
  

  

Abstract—In this work, a sampled-data nonlinear observer is 
designed using a continuous-time design coupled with an inter-
sample output predictor. The proposed sampled-data observer 
is a hybrid system. It is shown that under certain conditions, 
the robustness properties of the continuous-time design are 
inherited by the sampled-data design, as long as the sampling 
period is not too large. The approach is applied to triangular 
globally Lipschitz systems. 

I. INTRODUCTION 
HE problem of designing sampled-data nonlinear 
observers is a very challenging problem that has 
attracted a lot of attention in the literature. Continuous-

time nonlinear observer designs [12,18,20,25,26,27] are 
meant to be used only for very small sampling periods, 
whereas their potential “redesign” for the purpose of digital 
implementation, even though straightforward and popular 
for linear systems  [5], poses significant challenges in the 
nonlinear case.  For this reason, the main line of attack has 
been through the use of an exact or approximate discrete-
time description of the dynamics as the starting point for 
observer design [3,4,7,8,9,10,11,14,19,21,22,26,28]. This is 
a reasonable point of view, but faces two important 
difficulties: 
(i) from the moment that the continuous-time system 
description is abandoned and is substituted by a discrete-
time description, the inter-sample dynamic behavior is lost 
(ii) any errors in the sampling schedule, get transferred into 
errors in the discrete-time description 
As a consequence, available design methods (i) do not 
provide an explicit estimate of the error in between two 
consecutive sampling times and (ii) do not account for 
perturbations of the sampling schedule. Moreover, due to 
observability issues, the magnitude of the sampling period 
cannot be arbitrary (see [1,26]).  
 
Finally, optimization-based approaches for nonlinear 
observer design are provided in [2,13,23,24,29]. A hybrid 
observer design approach was recently proposed in [6], 
which bears similarities to the above-mentioned 
optimization-based approach, but the hybrid nature of their 
observer offers certain advantages. In the present work, our 
proposed sampled-data observer will also be a hybrid 
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system; however, it will directly emerge from a continuous-
time design of a nonlinear observer.  
 
Consider a single-output continuous-time system: 
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where );(1 nnCf ℜℜ∈ , );(2 ℜℜ∈ nCh  with 0)0( =f , 

0)0( =h . For this system, suppose that a continuous-time 
observer design is available 
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where );(1 kkCF ℜℜ×ℜ∈ , );(1 nkC ℜℜ∈Ψ  with 

0)0,0( =F , 0)0( =Ψ .  
 
The question is whether this design would still be useful in 
the presence of sampled measurements y(ih), i=0,1,… , 
where h is the sampling period, or more generally, at some 
countable set of time instants { }∞

== 0iiτπ , not necessarily 
uniformly spaced,  but satisfying rii ≤−< + ττ 10  for all 

,...1,0=i  for some 0>r .  
 
The present work has been motivated by the intuitive 
expectation that a continuous-time nonlinear observer design 
would still be useful in the presence of “medium-size” 
sampling periods, as long as special care is taken in the 
time-interval between measurements. Holding the most 
recent measurement (zero-order hold) is not the most 
intuitively meaningful strategy; instead, the model (1) could 
be used to predict the evolution of the output, up until the 
new measurement is received. In particular, in the present 
paper, we propose a sampled-data observer consisting of the 
continuous-time observer, coupled with an output predictor 
for the time interval between two consecutive 
measurements:  
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Figure 1 depicts the structure of the sampled-data observer 
(3) compared to the continuous-time observer (2). The 
sampled-data observer uses the continuous-time observer as 
a key ingredient, coupled with an inter-sample output 
predictor. The latter is initialized by the most recent 
measurement and integrates the rate of change of the output 
calculated by the model ( )()(:)( xfxhxhL f ∇=  is the Lie 

derivative of the output map).  
 
 
 
 
 
                          Continuous-time  
                                Observer 
 

 
 
 
 
 
             Inter-sample Output Predictor         Continuous-time 
                                                                           Observer 
                       
                                                
 
 
Figure 1: Continuous-time observer (2) (top) versus 
sampled-data observer (3) (bottom). 
 
It is important to point out that the entire system (1) with (3) 
is a hybrid system, which does not satisfy the classical 
semigroup property. However, the weak semigroup property 
holds (see [15,16]) and consequently it can be analyzed 
using the recent results in [15,16,17]. 
 
The main result of the present paper is that the properties of 
the observer (2) under continuous measurement are inherited 
by the observer (3) under sampled measurements, as long as 
the sampling period is not too large.  
 
Notations Throughout this paper we adopt the following 
notations:  
∗  Let nA ℜ⊆  be an open set. By  );(0 ΩAC , we denote 

the class of continuous functions on A , which take values 
in kℜ⊆Ω . By  );( ΩAC l , where ,...}2,1{∈l , we denote 
the class of continuous functions on A  with continuous 
derivatives of order l , which take values in Ω . 

∗  For a vector nx ℜ∈  we denote by x  its usual Euclidean 
norm and by x′  its transpose. By 

{ }1,;sup: =ℜ∈= xxAxA n  we denote the induced 

norm of a matrix nmA ×ℜ∈  and I  denotes the identity 
matrix. By ),...,( 1 nbbdiagB =  we denote the diagonal 

matrix nnB ×ℜ∈  with nbb ,...,1  in its diagonal. 

∗  By +ℜ  we denote the set of non-negative real numbers. 
∗  We denote by +K  the class of positive 0C  functions 

defined on +ℜ . We say that a non-decreasing continuous 
function ++ ℜ→ℜ:γ  is of class N  if 0)0( =γ . We say 

that a function ++ ℜ→ℜ:ρ  is positive definite if 
0)0( =ρ  and 0)( >sρ  for all 0>s . By K  we denote 

the set of positive definite, increasing and continuous 
functions. We say that a positive definite, increasing and 
continuous function ++ ℜ→ℜ:ρ  is of class ∞K  if 

+∞=
+∞→

)(lim s
s

ρ . By KL  we denote the set of all 

continuous functions +++ ℜ→ℜ×ℜ= :),( tsσσ  with 
the properties: (i) for each 0≥t  the mapping ),( t⋅σ  is of 
class K  ; (ii) for each 0≥s , the mapping ),( ⋅sσ  is non-
increasing with 0),(lim =

+∞→
ts

t
σ . 

∗  Let lD ℜ⊆  be a non-empty set and +ℜ⊆I  an interval. 
By );( DIloc

∞L  we denote the class of all Lebesgue 

measurable and locally bounded mappings Dd →ℜ+: . 
Notice that by )(sup

],0[
τ

τ
d

t∈
 we do not mean the essential 

supremum of  Dd →ℜ+:  on ],0[ t  but the actual 

supremum of  Dd →ℜ+:  on ],0[ t .  

∗  Let );(1 nnCf ℜℜ∈ , );(1 ℜℜ∈ nCh . By 
)()(:)( xfxhxhL f ∇=  we denote the Lie derivative of the 

function );(1 ℜℜ∈ nCh  along the vector field 

);(1 nnCf ℜℜ∈ . 
 

II. MAIN ASSUMPTIONS AND NOTIONS 
 
In the present work we study systems of the form (1) under 
the following hypotheses:  
 
(H) System (1) is Robustly Forward Complete (see [15]), 
i.e., there exist functions +∈ Kμ  and ∞∈ Ka  such that for 

every nx ℜ∈0  the solution )(tx  of (1) with initial condition 

0)0( xx =  satisfies  
 

( )0)()( xattx μ≤ , 0≥∀t             (4) 
 
The following definition of the notion of robust observer for 
system (1) with respect to measurement errors is crucial to 
the development of the main results of the present work. 
 
Definition 2.1: Consider the following system 
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where );(1 kkCF ℜℜ×ℜ∈ , );(1 nkC ℜℜ∈Ψ  with 

0)0,0( =F , 0)0( =Ψ . System (5) is called a robust 
observer for system (1) with respect to measurement errors, 
if the following conditions are met:  
i) there exist functions KL∈σ , N∈p,γ , +∈ Kμ  and 

∞∈ Ka  such that for every knzx ℜ×ℜ∈),( 00  and 

);( ℜℜ∈ +∞
locv L , the solution ))(),(( tztx  of  

)(ˆ
))(,(

)(

zx
vxhzFz

xfx

Ψ=
+=

=
&

&

                          (6) 

 
with initial condition ),())0(),0(( 00 zxzx =  corresponding 

to );( ℜℜ∈ +∞
locv L  satisfies the following estimates: 

( ) ))((sup,)()(ˆ
0

00 τγσ
τ

vtzxtxtx
t≤≤

++≤− , 0≥∀t    (7) 

( ) ⎥⎦

⎤
⎢⎣

⎡ ++≤
≤≤

))((sup)()(
0

00 τμ
τ

vpzxattz
t

, 0≥∀t     (8) 

 
ii) for every nx ℜ∈0  there exists kz ℜ∈0  such that the 
solution ))(),(( tztx  of (6) with initial condition 

),())0(),0(( 00 zxzx =  corresponding to 0≡v , satisfies 
))(()( tztx Ψ=  for all 0≥t . 

 
Remark 2.2: If system (5) is a robust observer for system 
(1) with respect to measurement errors, then system (6) with 
output xzY −Ψ= )(  satisfies the Uniform Input-to-Output 

Stability property from the input );( ℜℜ∈ +∞
locv L  with gain 

N∈γ  (see [17]). 
 
We next define the corresponding notion of robust sampled-
data observer. Notice that contrary to usual observers for 
which the output signal )(ty  of system (1) is available on-
line, a sampled-data observer uses only the output values 

)( iy τ  at certain time instances { }∞
== 0iiτπ  with 

rii ≤−< + ττ 10  for all ,...1,0=i . The number 0>r  is 
called the upper diameter of the sampling partition.   
 
Definition 2.3: The system 
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where );(1 kkkCg ℜℜ×ℜ×ℜ∈ , );(0 kkCG ℜℜ×ℜ∈ , 

);(1 nkC ℜℜ∈Ψ  with 0)0,0,0( =g , 0)0,0( =G , 
0)0( =Ψ , is called a robust sampled-data observer for (1) 

with respect to measurement errors, if the following 
conditions are met: 

i) there exist functions  KL∈σ , N∈p,γ , +∈ Kμ  and 

∞∈ Ka  such that for every 

);();(),,,( 00 ℜℜ×ℜℜ×ℜ×ℜ∈ +∞++∞
locloc

knvdzx LL ,  the 
solution ))(),(( tztx  of 
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with initial condition ),())0(),0(( 00 zxzx =  corresponding 

to );( ++∞ ℜℜ∈ locd L , );( ℜℜ∈ +∞
locv L  satisfies the 

following estimates: 
( ) ))((sup,)()(ˆ

0
00 τγσ

τ
vtzxtxtx

t≤≤
++≤− , 0≥∀t    (11) 

( ) ⎥⎦

⎤
⎢⎣

⎡ ++≤
≤≤

))((sup)()(
0

00 τμ
τ

vpzxattz
t

, 0≥∀t    (12) 

 
ii)  for every nx ℜ∈0  there exists kz ℜ∈0  such that for all 

);( ++∞ ℜℜ∈ locd L  the solution ))(),(( tztx  of (10) with 
initial condition ),())0(),0(( 00 zxzx =  corresponding to 

);( ++∞ ℜℜ∈ locd L  and 0≡v , satisfies ))(()( tztx Ψ=  for 
all 0≥t . 
 
Remark 2.4: For each knzxt ℜ×ℜ×ℜ∈ +),,( 000  and for 

each );( ++∞ ℜℜ∈ locd L , );( ℜℜ∈ +∞
locv L  the solution 

))(),(( tztx  of (10) with initial condition 

),())0(),0(( 00 zxzx =  corresponding to );( ++∞ ℜℜ∈ locd L , 

);( ℜℜ∈ +∞
locv L  is produced by the following algorithm: 

 
Step i :  

1) Given iτ  and );( ++∞ ℜℜ∈ locd L , calculate 1+iτ  
using the equation ))(exp(1 iii dr τττ −+=+ , 

2)  Compute the state trajectory ))(),(( tztx , 
),[ 1+∈ iit ττ  as the solution of the differential 

equation ))(()( txftx =&  and 
))())((),(),(()( iii vxhztzgtz τττ +=& , 

3) Calculate )( 1+iz τ  using the equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ++

→
+ −

+

)())((),(lim)( 111
1

ii
t

i vxhtzGz
i

τττ
τ

. 

For 0=i  we take 00 t=τ  and 00 )( xx =τ  (initial 
condition). Hybrid systems of the form (10) were studied in 
[15,16,17], where the weak semigroup property for such 
systems was exploited. Taking into account hypothesis (H) 
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for system (1), regularity properties of the right hand-sides 
of (9) and using the results of [15], we may conclude that    
 
(i) system (10) has the “Boundedness-Implies-

Continuation” (BIC) property, i.e., for each 
);();(),,,,( 000 ℜℜ×ℜℜ×ℜ×ℜ×ℜ∈ +∞++∞+

locloc
knvdzxt LL , 

there exists ],( 0max +∞∈ tt  such that the solution 
))(),(( tztx  of (10) with initial condition 

),())(),(( 0000 zxtztx =  corresponding to 

);( ++∞ ℜℜ∈ locd L , );( ℜℜ∈ +∞
locv L  exists for all 

),[ max0 ttt ∈ . In addition, if +∞<maxt  then for every 
0>C  there exists ),[ max0 ttt ∈  with Ctz >)( .  

 (ii)     kn ℜ×ℜ∈0  is a robust equilibrium point from the 
input );();(),( ℜℜ×ℜℜ∈ +∞++∞

loclocvd LL , i.e., for every 

0>ε , +ℜ∈T  there exists 0),(: >= Tεδδ  such that for 

all );();(),,,,( 000 ℜℜ×ℜℜ×ℜ×ℜ×ℜ∈ +∞++∞+
locloc

knvdzxt LL , 
with δ<+++

≥≥
)(sup)(sup

00
00 tvtdzx

tt
 it holds that the 

solution ))(),(( tztx  of (10) with initial condition 
),())(),(( 0000 zxtztx =  corresponding to 

);();(),( ℜℜ×ℜℜ∈ +∞++∞
loclocvd LL  exists for all ],[ 00 Tttt +∈  

and { } ε<∈+∈ ],0[,],[;))(),((sup 000 TtTttttztx  
(iii) system (10) is autonomous, i.e., for each 

);();(),,,,( 000 ℜℜ×ℜℜ×ℜ×ℜ×ℜ∈ +∞++∞+
locloc

knvdzxt LL , 

0tt ≥  and for each ],( 0t−∞∈θ  it holds that the solution 
))(),(( tztx  of (10) with initial condition 

),())(),(( 0000 zxtztx =  corresponding to 

);( ++∞ ℜℜ∈ locd L , );( ℜℜ∈ +∞
locv L  coincides with 

))(~),(~( θθ −− tztx  where ))(~),(~( tztx  is the solution of 
(10) with initial condition 

),())(~),(~( 0000 zxtztx =−− θθ  corresponding to 

);( ++∞ ℜℜ∈ locdP Lθ  and );( ++∞ ℜℜ∈ locvP Lθ , where 
( ) ( )θθ += tdtdP )(  and ( ) ( )θθ += tvtvP )(  for all 

0≥+θt . 
 
Remark 2.5: The reader should notice that the sampling 
period is allowed to be time-varying. The factor 

( ) 1)(exp ≤− id τ  , with 0)( ≥td  some non-negative function 
of time, is an uncertainty factor in the end-point of the 
sampling interval. Proving stability for any non-negative 
input );( ++∞ ℜℜ∈ locd L  will guarantee stability for all 
sampling schedules with rii ≤−+ ττ 1  (robustness to 
perturbations of the sampling schedule). To understand the 
importance of robustness to perturbations of the sampling 
schedule, consider the following situation. Suppose that 
hardware limitations restrict the sampling period to be s1 . If 
we manage to design a sampled-data observer with sr 2≥ , 
then the application of the sampled-data observer will 

guarantee convergence of the state estimates even if we 
“miss measurements” or if we have “delayed measurements” 
(for example, due to improper operation of the sensor). In 
such a case robustness to perturbations of the sampling 
schedule becomes critical. The introduction of the factor 

( ) 1)(exp ≤− id τ  is a mathematical way of introducing 
perturbations to the sampling schedule; however, it is not 
unique. Other ways of introducing perturbations of the 
sampling schedule can be considered. 
 

III. MAIN RESULTS 
We are now in a position to state our main result. 
 
Theorem 3.1: Consider system (1) under hypothesis (H) 
and suppose that system (5) is a robust observer for system 
(1) with respect to measurement errors. Moreover, suppose 
that there exists a constant 0≥K  and a function KL∈σ  
such that for every knzx ℜ×ℜ∈),( 00  and 

);( ℜℜ∈ +∞
locv L , the solution ))(),(( tztx  of (6) satisfies the 

following estimate for all 0≥t : 
 

( ) )(sup,

))(()))(((

0
00 τσ

τ
vKtzx

txhLtzhL

t

ff

≤≤
++≤

−Ψ
              (13) 

 
Finally, suppose that 1<rK , where 0>r  is the upper 
diameter of the sampling partition and 0≥K  is the 
constant involved in estimate (13). Then (3) is a robust 
sampled-data observer for system (1) with respect to 
measurement errors.  
 
Remark 3.2: The reader should notice the structural 
differences between the continuous time observer (5) and 
the sampled-data observer (3), which are shown in Figure 1. 
The sampled-data observer uses the estimate of the state 

)(ˆ tx  and the measurement )( iy τ  in order to generate an 
additional signal )(tw : the signal )(tw  will approximate the 
output signal )(ty  and actually replaces the output signal 

)(ty in the observer.  
 
The proof of Theorem 3.1 utilizes the recent Small-Gain 
Theorem for hybrid systems in [17] and is omitted due to 
space limitations. 

IV. APPLICATIONS 
In this section we present the application of Theorem 3.1 to 
triangular globally Lipschitz systems, leading to concrete 
sampled-data observer designs. 
 
Consider the system 
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where ℜ→ℜ i

if :  ( ni ,...,1= ) with 0)0( =if  ( ni ,...,1= ) 
are globally Lipschitz functions, i.e., there exists a constant 

0≥L  such that the following inequalities hold for 
ni ,...,1= : 

),...,(),...,(),...,( 1111 iiiiii zxzxLzzfxxf −−≤− ,  
i

ixx ℜ∈∀ ),...,( 1 , i
izz ℜ∈∀ ),...,( 1             (15) 

 
The reader should notice that all linear observable systems 
can be written in the form (14) with ℜ→ℜ i

if :  
( ni ,...,1= ) being linear functions. Notice that systems of the 
form (14) are Robustly Forward Complete and satisfy 
hypothesis (H), since for every nx ℜ∈0  the solution of (14) 
with initial condition 0)0( xx =  satisfies the estimate: 
 

0)exp()( xcttx ≤ , 0≥∀t                    (16) 
 
where 1: −+= nnLc . Inequality (16) is obtained by 

evaluating the derivative of the function 2

2
1)( xxW =  

along the solutions of (14) and using inequalities (15). 
 
A high-gain observer design is described in [12]: first a 
vector n

nkkk ℜ∈′= ),...,( 1   is found so that the matrix 
nnckA ×ℜ∈′+ )(  is Hurwitz, where nc ℜ∈′= )0,...,0,1(:  and 

nnA ×ℜ∈  is the matrix },...,1,,..,1:{ , njniaA ji ===  with 

11, =+iia  for 1,...,1 −= ni  and 0, =jia  if otherwise. The 

existence of the required vector n
nkkk ℜ∈′= ),...,( 1  is 

guaranteed since the pair of matrices ),( cA  is observable. 
The proposed observer is of the form: 
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where 1≥θ  is a constant sufficiently large. The proof is 
based on the quadratic error Lyapunov function 

ePeeV 11:)( −− ΔΔ′= θθ , where xze −=: , 

),...,,(: 2 ndiag θθθθ =Δ  and nnP ×ℜ∈  is a symmetric 
positive definite matrix that satisfies 

02)()( ≤+′+′+′+ IPkcAckAP μ  for certain constant 

0>μ  (see [12] for details). After some computations, we 

guarantee that for all );(),,( 00 ℜℜ×ℜ×ℜ∈ +∞
loc

nnvzx L  

and ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≥

μ
θ

nLP2
,1max  the solution of (14) with 
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and initial condition nnzxzx ℜ×ℜ∈= ),())0(),0(( 00  

corresponding to );( ℜℜ∈ +∞
locv L  satisfies the following 

estimates for all 0≥t  and ni ,...,1= :  
 

)(sup2

4
exp)()(ˆ

01

21

00
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where 0, 21 >KK  are constants such that 

2
2

2
1 xKPxxxK ≤′≤  for all nx ℜ∈ . It follows from (19) 

and (16) that system (17) is a robust observer for system 
(14) with respect to measurement errors. Moreover, using 
inequality (15) for 1=i  and (20) we obtain that for all 
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with (18) and initial condition 
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It follows from Theorem 3.1 and inequality (21) that the 
following system 
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is a robust sampled-data observer for system (14) with 
respect to measurement errors provided that the upper 
diameter of the sampling partition 0>r  satisfies the 
inequality: 

1)(2
1

2 <+
K
KkP
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μ

θ                      (23) 

Notice that since ⎟
⎟

⎠

⎞

⎜
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⎛
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μ
θ

nLP2
,1max , it follows from 

(23) that the upper diameter of the sampling partition 0>r  
must necessarily be less than 

( )( ) 2
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μ

+
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V. CONCLUDING REMARKS 
 
The present work developed a design method for nonlinear 
sampled-data observers based on an available continuous-
time design, coupled with an inter-sample output predictor.  
 
In addition to being intuitively meaningful, key attractive 
features of the proposed sampled-data observer include that  
  1) it provides checkable sufficient conditions for 
robustness with respect to measurement errors.  
  2) it provides an explicit formula for estimating the 
maximum allowable sampling period. 
  3) it provides explicit bounds for the estimation error 
between sampling instants. 
  4) it provides robustness with respect to perturbations of 
the sampling schedule. 
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