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Abstract— In this paper, an efficient algorithm is presented
for solving the 2-D optimization problem which is associated
with computing the robustness measures of a number of linear
time-invariant (LTI) system properties such as the control-
lability radius, the decentralized fixed-mode radius, and the
minimum-phase radius. Unlike methods such as gradient search
methods, the proposed algorithm works well independent of the
initial trial point, and obtains the minimum with a high level
of confidence that it is indeed global. A numerical example is
included.

I. INTRODUCTION

Consider the following LTI multivariable system

ẋ = Ax + Bu

y = Cx + Du (1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
r are respectively the

state, input, and output vectors, and A, B, C, and D are

constant matrices with the appropriate dimensions for n ≥ 1,

m ≥ 1, r ≥ 1, and max(r,m) ≤ n. It is well known that

there exists a LTI controller that can assign the eigenvalues of

the closed-loop system to any arbitrary spectrum if and only

if the system is controllable and observable. However, when

a controllable system is subject to parametric perturbations

(i.e. A → A + ∆A and B → B + ∆B), the system

may be very “close” to becoming uncontrollable. Hence, a

continuous controllability measure is more informative than

the traditional ‘yes/no’ controllability metric, which simply

determines whether a system is controllable or not. The

same can be said about other system properties such as

observability, stability, minimum-phase, etc.

In the current literature, various continuous measures

have been proposed to measure the robustness of various

system properties with respect to parametric perturbations.

In particular, the controllability radius introduced in [1],

[2] measures how close a controllable system is to being

uncontrollable, the stability radius in [3] measures how close

a stable system is to an unstable one, and the decentralized

fixed-mode (DFM) radius ([4], [5]) measures how close a

system with no DFMs is to having one. More recently, such

robustness measures have been extended to characterize the

robustness of a system’s transmission zero properties. For

instance, the minimum-phase radius in [6] measures how

close a minimum-phase system is to becoming non-minimum

phase.
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Computing the stability radius mentioned above ([3])

requires solving only a 1-D optimization problem, and a fast

algorithm to solve this is proposed in [7]. On the other hand,

computing the other radii mentioned above (i.e. except the

stability radius) requires solving a 2-D optimization problem.

As of now, the 2-D problem is solved using nonlinear

search methods such as gradient search methods. A dis-

advantage with using such nonlinear techniques is that the

minimum obtained may be a local minimum. Hence selecting

the initial trial points are critical, and a large number of initial

points are generally tested in order to achieve a certain level

of confidence that the obtained minimum is global. In this

paper, we propose a more efficient algorithm for solving the

2-D optimization problem. The proposed algorithm has some

similar features as the one in [7] (in particular, the use of

a so-called “minimizing set”), and has the advantage that it

is not dependent on the initial test values, and obtains the

global minimum with a high degree of confidence.

The paper is organized as follows. In Section II, the

controllability radius is reviewed and the 2-D optimization

problem to be solved is described. Then in Section III,

the few useful tools are developed, followed by a thorough

description of the algorithm in Section IV. Finally, Section V

gives a numerical example to demonstrate the effectiveness

of the algorithm.

II. NOTATION AND BACKGROUND

In this paper, the field of real and complex numbers are

denoted by R and C respectively. C+ and CU denotes the

closed right half and the closed upper half of the complex

plane respectively, and R+ denotes the nonnegative real line

[0,+∞). The i-th singular value of a matrix M ∈ C
p×m

is denoted by σi(M), where σ1(M) ≥ σ2(M) ≥ · · · . ‖M‖
denotes the spectral norm of a matrix M and is equal to

σ1(M). Also, M , MT , MH , and M+ denote respectively

the complex conjugate, transpose, complex conjugate trans-

pose, and Moore-Penrose pseudoinverse of M . The real and

imaginary components of the matrix M are given by ℜM
and ℑM respectively. Finally, the set of eigenvalues of a

square matrix A ∈ C
n×n is denoted by λ(A).

A. Controllability radius

The following definition is made.

Definition 2.1: Given a LTI system (1), the controllability

radius, rc
F
, is defined to be:

rc
F(A,B) = inf{‖[∆A,∆B ]‖ |∆A ∈ F

n×n,∆B ∈ F
n×m,

(A + ∆A, B + ∆B) is uncontrollable} (2)
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where F ∈ {C, R}1. Similarly, the stabilizability radius, r
c+

F
,

is defined as:

r
c+

F
(A,B) = inf{‖[∆A,∆B ]‖ |∆A ∈ F

n×n,∆B ∈ F
n×m,

(A + ∆A, B + ∆B) is unstabilizable } (3)

In [1] and [2], the complex and real controllability radii

are respectively shown to be given by:

rc
C(A,B) = min

s∈C

σn

([

A− sIn B
])

(4)

and

rc
R(A,B) = min

s∈C

τn

([

A− sIn B
])

(5)

where for W ∈ C
p×q ,2

τn(W ) := sup
γ∈(0,1]

σ2n−1

([

Re W −γ Im W
γ−1 Im W Re W

])

(6)

For notational convenience in the paper, denote

P (γ,W ) :=

[

Re W −γ ImW
γ−1 ImW Re W

]

(7)

Similarly, the complex and real stabilizability radii are re-

spectively shown to be:

r
c+

C
(A,B) = min

s∈C+

σn

([

A− sIn B
])

(8)

and

r
c+

R
(A,B) = min

s∈C+

τn

([

A− sIn B
])

(9)

B. 2-D optimization problem

It can be seen from (4)–(9) that a 2-D optimization

problem in the complex plane is required to be solved when

computing the complex and real controllability/stabilizability

radii. A similar 2-D problem is to be solved when computing

the DFM radius ([4], [5]), and the minimum-phase radius

([6]). In this paper, a fast algorithm is proposed to solve

the two standard general problems associated with such 2-D

optimization problems; i.e. for given constant real matrices

(A,B,C,D) and i ∈ {1, . . . , n + min(r,m)}:
Problem 1: Find

ri
C(C,A,B,D) = min

s∈C

σi

([

A− sI B
C D

])

(10)

and

Problem 2: Find

ri
R(C,A,B,D) = min

s∈C

τi

([

A− sI B
C D

])

(11)

For the sake of simplicity, denote G(s) :=

[

A− sI B
C D

]

.

To avoid the trivial case where the radius is zero for all

s ∈ C, we will assume that the two problems (10) and (11)

satisfy the following assumption:

rank

([

A B
C D

])

≥ i (12)

1To distinguish which field is consider, rc

C
(i.e. F = C) is called the

complex controllability radius and rc

R
is called the real controllability radius.

2τn(W ) is referred to as the n-th real perturbation value of W (see [8]).

III. PRELIMINARY RESULTS

Before presenting an efficient algorithm for solving (10)

and (11), some preliminary tools are needed; in particular

Theorem 3.1 & 3.2 given below.

Definition 3.1 (The H matrix): Given real x ≥ 0, A ∈
R

n×n, B ∈ R
n×m, C ∈ R

r×n, and D ∈ R
r×m, and

nonsingular matrices ∆ ∈ C
n×n, E ∈ C

(n+r)×(n+r), and

F ∈ C
(n+m)×(n+m), define:

H(x,A,B,C,D,∆, E, F ) := ∆̃−1
(

Ã− B̃D̃−1C̃
)

(13)

where Ã =

[

A 0
0 AT

]

+ T11, B̃ =

[

B 0
0 CT

]

+ T12,

C̃ =

[

C 0
0 BT

]

+ T21, D̃ =

[

D 0
0 DT

]

+ T22, and

∆̃ =

[

∆ 0
0 ∆H

]

, and where T :=

[

T11 T12

T21 T22

]

satisfies

[

T11 T12

T21 T22

]

= Pl

[

−x
(

EHE
)−1

0

0 −x
(

FFH
)−1

]

Pr

for the permutation matrices Pl =









In 0 0 0
0 0 In 0
0 Ir 0 0
0 0 0 Im









and Pr =









0 In 0 0
0 0 0 Ir

In 0 0 0
0 0 Im 0









.

The following preliminary result is obtained.

Theorem 3.1: Let M := E

[

A− s∆ B
C D

]

F , where

s ∈ R, and E ∈ C
(n+r)×(n+r), F ∈ C

(n+m)×(n+m), and

∆ ∈ C
n×n are all nonsingular. Then, for given x ∈ R+,

x ∈ σ(M)⇔ s ∈ λ(H(x,A,B,C,D,∆, E, F )) (14)

Proof:

x ∈ σ(M)⇔ x ∈ λ

([

0 M
MH 0

])

⇔ det

([

−xIn+r M
MH −xIn+m

])

= 0

⇔ det

(

Pl

[

−xIn+r M
MH −xIn+m

]

Pr

)

= 0

⇔ det

















A− s∆ 0 B 0
0 AT − s∆H 0 CT

C 0 D 0
0 BT 0 DT









+

[

T11 T12

T21 T22

])

= 0

⇔ det

([

Ã− s∆̃ B̃

C̃ D̃

])

= 0 (15)

⇔ det
(

D̃
)

det
(

Ã− s∆̃− B̃D̃−1C̃
)

= 0

⇔ s ∈ λ
(

∆̃−1
(

Ã− B̃D̃−1C̃
))
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Remark 3.1: If D̃ in (13) is singular, then by (15), (14)

can be modified such that s in (14) is a generalized eigen-

value of the matrix pair

([

Ã B̃

C̃ D̃

]

,

[

∆̃ 0
0 0

])

instead;

i.e. s is in the set of λ ∈ C such that

[

Ã B̃

C̃ D̃

]

x =

λ

[

∆̃ 0
0 0

]

x for some non-zero eigenvector x ∈ C
2n+m+r.

The following result is also obtained.

Theorem 3.2: Let γ ∈ (0, 1], θ ∈ [0, 2π] and real x ≥ 0
be given. Then, for all s ∈ R+,

x ∈ σ
(

P
(

γ,G
(

seiθ
)))

⇔

s ∈ λ
(

H
(

x, Â, B̂, Ĉ, D̂, ∆̂, T−1
γ,n+rPnr, PnmTγ,n+m

))

where Â =

[

A 0
0 A

]

, B̂ =

[

B 0
0 B

]

, Ĉ =

[

C 0
0 C

]

,

D̂ =

[

D 0
0 D

]

, ∆̂ =

[

eiθIn 0
0 e−iθIn

]

, Pnr =








In 0 0 0
0 0 Ir 0
0 In 0 0
0 0 0 Ir









, Pmr =









In 0 0 0
0 0 In 0
0 Im 0 0
0 0 0 Im









, and

Tγ,n := 1
2γ

[
√

1 + γ2In iγ
√

1 + γ2In
√

1 + γ2In −iγ
√

1 + γ2In

]

.

Proof: It can easily be verified (e.g. see [8]) that

Tγ,n+rP
(

γ,G
(

seiθ
))

T−1
γ,n+m =

[

G
(

seiθ
)

0

0 G(seiθ)

]

= Pnr









A− seiθIn 0 B 0
0 A− se−iθIn 0 B
C 0 D 0
0 C 0 D









Pnm

Therefore,

P
(

γ,G
(

seiθ
))

= T−1
γ,n+rPnr

[

Â− s∆̂ B̂

Ĉ D̂

]

PnmTγ,n+m

and the proof follows immediately from Theorem 3.1.

IV. ALGORITHM

An efficient iterative algorithm for solving (10) and (11)

for given constant real matrices (A,B,C,D) and i ∈
{1, . . . , n + min(m, r)} is now presented in this section. The

following development focuses mainly on solving (11), but

it will be shown later that with a slight modification, the

algorithm also applies to solving (10).

Firstly, let the global minimum of (11) be denoted by:

r∗ = min
s∈C

τi(G(s)) = min
s∈C

sup
γ∈(0,1]

σ2i−1(P (γ,G(s)))

and is achieved at s∗ ∈ C and γ∗ ∈ (0, 1], i.e. r∗ =
σ2i−1(P (γ∗, G(s∗))). Now suppose that at the k-th iter-

ation, for k = 1, 2, . . ., we are given rk−1, γk−1, and

sk−1 (i.e. obtained from the previous iteration), which are

approximations of r∗, γ∗, and s∗ respectively, where rk−1 =
σ2i−1(P (γk−1, G(sk−1))). Furthermore, suppose we are also

given the so-called “minimizing set”, Sk−1, which is a

(closed) set in the complex plane that contains the global

minimizer s∗. The basic idea of the algorithm is then to

use the information of rk−1, γk−1, and sk−1, together with

Theorem 3.2, to reduce the size of Sk−1; i.e. to reduce

the region containing the global minimizer s∗. Denoting the

reduced set by Sk (⊆ Sk−1), we then search within Sk for

a new point sk ∈ Sk such that

τi(G(sk)) < rk−1

and assign rk = τi(G(sk)). Also, assign γk to be the value of

γ that achieves rk; i.e. rk = σ2i−1(P (γk, G(sk))). Note that

since rk < rk−1, then rk is a new and better approximation

of the global minimum r∗. The procedure is then repeated

until either the size of Sk is smaller than an user-specified

tolerance, or until rk becomes “very close” to zero (more on

this later).

A. The minimizing set, Sk

In the algorithm, the “minimizing set” is defined to be the

union of particular sectors of interest in the closed upper half

of the complex plane, and can be described by Sk ⊆ [0, π].
The reason why the “minimizing set” is constrained to the

closed upper half of the complex plane is due to the following

(e.g. see [6]):

σi

([

A− sI B
C D

])

= σi

([

A− sI B
C D

])

and

τi

([

A− sI B
C D

])

= τi

([

A− sI B
C D

])

In other words, the radii in (10) and (11) are both symmet-

rical with respect to the real axis; hence one only needs to

search within either the closed upper or lower half of the

complex plane for the global minimum.

It should be pointed out that Sk is a subset of [0, π],
and that the underlying “minimizing set” actually consists

of the sectors in the complex plane described by Sk; i.e.

the “minimizing set” is {s ∈ C|∠s ∈ Sk}, where ∠s denotes

the angle of s ∈ C. For convenience, however, we will

sometimes refer to the “minimizing set” as Sk.

To reduce the size of Sk based on given rk−1, γk−1,

and sk−1, where rk−1 = σ2i−1(P (γk−1, G(sk−1))), we first

construct the set Rk:

Rk = {s ∈ CU |σ2i−1(P (γk−1, G(s))) < rk−1}
3

The significance of Rk is that for all points not in Rk, the

radius can never be smaller than rk−1. This is because for

all s /∈ Rk,

τi(G(s)) = sup
γ∈(0,1]

σ2i−1(P (γ,G(s)))

≥ σ2i−1(P (γk−1, G(s))) ≥ rk−1

Hence, one only needs to search within Rk to find points in

the complex plane that achieve a radius smaller than rk−1.

3Note that Rk can also be a (tighter) “minimizing set”. For ease of
implementation, however, we chose the “minimizing set” to be the sectors
containing Rk (i.e. as described by Sk) instead.
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To obtain Rk, we first fix a particular θ ∈ [0, π], and then

find the set

Rθ
k =

{

w ∈ R+|σ2i−1

(

P
(

γk−1, G
(

weiθ
)))

< rk−1

}

(16)

Therefore,

Rk =
⋃

θ∈[0,π]

Rθ
k (17)

Note that Rθ
k for a particular θ ∈ [0, π] can be

obtained by applying Theorem 3.2. In particular,

by Theorem 3.2, the values along the ray, Rθ :=
{

seiθ ∈ C|s ∈ R+

}

, that achieve a radius equal to

rk−1 are among the real nonnegative eigenvalues of

H
(

rk−1, Â, B̂, Ĉ, D̂, ∆̂, T−1
γk−1,n+rPnr, PnmTγk−1,n+m

)

.

Hence, by solving for Λ =

λ
(

H
(

rk−1, Â, B̂, Ĉ, D̂, ∆̂, T−1
γk−1,n+rPnr, PnmTγk−1,n+m

))

and then finding all real nonnegative s ∈ Λ such that

σ2i−1

(

P
(

γk−1, G
(

seiθ
)))

= rk−1 (18)

we obtain the endpoints of the intervals along the ray

Rθ where σ2i−1

(

P
(

γk−1, G
(

seiθ
)))

< rk−1 and where

σ2i−1

(

P
(

γk−1, G
(

seiθ
)))

> rk−1. To determine which

interval is the former (i.e. the one of interest), one can simply

pick a trial point, w, within a particular interval and evaluate

σ2i−1

(

P
(

γk−1, G
(

weiθ
)))

. If there are no real nonnegative

eigenvalues, s ∈ Λ, such that σ2i−1

(

P
(

γk−1, G
(

seiθ
)))

=
rk−1, then either Rθ

k = R+, or Rθ
k = ∅. Again, a straight-

forward test using a trial point can confirm which is true.

If Rθ
k = ∅ is true for a particular θ ∈ [0, π], then this

implies that all the values along the ray Rθ achieve a radius

larger than rk−1, and hence θ can be eliminated from the

“minimizing set”, Sk. Therefore the “minimizing set” for the

next iteration is updated as follows. Let Θk ⊆ [0, π] be the

set of intervals that describes the smallest union of sectors

that contains Rk; i.e.

Θk =
{

θ ∈ [0, π] |Rθ
k 6= ∅

}

(19)

Then update Sk = Sk−1 ∩Θk.

B. Updating the current minimum, rk

To obtain a radius smaller than rk−1 (i.e. a better approxi-

mation of the global minimum r∗), one can perform a search

(e.g. a grid or random search) within the set
{

Rθ
k|θ ∈ Sk|

}

.

From experience though, it is found that one can often obtain

rk by letting sk = wmeiθm (i.e. rk = τi(G(sk))), where θm

is the midpoint of the largest interval of Sk, and wm is the

midpoint of the largest interval of Rθm

k .

C. Stopping criteria

The algorithm has two main stopping criteria. Firstly, the

algorithm stops when the “size” of the “minimizing set”, Sk,

and the size of Rk in (17) are both respectively smaller than

user-specified tolerances, TOLSk
and TOLRk

, where the

size of Sk is chosen to be the length of the largest interval

in Sk, and the size of Rk is chosen to be:

size(Rk) = max
θ

{

length of largest interval in Rθ
k

}

The second stopping criteria handles the special case when

the radius is zero in spite of the fact that assumption (12) is

satisfied. For example, in [6], it is shown that the complex

and real minimum-phase radius are both 0 when D = 0; i.e.

r
n+min(r,m)
F

(A,B,C, 0) = 0

where F ∈ {C, R}, and this is achieved as (real) s → ∞.

Therefore, to prevent the algorithm from searching off into

infinity, the second stopping criteria is added to quit when

rk is smaller than an user-specified tolerance, TOLrk
.

D. Algorithm outline

The algorithm can be summarized as follows:

Algorithm 4.1:

Input: (A,B,C,D) and i, where (12) is satisfied

Input tolerances: TOLSk
, TOLRk

and TOLrk

Output: r∗, s∗, and γ∗, where r∗ = σ2i−1(P (γ∗, G(s∗)))

1) Initialization:

• Set S0 = [0, π].
• Choose an arbitrary s0 ∈ CU , and compute r0 and

γ0, where r0 = σ2i−1(P (γ0, G(s0))).

2) Iteration k(= 1, 2, . . .)

a) Given rk−1, γk−1, sk−1, and Sk−1.

b) Reset Θk = ∅.
c) For θ ∈ Sk−1 (θ can be discretized steps of Sk−1)

• Compute Rθ
k by finding all real nonnegative

s ∈ λ
(

H
(

rk−1, Â, B̂, Ĉ, D̂, ∆̂, T−1
γk−1,n+rPnr,

PnmTγk−1,n+m

))

such that σ2i−1

(

P
(

γk−1, G
(

seiθ
)))

= rk−1.

• If Rθ
k 6= ∅, then update Θk ← Θk ∪ θ.

d) Update Sk = Sk−1 ∩Θk.

e) Quit if the length of the largest interval of Sk <
TOLSk

and size(Rk) < TOLRk
.

f) Find one point sk ∈ Rθ
k such that rk < rk−1,

where θ ∈ Sk, and rk = τi(G(sk)).

3) Quit if rk < TOLrk
.

4) Update k ← k + 1 and goto step 2.

E. Algorithm for solving problem (10)

To solve problem (10), only two slight modifications of

Algorithm 4.1 are needed, which actually results in a simpler

algorithm. Firstly, instead of computing the eigenvalues of

H
(

rk−1, Â, B̂, Ĉ, D̂, ∆̂, T−1
γk−1,n+rPnr, PnmTγk−1,n+m

)

in

step (2-c) to obtain Rθ
k, one is only required to compute

the eigenvalues of H
(

rk−1, A,B,C,D, eiθIn, In+r, In+m

)

(the proof is trivial and follows directly from Theorem 3.1).

Furthermore, when solving problem (10), all the values

within Rk actually achieve a smaller radius than rk−1 (and

all the values outside Rk do not). This is not true when

solving problem (11), where Rk only achieves a bound.

Hence, step (2-f) for solving problem (10) can very easily

be accomplished by selecting any point in Rk.
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F. Algorithm for computing the real stabilizability radius

To compute the real stabilizability radius, the real unstable

DFM radius, and the real minimum-phase radius, where the

search is for a minimum in the closed right half of the

complex plane – i.e. by solving the following problem

r̃i
R(A,B,C,D) = min

s∈C+

τi

([

A− sI B
C D

])

(20)

for given (A,B,C,D) and i ∈ {1, . . . , n + min(r,m)}
– only one very simply modification of Algorithm 4.1 is

needed. In particular, one only needs to change the ini-

tialization step (1) of Algorithm 4.1 from S0 = [0, π] to

S0 =
[

0, π
2

]

(the proof is trivial).

G. Operations count

To provide an idea of the computational requirements of

using Algorithm 4.1, the number of operations required in

terms of the number of singular value (σ), real perturbation

value (τ ), and eigenvalue (λ) problems are noted in Table I.

It is to be noted that every time the radius is evaluated

at a particular s ∈ C, a real perturbation value problem is

solved. This occurs in step (1) and (2-f). In step (1), the

real perturbation value problem is evaluated only once, but

step (2-f) may require multiple evaluations, depending on

the number of trials needed before rk < rk−1 is obtained.

However, it is found from experiment that the number of

trials is typically small (i.e. close to 1 when using the method

outlined in Section IV-B).

It is also to be noted that the main portion of the total

operations count is from computing Rθ
k for all θ ∈ Sk in

step (2-c). In terms of implementation, Sk is discretized

into a number of points. From experiment, it is found

that it is generally sufficient to discretize Sk into 15 to

20 points, or a minimum of 0.5◦ (i.e. a maximum of 360

(= π
0.5◦

) points), whichever results in a smaller angular

division. For a given θ ∈ Sk, computing Rθ
k requires:

i) solving for the eigenvalues, Λ, of the 2n × 2n matrix

H
(

rk−1, Â, B̂, Ĉ, D̂, ∆̂, T−1
γk−1,n+rPnr, PnmTγk−1,n+m

)

;

and ii) evaluating a number of 2(n + r) × 2(n + m)-sized

singular value problems to verify which real nonnegative

eigenvalues, s ∈ Λ, (there are a maximum of 2n such values)

have the property that they satisfy (18). Furthermore, since

there are at most 2n real nonnegative eigenvalues s ∈ Λ
that may satisfy (18), Rθ

k contains at most 2n + 1 intervals.

Hence, to determine which intervals in Rθ
k achieve a radius

less than rk−1, at most 2n + 1 points are tested, resulting in

2n + 1 additional 2(n + r)× 2(n + m)-sized singular value

problems.

Remark 4.1: It should be noted that Algorithm 4.1 solves

only a limited number of real perturbation value problems,

which by itself is a 1-D optimization problem involving

multiple 2(n+ r)×2(n+m)-sized singular value problems.

Hence, this proves to be an advantage of Algorithm 4.1, as

compared to say, a gradient search method, which requires

solving a real perturbation value problem at each trial point,

and at each step involved with computing the steepest

gradient.

TABLE I

SUMMARY OF OPERATIONS COUNT OF ALGORITHM 4.1

Step # of (σ,τ ,λ) Size of matrix

1 1 × τ (n + r) × (n + m)
2-c (for each 1 × λ 2n × 2n

θ ∈ Sk−1) at most (4n + 1) × σ 2(n + r) × 2(n + m)
2-f at least 1 × τ (n + r) × (n + m)

Here, we denote σ, τ , and λ as singular value, real perturbation value, and
eigenvalue problems.

V. NUMERICAL EXAMPLE

The following example can be found in [2], where the real

controllability radius of

A =





1 1 1
0.1 3 5
0 −1 −1



 B =





1
0.1
0





is found to be 0.0492, and is achieved at s = 0.972+j0.982.

Using Algorithm 4.1 with the (arbitrary) starting point s0 =
1j, the same radius and global minimizer are found to within

3 significant figures in 5 iterations and to 6 significant figures

in 7 iterations. Table II lists rk, sk, and the “minimizing set”,

Sk for each iteration k = 0, . . . , 9. Figure 1 provides a grid

plot of the real controllability radius with respect to a given

s ∈ C. Figures 2 to 5 plot Rk (outlined by the dots) obtained

at Iterations 1, 3, 4, and 8 respectively, superimposed on a

contour plot of Figure 1. The straight lines originating from

the origin depict Sk.

It is interesting to note that on a computer with a Pentium

IV 2.0GHz processor, 512MB of RAM, and MATLAB 7.0,

Algorithm 4.1 took a total of about 6 sec. to complete, which

is approximately the same amount of time a gradient search

method requires to obtain a (possibly local) minimum from

a single starting point. Hence, if the gradient search method

has to test 20 initial points in order to achieve a certain

level of confidence that the obtained minimum is global, then

the gradient search method will take approximately 20 times

longer to run than Algorithm 4.1.

VI. CONCLUSIONS

In this paper, an efficient algorithm is presented for

solving the general 2-D optimization problems (10) and

(11), which are essential for computing the complex and

TABLE II

ESTIMATES OF THE GLOBAL MINIMUM RADIUS (rk ), THE MINIMIZER

(sk ), AND THE MINIMIZING SET (Sk ) AT EACH ITERATION k

Iter. (k) rk sk Sk

0 0.745637 j1 [0.00◦, 180.00◦]
1 0.740724 3.0616

10−17 + j0.5 [0.00◦, 180.00◦]
2 0.218632 0.46766 [0.00◦, 180.00◦]
3 0.117352 0.98098 + j0.58561 [0.00◦, 61.67◦]
4 5.33004

10−2 0.97584 + j0.91703 [30.33◦, 56.11◦]
5 4.92304

10−2 0.97060 + j0.98023 [42.70◦, 47.86◦]
6 4.92191

10−2 0.97214 + j0.98179 [45.02◦, 45.55◦]
7 4.92186

10−2 0.97176 + j0.98203 [45.27◦, 45.33◦]
8 4.92186

10−2 0.97186 + j0.98194 [45.29◦, 45.30◦]
9 4.92186

10−2 0.97184 + j0.98197 [45.30◦, 45.30◦]
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Fig. 1. Grid plot of the controllability radius with respect to a given s ∈ C.
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Fig. 2. Iteration 1
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Fig. 3. Iteration 3

real controllability radius, the minimum-phase radius, the

DFM radius, etc. The algorithm works by iteratively reducing

the size of the so-called “minimizing set” which contains

the global minimizer. Unlike methods such as the gradient

search method, the choice of the initial point of the proposed
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Fig. 4. Iteration 4
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Fig. 5. Iteration 8

algorithm is not crucial, and the minimum is obtained with

a high degree of confidence that it is indeed global.
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