than 2kHz), the CCR weight is higher than the 

high pass MPR weight. It is common knowledge that 

performance weight and uncertainty weight are related. For 

example, in the frequency zone that asks for high 

performance, the uncertainty weight should not be too high. 

The selected MPR weight in Fig 5 does not cover the MPR 

bound at lower frequency in order to design a controller that 

can satisfy the selected performance weight at this range. To 

be able to further tighten the CCR weight, to resolve the 

conflict between performance weight and uncertainty weight, 

the critical perturbation frequency (CPF) concept is 

proposed. 

B. Critical Perturbation Frequency (CPF) 

The necessary property of CPR means that the magnitude 

of controller is also important to the removal of conservatism 

in uncertainty weight. To preserve this property, Let’s define 

an acceptable performance envelope around nominal 

performance, as depicted in Fig 9. The dotted line is the 

nominal performance for a specific controller. The black lines 

are the magnitude of achieved performance; evaluated using 

the n VCM bodes in Fig 2, with the same controller as in Fig 

8. The solid gray line is a user specified performance 

envelope, describing how much divergence from nominal 

performance is acceptable during the design procedure. For a 

given frequency, if the performance of every member of the 

uncertain family is within the performance envelope, then 

there is no need to specify uncertainty weight. Otherwise, the 

uncertainty weight is needed for this frequency, and this 

frequency is a critical perturbation frequency. Thus, CPF is 

defined as, 

{ })()(.., ωωωω jEnvpjPerftsniif i >≤∃∀=  

where )( ωjEnvp  is the acceptable performance envelope, 

and )( ωjPerf  is the performance of the uncertain family (1) 

for a specific controller. 

Performance envelope is typically defined around nominal 

performance, so unacceptable divergence from the nominal 

performance can be detected, and uncertainty weight can be 

adjusted at these frequencies in the next design iteration. CPF 

reflects the frequency range that the mismatch between the 

design family )( ωjP  and nominal plant )(0 ωjP  is too 

significant to be omitted in uncertainty weight. The definition 

of CPF also implies that all the frequencies that are unstable 

in closed loop are CPFs. Like CCR, CPF is also controller 

dependent. In next section, we will see how to use CPF to 

further remove the conservatism in CCR weight. 

IV. OPTIMAL ROBUST H-INFINITY DESIGN 

A. An iterative approach for optimal robust controller 

synthesis 

With the concepts of CCR and CPF, this paper proposes an 

iterative design procedure that can balance between optimal 

controller design and robust stability.  

 

Algorithm for optimal Robust Controller Synthesis 

Step 1. Design optimal controller: Set the initial uncertainty 

weight, )( ωjUncertain , close to 0, such as –40db, for all 

frequencies. Then design a controller using optimal design 

package. The nominal performance of this controller reflects 

the best performance can be achieved with the given (nominal 

plant, performance weight) set. 

Step 2. Check if design iteration is done: Using the latest 

controller to calculate CPFs, based on a selected performance 

envelope.  

• If CPF is empty, then a robust controller with 

optimal performance has been reached. The iteration 

 
Figure 8: CCR Additive Uncertainty. The dark lines are magnitude of 

)( ωδ j . The upper envelope of )( ωδ j  is the MPR weight. The gray 

line is the CCR weight. 

 

 
Figure 9: CPF & Performance Envelope. The dark lines are magnitude 

of achieved performance for a given controller. The dotted line is the 

nominal performance. The gray line is the performance envelope. 

Every frequency point where the magnitude of achieved performance 

exceeding the performance envelope is a CPF. 
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will be stopped. The uncertainty weight used to 

design the latest controller is the “optimal 

uncertainty weight”.  

• Else, if CPF is not empty, continue to step 3. 

Step 3.  Update uncertainty weight: At the CPFs from step 2, 

calculating CCR using the latest controller. The cone 

angle, Θ , determines the converging speed. The bigger theΘ , 

the quicker the convergence, but more reservation could be 

introduced in the design. Set CCR to 0 for none-CPF 

frequencies. Then update uncertain weight with 

))(,)(max()( 11 ωωω jCCRjUncertainjUncertain iii ++ = . 

Step 4. Design robust controller: The result of step 3 is the 

outline of the new uncertainty weight. Choosing a 

minimum-phase stable system to cover the outline yields the 

new uncertainty weight. Design a robust controller using the 

standard robust synthesis package. Continue to step 2.  

It is critical that when calculating the CCR, only the 

controller phase information is used to adjust the nominal 

plant and uncertain family. This ensures that the resulted 

uncertainty weight is always bounded by MPR uncertainty 

weight. 

B. Convergence Issue 

It is obvious that the iterative procedure described will 

converge to a controller that can stabilize the uncertain 

family, since the CCR uncertainty weight is increasing 

monotonically during the iteration, and has an overall upper 

bound, MPR weight. In other words, the controller will 

become more and more stable during iteration, hence the 

critical perturbation frequencies will become less and less 

until the halting condition is met.  

Theorem 1: Consider the uncertain system (1) and assume 

that a robust stable controller can be found using MPR 

uncertainty weight )(_ ωjUncertainMPR for a given nominal 

plant )(0 ωjP  and performance weight, then the iterative 

design procedure in 4.1 is guaranteed to converge to a robust 

controller that can stabilize system (1). 

Proof: From the property of CCR weight, we know, for 

every frequencyω  

)(_

)(_)(_ 1

ω

ωω

jUncertainMPR

jUncertainCCRjUncertainCCR ii

≤

≤ +  

If we assume the approach in 4.1 cannot converge, then it 

must be true that )(_ ωjUncertainCCR cannot converge 

to )(_ ωjUncertainMPR . In other words, after certain iterations, 

)(_)(_)( ωω jUncertainCCRjUncertainMPRjwD ii −= will 

remain the same at every frequency in further iterations, and 

the unstable CPF is not empty.  

Without losing generality, assuming iteration i  has 

reached such state, then the following statement must be 

TRUE for a specific unstable CPF 
0ω , 

)(_

)(_)(_

0

010

ω

ωω

jUncertainMPR

jUncertainCCRjUncertainCCR ii

<

== +  

In other words, there exist members from uncertainty 

family that locate outside the critical perturbation cone that 

can destabilize the closed loop system using the existing 

controller. This contradicts with the Nyquist stability theory. 

Hence the assumption that design procedure 4.1 cannot 

converge to a stable controller is not TRUE. 

 

V. DESIGN EXAMPLE 

To illustrate the effectiveness of the proposed design 

procedure, a robust controller has been designed using the 

VCM dynamics from twenty 7200 rpm, 135kTPI, 3.5” 

HDDs, whose bode plots are depicted in Fig 2. Fig 5, Fig 8 

and Fig 9 are results for the same drives. 

Consider the VCM bode dynamics and nominal plant 

depicted in Figure 2.  A constant –40db uncertainty weight is 

used to design the initial optimal “robust” controller. Figure 9 

in previous sections shows the performance of the controller, 

comparing to nominal performance and performance 

envelope.  

The performance envelope was selected to ensure an 

acceptable robust stability. Re-calculating the uncertainty 

weight using CCR at CPFs yielded the new uncertainty 

weight in Figure 10. CCR uncertainty weights in Figure 8 and 

Figure 10 were calculated using the same controller, except 

Figure 10 only included CPFs to further reduce conservatism 

 
Figure 10: CPF_CCR Additive uncertainty weight. The dark lines are 

magnitude of )( ωδ j  over frequency. The upper envelope of )( ωδ j  

is the MPR weight. The lighter gray line is the outline of CPF_CCR 

weight. The darker gray line is the response of a 4th order 

minimum-phase stable system covering the outline of CCR weight, 

which will be used to design controller in the next iteration. 

 

 
Figure 11: Achieved performance of proposed design procedure. 

Black lines are the performance of the controller designed using 

uncertainty in Figure 10. Dotted line is the corresponding nominal 

performance. Gray line is the performance envelope. 
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in CCR weights, Let’s call it CPF_CCR weight. It can be 

noticed that the CPF_CCR weight in Figure 10 does not have 

high magnitude at frequencies less than 2000Hz, which are 

the frequency ranges that require higher performance. Thus, 

CPF_CCR weight effectively resolves the conflict between 

performance weight and uncertainty weight without manual 

modification, unlike what has been done to the MPR weight 

in Figure 5.  

The projected result of the controller in iteration 2 is 

illustrated at Figure 11. Comparing to the initial optimal 

controller performance in Fig 9, it can be noticed that the 

adjustment to the uncertainty weight at CPFs, thus around 

4000 Hz, and 8000 Hz to 10000 Hz, has effectively cleaned 

up the peaks in the achieved performance at these zones. Thus 

the proposed design procedure has found the optimal robust 

controller after only two iterations. The darker gray line in 

Figure 10 is the corresponding “optimal” uncertainty weight. 

Comparing the CPF_CCR weight in Fig 10 to MPR weight in 

Fig 5 or CCR weight in Fig 8, it can be seen how much 

reservation can be removed by the proposed method.  

Controllers designed using traditional MPR (maximum 

perturbation radius) approach and the proposed approach 

have been tested on a 7200rpm, 135kTPI, 500GB hard disk 

drive. The results are shown in Figure 12 to Figure 13. 

From open loop bode, it is obvious that the new approach 

achieves higher performance by not notching the system 

mode, and also ensures stability through a more precise 

uncertainty weight tailored for the given (nominal plant, 

performance weight) set. Table I further confirms the 

advantage. 

In the given example, we use additive uncertainty. It is 

straightforward to show that the same result applies to 

multiplicative uncertainty.  

VI. CONCLUSION 

The main contributions of this paper are 1) to introduce the 

critical cone radius concept, which not only allows the 

application of CPR to a much wider design family without 

parametric uncertainty and without limitation to interval 

plant, but also adds in additional phase margin in the design 

process, which makes the approach insensitive to convex or 

non-convex problems; 2) to introduce the critical perturbation 

frequency and performance envelope concepts, which further 

reduces the conservatism of CCR uncertainty weight to only 

necessary frequency bands, which in turn improves the 

performance of the resulted controller without compromising 

stability; 3) to propose an innovative iterative controller 

synthesis approach, which not only provides an “optimal” 

robust controller, but also proves to be easy to use and 

practical in hard disk drive industry. 

REFERENCES 

[1] L. H. Keel, S.Bhattacharya, and S. P. Bhattacharya, “Robust Stabilizer 

Synthesis for Interval Plants using H∞ methods,” In CDC, IEEE, 32nd, 

San Antonio, pp. 3003-3008, 1993. 

[2] H. A. Latchman, etc, “The Nyquist Robust Stability Margin -  A New 

Metric for Robust Stability of Uncertain Systems”, Int. J. Robust and 

Nonlinear Control, vol. 7, pp. 211-226, 1997. 

[3] H.A. Latchman, etc, “The Critical Perturbation Radius Weights in 

∞H Synthesis for Interval Plants”, Proceedings of the 1998 IEEE, 

Trieste, Italy 1-4 Sept 1998. 

[4] C. T. Baab, J. C. Cockburn, H. A. Latchman, and O. D. Crisalle, 

“Generalization of the Nyquist Robust Stability Margin and its 

Application to Systems with Real Affine Parametric Uncertainties”, Int. 

J. Robust and Nonlinear Control vol. 11, pp. 1415-1434, 2001. 

[5] C.T. Baab, H.A. Latchman, J.C. Cockburn and O.D. Crisalle, 

“Extension of the Nyquist Robust Stability Margin to Systems with 

Nonconvex Value Sets”, Proceedings of the American Control 

Conference, Arlington, VA June 25-27, 2001. 

[6] B. Ji, H.A. Latchman and O.D. Crisalle, “Robust H-Infinity 

Stabilization for Interval Plants”, 2002 IEEE international Symposium 

on Computer Aided Control System Design Proceedings, Spet 18-20, 

2002, Glasgow, Scotland, U. K. 

[7] J. E. Son, H. A. Latchman and K. J. Kim, “H-Infinity Design for 

Parametric Uncertain System”, SICE-ICASE Int. Joint Conference, 

Bexco, Busan, Korea, pp. 739-744, Oct. 18-21, 2006. 

[8] R. Conway, S. Felix, and R. Horowitz, “Model Reduction and 

Parametric Uncertainty Identification for Robust H2 Control Synthesis 

for Dual-Stage Hard Disk Drives”,  IEEE Trans. On Magnetics, Vol. 43, 

No. 9, pp. 3763–3768, Sept. 2007. 

[9] Robust Control Toolbox, Version 3.1.1, the Mathworks Inc. 

TABLE I 

OPEN LOOP RESPONSE OF DIFFERENT DESIGN METHOD 

 GM (DB) PM (DEG) BW (HZ) 

MPR Approach 4.24 25.5 1293 

New Approach 4.88 28 1463 

 

 
Figure 12: Bode plot of measured open loop. The black lines are the 

responses from the proposed method. The gray lines are the responses 

from MPR method. 

 

 
Figure 13: controller bode designed using CPF_CCR method vs. MPR 
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