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Abstract— This paper deals with the stability of cascade
interconnection of integral input-to-state (iISS) time-varying
systems. A new technique is introduced for the purpose of
constructing smooth Lyapunov functions of cascaded systems
explicity. From the construction, sufficient conditions for in-
ternal stability and stability with respect to external signals
are derived. One of the proposed conditions is a generalized
version of trade-off between slower convergence of the driving
system and steeper input growth of the driven system. It
is demonstrated that the trade-off is no more necessary if
the speed of convergence of the driven system is not ra-
dially vanishing. The results are related to trajectory-based
approaches in the literature and small-gain techniques for
feedback interconnection. The difference between the feedback
case and the cascade case is also viewed from the requirement
on convergence speed of autonomous parts.

I. INTRODUCTION

The development of stability and stabilization theory for
cascaded systems has been playing significant roles in non-
linear systems control[15], [13], [10], [7]. The stability and
stabilizability are often related to growth rate conditions
on functions describing the interaction between systems
(See [11], references and literature review therein). It is
well known that the cascade of input-to-state stable (ISS)
systems is ISS since a growth rate condition can be always
satisfied[17]. Arcak et al.[2] have considered a time-invariant
cascade interconnected system in which an integral input-to-
state stable (iISS) system is driven by a globally asymp-
totically stable (GAS) system. Their result has had a great
impact on the analysis and synthesis of nonlinear cascades
since iISS is less restrictive than ISS. They employed a
trajectory-based approach to derive a sufficient condition for
GAS of the time-invariant cascade. It is proved that the iISS
gain of driven system needs to be steep satisfactorily in the
direction toward the equilibrium if the convergence of the
driving system is slow. This trade-off between convergence
rate and growth rate of iISS gain has unified several results
in the literature

As for feedback interconnection, stability conditions for
interconnections of iISS systems have been derived in [4].
The development is based on explicit construction of smooth
Lyapunov functions of feedback systems. The relation be-
tween the cascade result [2] and the feedback result [4] has
never been discussed in the literature yet. One of obstacles
is that Arcak et al.[2] gave no interpretation in terms of con-
structing Lyapunov functions of the whole system. Removing
this obstacle is one of the main motivations for this paper.
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An advantage of the trade-off condition in [2] is that we
do not always have to assume local exponential stability
(LES) of the driving system. Authors of [2] also explain the
effectiveness of the trade-off condition by using examples
of cascades which are not GAS when the trade-off between
the convergence rate and the growth of gain is not fulfilled.
However, in order to discuss the necessity of the trade-
off condition for stability of the cascade, the effect of
autonomous parts in systems should be taken into account
carefully. One of the main motivations for this paper stems
from this point. It would be also interesting and important
to study the time-varying cascade consisting of an iISS
driving system and an iISS driven system affected by external
disturbances, which has not been accomplished in [2].

The purposes of this paper are

(G1) to derive counterparts of [2] by constructing a Lya-
punov function explicitly for time-varying systems;

(G2) to establish stability with respect to external inputs;
(G3) to shows that every cascade system of some class

can be stable even if the driven system does not
satisfy the growth restriction of the interconnection
term according with the speed of convergence of the
driving system.

This paper accomplishes all these points through explicit
construction of Lyapunov functions of the whole cascaded
systems by employing a Lyapunov formulation introduced
in [4]. This paper thoroughly improves the approach by
specializing in the cascade systems and proposing a new
type of Lyapunov function. This paper also corrects an error
in [4]. As for (G2) alone, a growth rate condition for iISS
of cascaded time-invariant systems has been derived in [3]
recently without constructing a Lyapunov function of the
cascades. The growth rate result can be also covered by the
constructive Lyapunov approach in this paper except in a
special circumstance.

Throughout this paper, γ ∈ P0 denotes that γ is a contin-
uous function from R+ to R+ satisfying γ(0) = 0. The set
of γ ∈P0 satisfying γ(s) > 0 for all s ∈ R+ \{0} is denoted
by P . A function is said to belong to class K if it is in
P and increasing. A class K function is said to be of class
K∞ if it tends to infinity as its argument approaches infinity.
For a function h ∈ P , we write h ∈ O(> L) with a non-
negative real number L if there exists a positive real number
K > L such that limsups→0+ h(s)/sK < ∞. We write h∈O(L)
when K = L. Note that O(L) ⊂ O(S) holds for L > S. The
symbols ∨ and ∧ denote logical sum and logical product,
respectively. A system is said to be GAS if it has a globally
asymptotically stable equilibrium at the origin of the state
space. In this manner, UGAS stands for uniformly global
asymptotic stability in the case of time-varying systems.
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II. ILLUSTRATIONS

In order to illustrate motivations, we consider the follow-
ing cascade consisting of two subsystems:

ẋ1 = −x1 + x1x2 (1)

ẋ2 = −x3
2 (2)

The x1-system is not ISS since the constant input x2 > 1
results in unbounded trajectories. Only iISS property holds.
The x2-system is not LES, which violates the assumption
of Corollary 2 and Corollary 3 in [2]. This cascade does
not satisfy the coupled condition on convergence rate and
gain growth required by Theorem 1 in [2] either because
the input x2 appears in the x1-system in a first order fash-
ion. Indeed, the driving system (2) and the input term of
the driven system (1) are the same as Example 1 in [2]
which exhibits unbounded solutions. Thus, the stability of
the cascade system (1)-(2) cannot be determined by the
characterizations proposed in [2]. Nevertheless, due to the
presence of the radially non-vanishing convergent term −x1

in the x1-system, the cascade (1)-(2) is GAS. To see this,
define V1(x1) = 1

2
log(x2

1 + 1) and V2(x2) = 1
2
x2

2, and the
dissipation inequalities

∂V1

∂x1
f1 ≤−

|x1|
2

|x1|2 +1
+ |x2|,

∂V2

∂x2
f2 ≤−|x2|

4 (3)

are satisfied by Σ1 and Σ2. It can be verified that

V (x) = d

∫ V1

0

(

e2s−1

e2s

)4

ds+
1

3
|x2|

3, 0<d <1 (4)

is a Lyapunov function establishing GAS of x = [x1,x2]
T = 0.

This claim is precisely formulated into Corollary 1 in this
paper for general systems.

Introducing external inputs to (1)-(2), we consider

ẋ1 = −x1 + x1x2 + r3
1 (5)

ẋ2 = −x3
2 + r2 (6)

The time-derivative of V (x) in (4) along the trajectories of
(5) and (6) is obtained as

V̇ (x) ≤−
d

5

(

x2
1

x2
1 +1

)

−
1

5
(3−d)|x2|

5 +
d

2
|r1|

3 +
3

5
|r2|

5
3 (7)

Therefore, the cascade system is iISS with respect to input
(r1,r2) and state (x1,x2), and V (x) is an iISS Lyapunov
function. In fact, Theorem 1 in this paper demonstrates
that iISS property of cascade systems can be established
whenever dissipation inequalities of individual systems in
the absence of external inputs are given by (3).

The next example of cascade is the following:

ẋ1 = −
x1

x2
1 +1

+ x2
2 + r1, x1(0),x2(0)∈R+ (8)

ẋ2 = −
2x4

2

x4
2 +1

+
r2

r2 +1
, r1(t),r2(t) ∈ R+,∀t ∈ R+ (9)

which evolves in the positive orthant R
2
+ for all t ∈ R+.

The x1-system is not ISS since the term of convergence is
vanishing toward zero in the radial direction. There exists
M > 0 for each pair of constants x2,r1 > 0 such that every
trajectory of the x1-system starting from x2(0)>M diverges.

Σ1 : ẋ1 = f1(t,x1,x2,r1)

Σ2 : ẋ2 = f2(t,x2,r2)

¾

¾

- x2

x1
r1

r2

Fig. 1. Cascade system Σ

The system is only iISS with respect to input (x2,r1) and
state x1. Meanwhile, the x2-system is ISS with respect to
input r2 and state x2. Although the convergence rate of x2-
system near the origin is much slower than LES, we can
still not only verify GAS of the cascade in the absence
of the external inputs r1 and r2, but also establish stability
with respect to (r1,r2). To this end, taking V1(x1) = x1 and
V2(x2) = x2, we obtain

∂V1

∂x1
f1 ≤−

x1

x2
1 +1

+ x2
2 + r1,

∂V2

∂x2
f2 ≤−

2x4
2

x4
2 +1

+
r2

r2 +1

Since these functions fulfill the assumptions of Theorem 3
with k = 2, we can conclude that the interconnected system is
iISS with respect to input (r1,r2) and state (x1,x2). Theorem
3 also provides the following iISS Lyapunov function.

V (x1,x2) =
1

2
log(x2

1 +1)+
1

5
x5

2 + x2 (10)

It is worth mentioning that this iISS property cannot be
verified directly by the result in [3].

III. DEFINITION OF CASCADE SYSTEMS

Consider the nonlinear interconnected system Σ shown
in Fig.1. The subsystems Σ1 is driven by Σ2. Both the
subsystems are allowed to be time-varying. The state vector
of Σ is x=[xT

1 ,xT
2 ]T ∈R

n. The signals r1 and r2 are packed

into r=[rT
1 ,rT

2 ]T ∈R
k. The following sets are considered.

Definition 1: Given α1,α2 ∈ P , σ1 ∈ K and
σr1,σr2 ∈ P0, we write Σ1 ∈ S1(n1,α1,σ1,σr1) and
Σ2 ∈ S2(n2,α2,σr2) if Σ1 and Σ2 are described by

ẋ1 = f1(t,x1,x2,r1), xi∈R
ni , ri∈R

ki (11)

ẋ2 = f2(t,x2,r2), (12)

fi(t,0, · · · ,0) = 0, t ∈ R+, i = 1,2 (13)

fi is locally Lipschitz in (x,ri) uniformly in t

and piecewise continuous in t (14)

which admit the existence of C1 functions Vi: R+×R
ni → R

and α i, ᾱi ∈ K∞, i = 1,2, such that

α i(|xi|)≤Vi(t,xi)≤ ᾱi(|xi|), i = 1,2 (15)

∂V1

∂ t
+

∂V1

∂x1
f1≤−α1(|x1|)+σ1(|x2|)+σr1(|r1|) (16)

∂V2

∂ t
+

∂V2

∂x2
f2≤−α2(|x2|)+σr2(|r2|) (17)

hold for all x ∈ R
n, r ∈ R

k and t ∈ R+.
The Lipschitzness imposed on fi guarantees the existence

of a unique maximal solution of Σ for locally essentially
bounded ri(t). The inequalities (16) and (17) are often
referred to as “dissipation inequalities”, and their right hand
sides are called supply rates. The individual system Σi

fulfilling the above definition is said to be integral input-
to-state stable (iISS)[16]. The function Vi is called a C1 iISS
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Lyapunov function[1]. Under a stronger assumption αi ∈K∞,
the system Σi is said to be input-to-state stable (ISS)[14],
and the function Vi is a C1 ISS Lyapunov function[18]. The
trajectory-based definition of ISS and iISS may be seen more
often than the Lyapunov-based definition this paper adopts.
The two types of definition are equivalent in the sense of
the existence of ISS (iISS) Lyapunov functions[18], [16]. By
definition, an ISS system is always iISS. The converse does
not hold. In this paper, the convergence speed of the system
Σi is said to be radially vanishing if liminfs→∞ αi(s) = 0.

IV. RADIALLY NON-VANISHING CASE

The goals (G2) and (G3) are achieved by the following.
Theorem 1: Let ni be a positive integer for i = 1,2.

Assume that
αi ∈ K , i = 1,2 (18)

holds. Then, the following hold true.

(i) If one of
α2 ∈ K∞ (19)

σ1 6∈ K∞ (20)

∞ > lims→∞ α2(s) > sups∈R+
σr2(s) (21)

is satisfied, the cascade system Σ is iISS with respect to
input r and state x for all Σ1 ∈ S1(n1,α1,σ1,σr1) and
Σ2 ∈ S2(n2,α2,σr2). Furthermore, an iISS Lyapunov
function of Σ is

V (t,x) =
∫ V1(t,x1)

0
λ1(s)ds+

∫ V2(t,x2)

0
λ2(s)ds (22)

given with

λ1(s) =

[

δα2◦ ᾱ−1
2 ◦α2◦ σ̂−1

1 ◦
1

τ1
α̂1

◦ᾱ−1
1 (s)

]

[

ψ◦
1

τ1
α̂1◦ᾱ−1

1 (s)

]

(23)

λ2(s) = σ̂1◦α−1
2 (s)

[

ψ ◦ σ̂1◦α−1
2 (s)

]

(24)

τ1 > 1 (25)

where
ψ is any continuous function

δ is any real number

}

satisfying

λ1(s),λ2(s) : non-decreasing, ∀s ∈ R+ (26)

0 < ψ(s) < ∞, s ∈ (0,L), L := lim
s→∞

σ̂1(s)

and one of

(19) ∧ 0 < δ < 1 (27)

(20) ∧ 0 < δ < 1 ∧ lims→L ψ(s) < ∞ (28)

(21) ∧ 0 < δ < 1−
sups∈R+

σr2(s)

lims→∞ α2(s)
(29)

α̂1 and σ̂1 are any class K functions satisfying

lim
s→∞

σ̂1(s) ≥ lim
s→∞

α̂1(s) (30)

α̂1(s) ≤ α1(s), ∀s ∈ R+ (31)

σ̂1(s) := σ1(s), ∀s ∈ R+ (32)

(ii) If
αi ∈ K∞, i = 1,2 (33)

is satisfied, the cascade system Σ is ISS with respect to
input r and state x for all Σ1 ∈ S1(n1,α1,σ1,σr1) and

Σ2 ∈ S2(n2,α2,σr2). Furthermore, an ISS Lyapunov
function of Σ is (22) given with (23)-(27), (30) and

α̂1(s) := α1(s), ∀s ∈ R+ (34)

σ̂1(s) ≥ σ1(s), ∀s ∈ R+ (35)

The assumption (18) implies that the speed of convergence
of Σ1 and Σ2 is radially non-vanishing.

We next address (G3) alone. When we do not deal with
external signals, all assumptions in Theorem 1 except (36)
can be removed as follows:

Corollary 1: Let ni be a positive integer for i=1,2. If

α1 ∈ K (36)

holds, the cascade system Σ is UGAS for ri(t) ≡ 0, i = 1,2,
for all Σ1 ∈ S1(n1,α1,σ1,σr1) and Σ2 ∈ S2(n2,α2,σr2).

The main result of [2] imposes restriction on growth of
the interconnection term. The above corollary removes the
restriction completely when the convergence speed of the
driven system is not vanishing in the radial direction.

V. RADIALLY VANISHING CASE

If the convergence term of the driven system is allowed
to vanish as its state tends to infinity, we are able to achieve
(G2) as follows.

Theorem 2: Let ni be a positive integer for i = 1,2.
Assume that

α2 ∈ K (37)

holds. If there exists c2 > 0 and k ≥ 1 such that

c2σ1 ◦α−1
2 (s) ≤ [α2 ◦ ᾱ−1

2 (s)]k, ∀s ∈ R+ (38)

is satisfied, the cascade system Σ is iISS with respect to
input r and state x for all Σ1 ∈ S1(n1,α1,σ1,σr1) and Σ2 ∈
S2(n2,α2,σr2). Furthermore, an iISS Lyapunov function of
Σ is (22) given with

λ1(s) = h, λ2(s) = [α2 ◦ ᾱ−1
2 (s)]k−1, 0 < h < c2/k (39)

We can relax (38) of Theorem 2 by employing another
type of Lyapunov function as follows:

Theorem 3: Let ni be a positive integer for i = 1,2.
Assume that (37) holds and there exists k ≥ 1 such that

∫ ∞

1
[ min
w∈[ᾱ−1

1 (s),α−1
1 (s)]

α1(w)]k−1ds = ∞ (40)

lim
s→0+

[σ1 ◦α−1
2 (s)]k

α2 ◦ ᾱ−1
2 (s)

< ∞ (41)

hold. If one of (19), (20) and (21) is satisfied, the cascade
system Σ is iISS with respect to input r and state x for all Σ1 ∈
S1(n1,α1,σ1,σr1) and Σ2 ∈S2(n2,α2,σr2). Furthermore, an
iISS Lyapunov function of Σ is (22) given with

λ1(s) = [ min
w∈[ᾱ−1

1 (s),α−1
1 (s)]

α1(w)]k−1 (42)

λ2(s) = h max
w∈[0,s]

[σ1 ◦α−1
2 (w)]k

α2 ◦ ᾱ−1
2 (w)

(43)

h >



















lim
s→∞

α2(s)

k( lim
s→∞

α2(s)− sup
s∈R+

σr2(s))
if α2 6∈K∞ ∧σ1∈K∞

1

k
otherwise

(44)
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Moreover, (41) and (43) can be replaced by

∫ 1

0

[σ1 ◦α−1
2 (s)]k

α2 ◦ ᾱ−1
2 (s)

ds < ∞ (45)

λ2(s) =



















h
[σ1 ◦α−1

2 (s)]k

α2 ◦ ᾱ−1
2 (s)

,s∈ [0,1)

h max
w∈[1,s]

[σ1 ◦α−1
2 (w)]k

α2 ◦ ᾱ−1
2 (w)

,s∈ [1,∞)

(46)

respectively, if σr2(s) ≡ 0 or r2(t) ≡ 0.

The assumption

(40)∧ (41)∧{(19)∨ (20)∨ (21)} (47)

is milder than (38). In fact, the condition (40) always holds
for k = 1, and the assumption (38) for a k ≥ 1 implies that
(41) holds for any k ≥ 1. In addition, the assumption (38)
is never fulfilled unless the condition {(19)∨ (20)∨ (21)}
holds. Thus, Theorem 3 is better than Theorem 2 although
the assumption looks complicated.

The following corollary addresses (G1) which is a conse-
quence of Theorem 3.

Corollary 2: Let ni be a positive integer for i=1,2. If

∫ 1

0

[σ1 ◦α−1
2 (s)]

α2 ◦ ᾱ−1
2 (s)

ds < ∞ (48)

holds, the cascade system Σ is UGAS for ri(t) ≡ 0, i = 1,2,
for all Σ1 ∈ S1(n1,α1,σ1,σr1) and Σ2 ∈ S2(n2,α2,σr2).

The condition (48) constrains the growth of interconnec-
tion term in the driven system to be slow enough to cope
with a low speed of convergence of the driving system near
the equilibrium.

Theorem 2 is essentially the same as Corollary 3 (i) of
[4]. This paper, however, has the advantage of providing a
Lyapunov function explicitly for the cascade system. Theo-
rem 3 relaxes the restrictive assumption (38) by correcting
and thoroughly improving Corollary 3 (ii)-(v) of [4]. First
of all, Corollary 3 in [4] has merely missed including the
assumptions αi ∈K , i = 1,2 in (ii)-(v). This paper has dealt
with the case of αi ∈ K , i = 1,2 by a different Lyapunov
function in Theorem 1. Theorem 1 is notably less restrictive
than the results which can be derived from the Lyapunov
function employed in [4]. Theorem 3 covers α1 6∈ K and
allows −α1(s) to be vanishing as s tends to ∞.

Theorem 3 generalizes a similar result in [3] and covers
time-varying systems. The condition (40) is fulfilled if we
restrict k to 1. The remaining condition (41) for k = 1 is
the growth order restriction used in [3]. Theorem 3 has
an advantage of explicitly providing Lyapunov function of
the whole system over [3]. The growth order restriction
(41) involves the K∞ bounds on individual iISS Lyapunov
functions, while the K∞ bounds are not involved in a result
of [3]. It is natural since this paper constructs Lyapunov
functions of the whole system. It is worth adding that this
paper does not show iISS Lyapunov functions in the case of
α2(∞)=0 although a Lyapunov functions for GAS is derived
in Corollary 2. The question of how to construct an iISS
Lyapunov function in the case of α2(∞)=0 remains open,
while the iISS property is proved in [3] without Lyapunov
functions.

Σ1 : ẋ1 = f1(t,x1,x2,r1)

Σ2 : ẋ2 = f2(t,x2,x1,r2)

¾

¾

-

-

x2

x1
r1

r2

Fig. 2. Feedback system ΣF

VI. DIFFERENCE BETWEEN CASCADE AND FEEDBACK

Consider the feedback system shown in Fig.2, where
Σ1 ∈S1(n1,α1,σ1,σr1) and Σ2 ∈S2(n2,α2,σ2,σr2) defined
with an additional term +σ2(|x1|) in (17). A special case of
the feedback is cascade connection. Indeed, if we assume
σ2(s) ≡ 0 in Fig.2, the system is identical with Fig.1. This
fact surely implies that stability of cascade systems can
be verified by means of the small-gain technique for ISS
systems and iISS systems derived in [9] and [4], respectively.
For example, if Σ1 and Σ2 are individually ISS, the small-
gain constraint on the pair of Σ1 and Σ2 is always met by
zero loop-gain since the closed-loop is broken. In the case of
iISS subsystems, the cascade is not always iISS since some
pairs of Σ1 and Σ2 do not have finite loop-gain associated
with the small-gain constraint. Thus, it is important to be
aware that requiring finite loop-gain may not be a tight
stability condition for cascaded systems. In order to avoid
such conservativeness, the previous sections have proposed
stability conditions specialized in cascade connection. This
section spotlights this issue from the speed of convergence
of individual systems.

As long as we derive stability from supply rates of con-
stituent systems, the convergence rate of each autonomous
term needs to be radially increasing if the interconnection
forms a closed loop. The following demonstrates this fact.

Theorem 4: Consider the feedback interconnection shown
in Fig.2. Let ni be a positive integer for each i = 1,2. Assume
that functions αi,σi,σri : R+ → R+ are C1, and satisfy

αi ∈ O(> 1), σi,σri ∈ O(> 0), i = 1,2 (49)

Then, the feedback system ΣF with ri(t)≡ 0, i = 1,2, is GAS
for all Σi ∈ Si(ni,αi,σi,σri), i = 1,2, only if

liminf
s→∞

αi(s) > 0 (50)

hold for i = 1,2.
The smoothness of functions and (49) are only for proving

the necessity condition among subsystems having unique
maximal solutions. If systems are defined on the positive(or
negative) orthant R

ni
+, the assumption αi ∈ O(> 1) can be

relaxed into α ∈ O(1). Theorem 4 implies that both the
subsystems Σ1 and Σ2 accept α1, α2 ∈ K whenever their
feedback interconnection is GAS, iISS or ISS.

The necessity of α1,α2 ∈K does not hold any more in the
cascade case. There are pairs of supply rates from which we
can derive stability of their cascade even if αi are only posi-
tive definite. A simple example is the cascade connection of
Σ1 ∈ S1(n1,α1,σ1,σr1) and Σ2 ∈ S2(n2,α2,σr2) satisfying

liminf
s→∞

α1(s) = 0, σ1 = cα2, c > 0 (51)

since V (t,x) = V1(t,x1) + 2cV2(t,x2) is an iISS Lyapunov
function. In order to obtain a stability condition which is
less restrictive than σ1 = cα2, Arcak et al.[2] has proved
based on a trajectory approach that a cascade connection
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can be GAS if the speed α2 of convergence of the driving
system near the equilibrium is fast enough to compensate
the growth of input nonlinearity σ1 of the driven system.
For pursuing the improvement of their result, this paper have
placed emphasis on the construction of Lyapunov functions.
This paper has investigated not only UGAS, but also the
stability with respect to external signals, i.e., iISS. The results
in this paper are also far beyond the application of small-gain
technique in [4] to cascaded systems since all the results
expect Theorem 1 and Corollary 1 allow the driven system
to have radially vanishing convergence rate. In the GAS case,
both the driving and the driven systems are allowed to have
radially vanishing convergence rate.

VII. CONCLUDING REMARKS

This paper has investigated stability of cascade intercon-
nection of subsystems which are not necessary ISS. The
interconnection of iISS and GAS subsystems are not always
GAS. The problem of establishing GAS was addressed
in [2] which derived a trade-off condition between slower
convergence of the driving system and steeper input growth
of the driven system. The purpose of this paper is to study a
similar problem further in order to pursue advanced stability
conditions from the perspectives of external signals and
construction of Lyapunov functions. This paper has shown
that a smooth Lyapunov function for GAS can be constructed
explicitly if the trade-off condition holds. This result has
also been extended to stability with respect to external
signals, i.e., iISS. The results are applicable to time-varying
systems. Another result has demonstrated that the trade-off
between the convergence and the input growth rate is no
more necessary if the convergence rate of the driven system
is not radially vanishing. In addition, this paper has discussed
the difference between feedback interconnection and cascade
interconnection, and the work of this paper has been related
to small-gain techniques. It is explained that tools specialized
in cascade interconnection can allow the convergence speed
of individual subsystems to be radially vanishing.

Finally, it is mentioned that this paper does not show iISS
Lyapunov functions in the case of α2(∞) = 0 in contrast to
the GAS Lyapunov function in Corollary 2. Recently, the
iISS property in the case of α2(∞) = 0 has been proved by
[3] without driving a Lyapunov function of the cascade. It
would be interesting to continue this direction of research to
develop a way to construct a Lyapunov function explicitly.

APPENDIX

A sketch of proof of Theorem 1

(i) Case (19): Replace σri by σ̄ri ∈ K satisfying

σri(s) ≤ σ̄ri(s), ∀s ∈ R+, i = 1,2 (52)

Let τ1, τr1 and τr2 be positive real numbers satisfying τ1 > 1,
τr1 > 1, 1 > 1

τ1
+ 1

τr1
, τr2 > 1, 1−δ > 1

τr2
. The existence of

such τr2 is ensured by (27). Define

θ1(s)= ᾱ1 ◦ α̂−1
1 ◦ τ1σ̂1(s), s ∈ [0,Y1)

θri(s)= ᾱi ◦ α̂−1
i ◦ τriσ̄ri(s), s∈ [0,Yri) , i = 1,2

Y1 = lims→∞ σ̂−1
1 ◦ 1

τ1
α̂1(s), Yr2 = ∞

Yr1 =

{

∞ , if lims→∞ α̂1(s) ≥ lims→∞ τr1σ̄r1

lims→∞ σ̄−1
r1 ◦ 1

τr1
α̂1(s) , otherwise

Due to (23)-(27), we can define continuous functions

λθ1(s) =

{

λ1 ◦θ1(s) , s ∈ [0,Y1)
lims→∞ λ1(s) , s ∈ [Y1,∞)

λθr1(s) =

{

λ1 ◦θr1(s) , s ∈ [0,Yr1)
lims→∞ λ1(s) , s ∈ [Yr1,∞)

λθr2(s) = λ2 ◦θr2(s) , s ∈ R+

which are non-decreasing. We can verify the following:

λ1(V1){−α1(|x1|)+σ1(|x2|)+σr1(|r1|)} ≤

−
(

1− 1
τ1
− 1

τr1

)

λ1(α1(|x1|))α̂1(|x1|)

+λθ1(|x2|)σ̂1(|x2|)+λθr1(|r1|)σ̄r1(|r1|) (53)

λ2(V2){−α2(|x2|)+σr2(|r2|)} ≤

−
(

1− 1
τr2

)

λ2(α2(|x2|))α2(|x2|)+λθr2(|r2|)σ̄r2(|r2|) (54)

Then, λ1 and λ2 in (23) and (24) satisfy

2

∑
i=1

λi(Vi){−αi(|xi|)+σi(|x3−i|)+σri(|ri|)}

≤ −
2

∑
i=1

αo,i(|xi|)+σo,i(|ri|) (55)

αo,1(s)=
(

1− 1
τ1
− 1

τr1

)

λ1(α1(s))α̂1(s) (56)

αo,2(s)=
(

1− 1
τr2

−δ
)

λ2(α2(s))α2(s) (57)

σo,i(s)=λθri(s)σ̄ri(s), i = 1,2 (58)

The property (55) implies that V (t,x) defined by (22) is an
iISS Lyapunov function.
Case (20): The property α̂1(∞) < ∞ follows from σ1(∞) < ∞
and (30)-(32). The property (28) guarantees λi(∞) < ∞, i =
1,2, which allows us to replace λθri(s) by λi(∞) for i = 1,2.
Choose σo,i = λi(∞)σ̄ri ∈ K , and replace (54) and (57) by

λ2(V2){−α2(|x2|)+σr2(|r2|)}

≤ −λ2(α2(|x2|))α2(|x2|)+λ2(∞)σ̄r2

αo,2(s)=(1−δ )λ2(α2(s))α2(s)

Case (21): Let σ̄r2 be a class K function satisfying

sups∈R+
σr2(s) ≤ lims→∞ σ̄r2(s) < (1−δ ) lims→∞ α2(s) (59)

and (52). The existence is guaranteed by (29). Define

τr2 = lims→∞ α2(s)/lims→∞ σ̄r2(s) > 1 (60)

The property (59) yields 1−δ > 1
τr2

.

(ii) Under (33) and (34), we have αo,1,αo,2 ∈ K∞.

A key to proofs of Corollary 1 and Corollary 2

If α2 6∈ K , consider V̂2(t,x2) =
∫ V2(t,x2)

0 θ ◦α−1
2 (s)ds with

θ(s) = 1, ∀s ∈ [0, ᾱ−1
2 (1)] and infs∈R+ θ(s) > 0. There exists

a continuous function θ on R+ satisfying ˙̂V2 ≤ −α̂2(|x2|)
along the trajectories of Σ2 for some α̂2 ∈ K .
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A sketch of proof of Theorem 3

Due to k ≥ 1, (19), (20), (21) and (44), we have 0 <
1/k < h < ∞. The properties (40) and (41) guarantee that V

defined by (22), (42) and (43) is positive definite and radially
unbounded. Let σ̄r1, σ̄r2 ∈ K be (52). Suppose k > 1. Pick

ζ > (k−1)
k−1

k . Young’s inequality and (42) yield

λ1(V1){−α1(|x1|)+σ1(|x2|)+σr1(|r1|)}

≤ −

{

1
k
− k−1

k

(

1
ζ

)
k

k−1

}

[ min
w∈[ᾱ−1

1 (V1),α−1
1 (V1)]

α1(w)]k

+ 1
k
[σ1 ◦α−1

2 (V2)]
k + 1

k
[ζ σ̄r1(|r1|)]

k (61)

In the case of k = 1, we obtain

λ1(V1){−α1(|x1|)+σ1(|x2|)+σr1(|r1|)}
≤ −α1(|x1|)+σ1 ◦α−1

2 (V2)+ σ̄r1(|r1|) (62)

If lims→∞ σ1(s) < ∞, α2 ∈ K and (43) imply that, for each
k ≥ 1, there exists hr2 > 0 satisfying

λ2(V2){−α2(|x2|)+σr2(|r2|)}
≤ −h[σ1 ◦α−1

2 (V2)]
k +hr2σ̄r2(|r2|)} (63)

Next, suppose σ1(∞) = ∞. There exists τr2 > 1 satisfying

1− 1
τr2

− 1
hk

> 0 (64)

If lims→∞ α2(s)<∞, pick σ̄r2∈K satisfying (52) and

sups∈R+
σr2(s) ≤ lims→∞ σ̄r2(s) <

(

1− 1
hk

)

lims→∞ α2(s)

The existence is ensured by (44). Then, τr2 > 1 in (60) fulfills
(64). Define a non-decreasing function

λθr2(s) = λ2 ◦ ᾱ2 ◦α−1
2 ◦ τr2σ̄r2(s), s ∈ R+

From (43) and α2 ∈ K , for each k ≥ 1, we obtain

λ2(V2){−α2(|x2|)+σr2(|r2|)} ≤

−h
(

1− 1
τr2

)

[σ1◦α−1
2 (V2)]

k+λθr2(|r2|)σ̄r2(|r2|) (65)

in the case of lims→∞ σ1(s) = ∞. Using (61), (62), (63), (65)
and some αo,1∈P , σo,2∈K , η2,ξ1 >0, we arrive at

λ1(V1){−α1(|x1|)+σ1(|x2|)+σr1(|r1|)}+
λ2(V2){−α2(|x2|)+σr2(|r2|)} ≤ −αo,1(V1)

−η2[σ1 ◦α−1
2 (V2)]

k +ξ1[σ̄r1(|r1|)]
k +σo,2(|r2|)

Hence, V is an iISS Lyapunov function of Σ. If σr2(s)≡0
or r2(t)≡0, τr2 and λθr2 vanish. The pair (45)-(46) ensures

limV2→0 λ2(V2)α2(ᾱ
−1
2 (V2)) = 0 and that V is positive defi-

nite and radially unbound.

A sketch of proof of Theorem 4

Consider the feedback system ΣF with ri(t) ≡ 0, i = 1,2.
Suppose that liminfs→∞ αi(s) = 0 holds for at least one of
i = 1,2. Due to σ1,σ2 ∈K , there exist li > 0 and δi > 0 for
i = 1,2 such that

|xi|= li, |x3−i|≥ l3−i ⇒(1+δi)αi(|xi|)<σi(|x3−i|)

hold. Using Lemma 1 of [5] , choose a pair f1(x1,u1,r1),
f2(x2,u2,r2): R

ni ×R
mi ×R

ki → R for which there exist C1

functions V1, V2: R
ni → R and α1, ᾱ1, α2, ᾱ2 ∈ K∞ such

that Σi ∈ Si(ni,αi,σi,σri), α i(|xi|) = Vi(xi) = ᾱi(|xi|) and

(1+δi)αi(|xi|) < σi(|x3−i|) ⇒ ∂Vi

∂xi
fi > δiαi(|xi|)

hold with ri(t) ≡ 0 for i = 1,2. These systems Σi, i = 1,2,
defined with ẋi = fi satisfy

|xi| = li, |x3−i| ≥ l3−i ⇒
∂Vi

∂xi
fi > δiαi(|xi|) (66)

The pair of (66), i = 1,2, implies that trajectories starting
from (x1(0),x2(0)) ∈ {(x1,x2)∈R

n1×R
n2 : Vi(xi)≥Vi(li), i=

1,2} stay there for all t ∈ R+. This invariance property
implies that ΣF is not GAS.

REFERENCES

[1] D. Angeli, E.D. Sontag and Y. Wang, “A characterization of integral
input-to-state stability,” IEEE Trans. Automat. Control, 45, pp. 1082–
1097, 2000.

[2] M. Arcak, D. Angeli, and E. Sontag, “A unifying integral ISS
framework for stability of nonlinear cascades,” SIAM J. Control and

Opt., 40, pp. 1888–1904, 2002.
[3] A. Chaillet, and D. Angelli, “Integral input-to state stability for

cascaded systems,” Proc. 17th Int. Sympo. on Mathematical Theory

of Networks and Systems, 2006, pp. 2700-2705.
[4] H. Ito, “State-dependent scaling problems and stability of intercon-

nected iISS and ISS systems,” IEEE Trans. Automat. Control, 51,
pp.1626-1643, 2006.

[5] H. Ito and Z.P. Jiang, “On necessary conditions for stability of inter-
connected iISS systems,” Proc. 2006 American Control Conference,
2006, pp.1499-1504.

[6] H. Ito and Z-P. Jiang, “Nonlinear small-gain condition covering iISS
systems: Necessity and sufficiency from a Lyapunov perspective,”
Proc. 45th IEEE Conf. Decision Contr., 2006, pp. 355-360.
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