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Abstract—We investigate the effect of packet delays
and packet drops on networked control systems. First we
consider the problem of where to locate a controller or state
estimator in a network, and show that under a Long Packets
Assumption (LPA) it is optimal to collocate it with the
actuator. We then show that under the LPA, stabilizability
is only determined by the packet drop probability and
not the packet delay probabilities. We also consider a sub-
optimal state estimator without the LPA, based on inverting
submatrices of the observability Krylov sequence.

I. I

Contention for the medium, channel fading, and
interference in networks, lead to packet delays and
losses. Even though observations may be taken at
regular instants, their arrivals after passage through the
network may be random since collision detection and
avoidance algorithms use random backoffs and delays,
or they may even be dropped due to the losses in the
wireless medium or collisions. Hence, we address the
issue of random packet delays as well as packet drops
in networked control systems.
We study an LQG system by employing a Long

Packets Assumption (LPA) [15], which allows packets
to be arbitrarily long, and in particular to contain a
history of all past observations. The LPA can be realized
even without long packets by having an encoder at the
sensor and a decoder at the actuator, as shown in [5].
We first address the question of where the control logic
should be placed within the network subject to random
packet delays and losses, and show that it is optimal to
collocate the controller with the actuator. This extends
an earlier result for the case of packet drops only [14],
[15].
Then we address the question of when such a system

is stabilizable. We show that the condition

pDrop ≤
1

λmax(A)2
, (1)

where λmax(A) is magnitude of the eigenvalue of Awith
the largest magnitude is necessary, and also sufficient
when the inequality is strict. This result shows that
stabilizability under the LPA depends only on the loss
probability and not the delay probabilities. Thus the
condition for stabilizability is essentially the same as
in the packet drop only case examined in [15], [18], [6],

[19]. It is interesting that under LPA the delay distribu-
tion only affects system performance and not stabiliz-
ability. This is illustrated via simulations in Section IV.
The result has implications not only for a system with
long packets, but also, as mentioned above, for the
encoder-decoder scheme in [5] which realizes the LPA
but without long packets. The result on stabilizability
not depending on delays but only on drop probability
is analogous to that of [16], [17], where the estimation
problem without the LPA is considered, and a similar
independence of estimator stability on delays is shown.
The stabilizability condition is different in that case
since the LPA does not hold.
We next analyze “window” based schemes without an

LPA, as has been considered in [16], [17]. We consider a
family of suboptimal schemes and obtain upper bounds
on packet drop probability, similar to (1), that are
sufficient for their stability.
Useful references for networked control include [1],

[3]. Packet delays and drops result in generally in-
tractable non-classical information patterns [21], [12].
The effect of random sampling times on optimal con-
troller design [2], state estimation [20], [13] and overall
system performance [8] have been considered. Packet
delays are considered in [11], with delay assumed to be
less than one sampling period. Another approach is to
focus on eliminating the effect of random delay. In [10],
a buffer is maintained at the receiving end of the channel
for randomly delayed packets, which releases them at
regular intervals. A similar actuator buffer has actually
been deployed in [4]. The condition (1) is studied vis-
a-vis packet drops in [7], [18], [19].

II. C P

We begin by determining where to locate the con-
troller; see Fig. 1. We show that placing it on a path
with “best” delay characteristics is optimal.
Let q(·) be the probability mass function for delay

on any link j. Packets are dropped with probability
1 −

∑∞
t=0 q(t). Delays of packets on links are assumed

iid. Let πhg be the path of a packet from a node h to
node g. The path delay is the sum of the link delays
on the path, with probability distribution denoted by
Fπhg . We say that distribution F1 dominates F2 if F1(D) ≥
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Fig. 1. The controller is at node C, and π∗
SA

is a minimal path.

F2(D)∀D. A path between nodes h and gwith the “best”
delay characteristics, i.e., one whose delay distribution
dominates those of all other paths between h and g,
if one exists, is referred to as a ‘shortest path’ and is
denoted by π∗

hg
; see Figure 1.

Lemma 2.1: Suppose the same packet is sent along
two chains of nodes C1 and C2, as in Fig. 2. Under
the LPA, the information at each node in C1 with more
nodes is dominated by that at a corresponding node in
C2.

A

B

CS

S

C1

C2

Fig. 2. Two chains of nodes with source node denoted by node S.

Proof: Node A on C1 at the same hop distance
from the source S as B (see Fig. 2, has Fπ∗

SA
= Fπ∗

SB
). The

information arrival processes at these two nodes can
be stochastically coupled. Since packets will be further
delayed between nodes A and C in C1, the information
at node B stochastically dominates that at C.
Corollary 2.2: Under the LPA there is an optimal con-

troller placement that is on path π∗
SA
.

Theorem 2.3: Placing the controller at the actuator is
optimal.

Proof: Consider Case 1 with controller located at
node i ∈ π∗

SA
, and Case 2 where it is located at A. We

stochastically couple the cases so that events of packets
from i reaching A are identical. Hence, using LPA, node
A can receive the same observation information in both
cases. However, the controller located at A additionally
has the history of all implemented controls.

III. S  P DM

Consider the observable and controllable system:

xk+1 = Axk + Buk + wk,

y j = C jx j + v j,

z j = {y j, y j−1, . . . y0}. (2)

Noises wk and v j are zero mean iid Gaussian processes
with covariances Σw and Σv. Packet delays, x0, {wk}

and {vk} are mutually independent. y j is the state
observation made by the sensor at time j. z j is the

transmitted observation, and under the LPA is comprised
of all state observations {yk : 0 ≤ k ≤ j}. The sensor takes
and transmits observations at each sampling instant k.

Control actions are implemented every s sample
instants, and are held constant during the intermediate
interval. These are called actuation instants. Transmitted
observations are subject to delay. Since control actions
are only implemented at actuation instants, a delayed
measurement can arrive at any time, but can only be
used at the next actuation instant.

We now describe the probabilistic model for the end-
to-end packet delay; see Figure 3. A packet transmitted
at time j will contain z j under the LPA and is subject
to delay. There is no guarantee that packets will arrive
in order. Delays of individual packets are i.i.d.

pi :=Prob(Packet transmitted at k arrives at k+ i).
pDrop :=Prob(Packet is dropped) = 1 −

∑∞
i=0 pi.

p̄i := P
[
Packet delay ≥ i

]
= pDrop +

∑∞
j=i p j.

I(k) :=Set of observations known to controller at k
is the information set.

α(k) := age of the information set = k−i, if the latest
packet to have arrived before actuation instant
k is zi. Note that I(k) = {y j : j ≤ k − α(k)}.

Πα(k) ≔ P(α(k) = α). Note that Πα ≔ limk→∞Πα(k)
exists ∀α. Denote Π ≔ {Π0,Π1, . . .}.

With (a) below representing packet k− α arriving by
k, and (b) below packets {k − α + 1, k − α + 2, . . . , k} that
did not arrive by time k, see Figure 3, we can write:

Πα(k) =





(a)
︷     ︸︸     ︷

(1 − p̄α+1)

(b)
︷        ︸︸        ︷

p̄1p̄2p̄3 . . . p̄α for α ≤ k
0 for α > k.

,

Actuation instant

Sample instant

Sensor

Estimator
p̄5

p̄4

p̄3

p̄2

p̄1

s

kk − α(k)

p1 p2 p3 p4 p5p0

pDrop

Fig. 3. State observations occur at sample instants. Control actions are
computed and implemented at actuation instants. Actuation instants
are separated by s sample instants. Sensor observations are sent over
the network and incur a delay i with probability pi, or are dropped
with probability pDrop = 1 −

∑∞
i=0 pi.
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IV. N C  B E
E C

We address boundedness of the quadratic cost:

J = lim sup
N→∞

1

N
E





N−1∑

k=0

xkQx′k + ukRu
′
k




.

Denoting by Σx̃
k
the state estimation error covariance

at k, which is random because of the randomness in
obtaining measurements, we can write

J = lim sup
N→∞

1

N
E





N−1∑

k=0

(

x̂kQx̂′k + ukRu
′
k + Tr(Σx̃kQ)

)




,

So we need only study boundedness of E
[

Σx̃
k

]

.

A. State Estimation: Kalman Filter

The “Time update” is, with the usual notation:

x̂k+1|k = Ax̂k|k + Buk, (3)

Σ
x̃
k+1|k = AΣx̃k|kA

′
+ Σ

w, (4)

The “Measurement update” is:

Kk+1 = Σ
x̃
k+1|kC

′
(

CΣx̃k+1|kC
′
+ Σ

v
)−1
, (5)

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
yk − cx̂k+1|k

)
, (6)

Σ
x̃
k+1|k+1 = (I − Kk+1C)Σ

x̃
k+1|k, (7)

At each actuation sample instant, (3) and (4) are used
to update the system state estimate. Iterating D steps,

Σ
x̃
k+D|k = AD

Σ
x̃
k|kA

′D
+

D−1∑

i=0

Ai
Σ
wA′i. (8)

If there is no packet loss or delay, then since [A,Σw
1
2 ] is

controllable and [A,C] detectable, the error covariance
converges to a positive definite limit, which we denote
by Σ∗x̃. For simplicity we assume that the system is
started with Σx̃

0|0
= Σ∗x̃. Under the LPA, whenever a

packet z j arrives, the estimation error covariance Σx̃
j| j

reverts to Σ∗x̃. Hence it is the durations of the excursions
from Σ∗x̃ that determine boundedness.

B. Bounded Estimation Error Covariance

The expected estimation error covariance is E
[
Σx̃

]
=

∑∞
i=0ΠiΣ

x̃
k+i|k

.
Theorem 4.1: (1) is necessary for bounded cost.

Proof: Πα =
(∑α

j=0 p j

) (∏α
j=1 p̄ j

)

. So, using (8),

E
[

Σ
x̃
]

=

∞∑

i=0

ΠiΣ
x̃
k+i|k

=

∞∑

i=0

Πi




Ai
Σ
∗
x̃A
′i
+

i−1∑

j=0

A j
Σ
wA′ j




(9)

≥

∞∑

i=0





i∏

j=1

p̄ j









i∑

j=0

p j




Ai
Σ
∗
x̃A
′i.

If v is the eigenvector of A corresponding to the eigen-
value of A with the largest magnitude, λmax(A), then:

v′E
[

Σ
x̃
]

v ≥
(
v′Σ∗x̃v

)
∞∑

i=0





i∏

j=1

p̄ j









i∑

j=0

p j




λmax(A)

2i.

We now use the ratio test, noting that limi→∞ p̄i = pDrop:

lim sup
i→∞

(∏i+1
j=1 p̄ j

) (
1 − p̄i+2

)
λmax(A)

2i+2

(∏i
j=1 p̄ j

) (
1 − p̄i+1

)
λmax(A)2i

= lim sup
i→∞

p̄i+1
(
1 − p̄i+2

)

(1 − p̄i+1)
λmax(A)

2

= pDropλmax(A)
2,

establishing the necessity of (1).
Theorem 4.2: A sufficient condition for boundedness

of E
[
Σx̃

]
is

pDrop <
1

λmax(A)2
.

Proof: Because γ1I ≤ Σ
∗
x̃ ≤ γ2I, and the same is true

for AiΣWA′i, we only need to consider boundedness of:

E
[

Σ
x̃
]

=

∞∑

i=0

ΠiΣ
x̃
k+i|k

≤ γ3

∞∑

i=0

ΠiA
iA′i

≤ γ3

∞∑

i=0





i∏

j=1

p̄ j




λmax(A)

2i,

where we have upper bounded several terms by 1. By
the ratio test, a sufficient condition for stability is:

lim sup
i→∞

(∏i+1
j=1 p̄ j

)

λmax(A)
2i+2

(∏i
j=1 p̄ j

)

λmax(A)2i
< 1

pDropλmax(A)
2 < 1.

Hence stabilizability under LPA only depends on packet
drop probability and system dynamics. Performance is
adversely affected by larger delay, but not stabilizabil-
ity. This has potential design implications. One can set
the critical number of delivery attempts at the transport
layer, similar to the MAC layer “retry limit” in IEEE
802.11, so as to meet a desired pDrop.

The performance of several specific delay distribu-
tions in Figure 4 is illustrated in Figures 5, 6 and 7.

(a) Uniform (b) Exponential (c) Positve

pDroppDrop pDrop

pi pipi

Fig. 4. The drop probability, pDrop, is chosen to be the same. The
density function, is chosen so to satisfy

∑∞
i=0 pi + pDrop = 1.
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Single Observation

Long Packets

Fig. 5. Packets are delivered with uniform probability of delay as
shown in Fig. 4(a). In the top figure, packets delayed by more than
10 sample instants are dropped. In the second and third figures the
delay threshold is 20 and 30, respectively. The x-axis is the packet
drop probability. The lower curve in each is the cost under LPA,
and the upper curve that for system which only transmits a single
observation. Notice that the cost diverges at the same packet drop
probability in each figure.
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Uniform
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Fig. 6. Packets delayed 30 time steps are dropped. The lowest curve
is the cost for exponential packet delay distribution (Figure 4(b)), the
middle curve for uniform distribution (Figure 4(a)), and upper curve
for linear distribution (Figure 4(c)).
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λ
max

(A) = 1.2

λ
max

(A) = 1.1

Fig. 7. Each curve represents a different system. Packets are delayed
with uniform probability (Figure 4(a)), and dropped when delay
exceeds 30. The stability upper bound on pDrop is indicated by the
vertical asymptotes. The upper curve represents a system with a
largest eigenvalue of 1.2 and hence a stability bound of pDrop = 0.69.
The lower curve is a system with largest eigenvalue as 1.1 and
stability bound of pDrop = 0.83.

V. S S C  LPA

We consider a suboptimal scheme without LPA.

A. A Sub-Optimal Estimation Scheme

For an n-dimensional observable system, n consecu-
tive observations yield a state estimate with bounded
error covariance [9], denoted Σ̄∗x̃. We consider a sub-
optimal filter that uses only the most recent set of n
consecutive measurements that have arrived. Open loop
prediction is done in between such batches of n or more
consecutive observation arrivals.
Denote by nk the elapsed time since the most recent

time at which n consecutive packets were delivered and
the current time k. Denote this set of n observations as:

Y(k) =
{

y j : k − nk − n + 1 ≤ j ≤ k − nk
}

.

The resulting estimation error covariance at k, Σ̂x̃
k
is:

Σ̂
x̃
k|nk
= Ank ′Σ̄

∗
x̃A

nk +

nk−1∑

j=0

A j′
Σ
wA j.

nk being random, we compute the expectation
E[E[Σ̂x̃

k|nk
|nk]].

Theorem 5.1: The expected estimation error covari-
ance is bounded if

lim inf
k→∞

pk

p̄k+1
> 1 −

1

λmax(A)2
. (10)

Proof:
If packets (k−nk−n+1, k−nk−1−n+2, . . . , k−nk) are

the latest n consecutive packets to arrive before k, then
packet k−nk+1 should have not arrived by k; see Fig. 8.
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...

p̄k−nk

k

pk−nkp0

︷          ︸︸          ︷

k − nk − n + 1
k − nk

n

Fig. 8. The Figure illustrates an event where n consecutive packets
arrive before time k. The packets which arrive may do so at anytime
between their transmission time and time k. The potential arrival
times are represented by the shaded area. The sequence of consec-
utive packets is broken by a packet being delayed with probability
p̄nk .

This non-arrival occurs with probability p̄nk . Hence,

P

[

Packets (k − nk − n + 1, k − nk − n + 2, . . . , k − nk)
are the last n consecutive ones to arrive before k

]

≤





nk+n−1∑

i=0

pi









nk+n−2∑

i=0

pi




...





nk∑

i=0

pi




p̄nk . (11)

Using (11) and (8) we can compute an upper bound

E[Σ̄x̃k|k−nk ] ≤

∞∑

nk=0









nk+n−1∑

i=0

pi









nk+n−2∑

i=0

pi




...





nk∑

i=0

pi




p̄nk

.




AnkΣ̂

∗
x̃A
′nk +

nk−1∑

j=0

A j
Σ
wA′ j









.

It is sufficient to consider the boundedness of
∞∑

nk=0









nk+n−1∑

i=0

pi









nk+n−2∑

i=0

pi




...





nk∑

i=0

pi




p̄nk

(
AnkA′nk

)





≤

∞∑

nk=0









nk+n−1∑

i=0

pi









nk+n−1∑

i=0

pi




...





nk+n−1∑

i=0

pi




p̄nk

(
AnkA′nk

)





=

∞∑

nk=0





nk+n−1∑

i=0

pi





n

︸      ︷︷      ︸

≤1

p̄nk
(
AnkA′nk

)

≤

∞∑

nk=0

p̄nk
(
AnkA′nk

)
≤

∞∑

nk=0

p̄nkλmax(A)
2nk .

For boundedness, by the ratio test it is sufficient if

lim sup
nk→∞

p̄nk+1λmax(A)
2nk+2

p̄nkλmax(A)2nk
< 1.

This is assured if

lim sup
nk→∞

(

1 −
pnk
p̄nk

)

<
1

λmax(A)2
. (12)

Interestingly, the condition is independent of n. For a
geometric delay pk = (1 − p)kp and p̄k = (1 − p)k the
sufficient condition is p > 1− 1

λmax(A)2
. This is illustrated

in Figure 9 as the γ = 0 curve.

B. An improved suboptimal scheme

An improved estimator can use any n observations
from n + γ consecutive observations. Denote by γ the
largest integer such that any r observations drawn from
{yk̄−r−γ+1, yk̄−r−γ+2, . . . , yk̄} yield an estimate of xk̄ with

bounded error covariance, and call k̄ an estimation epoch,
γ the number of allowable misses, and the estimator an
allowable misses estimator.

Theorem 5.2: With γ allowable misses, a state esti-
mate with bounded error covariance can be formed if

lim inf
k→∞

pk

p̄k
> 1 −

(

1

λmax(A)2

) 1
γ+1

. (13)

Proof: The set of observations used at k̄ is

Y(k̄) ≔ {y j : k̄ − r − γ + 1 ≤ j ≤ k̄ and y j delivered}.
(14)

Define the oldest possible observation in Y(k̄) as k ≔
k̄ − r − γ + 1. Say that Y(k̄) is full if it is missing exactly
γ observations in the interval k̄ − n − γ + 1 ≤ j ≤ k̄.
For k̄ to be the most recent estimation epoch, clearly

packet yk̄+1 should have been dropped, and in [k̄ − r −
γ + 1, k̄] there need to be γ drops. Hence,

P

[

k̄ is the most
recent epoch before k

]

≤

(

r + γ
γ

)

p̄k−k̄p̄k−k̄ . . . p̄k−k̄

︸                         ︷︷                         ︸

γ missing from r + γ

. p̄k−k̄
︸︷︷︸

yk̄+1
missing

≤ Kp̄
γ+1

k−k̄
,

for a sufficiently large constant K. Substituting j = k− k̄:

E[Σx̃k|k] ≤

∞∑

j=0

Kp̄
γ+1

j




A j
Σ
x̃
k|Y(k)A

′ j
+

j−1
∑

i=0

Ai
Σ
wA′i




,

It is enough to consider conditions for boundedness of

∞∑

j=0

p̄
γ+1

j

(

A jA′ j
)

≤

∞∑

j=0

p̄
γ+1

j
λmax(A)

2 j. (15)

By the ratio test, this is bounded if

lim sup
j→∞

p̄
γ+1

j+1
λmax(A)

2( j+1)

p̄
γ+1

j
λmax(A)2 j

< 1, i.e., if

lim sup
j→∞

(

1 −
p j

p̄ j

)

<

(

1

λmax(A)2

) 1
γ+1

.
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For a geometric delay distribution, the sufficient con-

dition is p > 1−
(

1
λmax(A)2

) 1
γ+1

. This condition is illustrated
in Figure 9 for different values of the term (γ + 1).
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Fig. 9. Illustration of Thm. 5.2 for a geometric delay distribution
for different values of the term (γ + 1). The upper curve (γ = 0)
corresponds to Thm. 5.1.

C. Existence of γ

For random A, usually γ ≥ 1. For example, γ = 6 for

A =





0.65510 0.58530 0.89090 0.84070
0.16260 0.22380 0.95930 0.25430
0.11900 0.75130 0.54720 0.81430
0.49840 0.25510 0.13860 0.24350





, (16)

(C = [1 0 0 . . . ] throughout). Systems can have large γ.
For example, A1 has γ > 70, but A2 yields γ = 0:

A1 =





2 1 0
0 2 1
0 0 3




, and A2 =





2 1 0
0 2 0
0 0 3




.

VI. C

We have considered the effect of packet losses and
delay on networked control system stabilizability un-
der a Long Packets Assumption. We have established
an optimal controller location and obtained a neces-
sary condition for stability which is sufficient if the
inequality is strict. The latter depends only on the drop
probability and not the delay probability. We have also
considered a sub-optimal scheme that may possibly be
of interest.
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