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Nonlinear Time-Delay Systems

lasson Karafyllis, and Zhong-Ping Jiang

Abstract—In this work, we provide necessary and sufficient
Lyapunov-like conditions for the existence of a stabilizing
feedback law for uncertain control systems described by
Retarded Functional Differential Equations. A methodology for
the construction of Control Lyapunov Functionals for
uncertain triangular nonlinear time-delay systems is provided.
Moreover, the method leads to the explicit design of robust
nonlinear controllers for the class of time-delay nonlinear
systems with a triangular structure.

I. INTRODUCTION

HE purpose of this paper is to provide a methodology

for the construction of Control Lyapunov Functionals

for uncertain nonlinear systems described by Retarded
Functional Differential Equations of the form:

X ()= fi(t,d(0), T, (O)x,,... T, (O)x;)
+g,t,d®),T.)x,.. T ()x;)x; ()
x,(0)= 1, (t,d(0),T.()x)+ g, (1,d (1), T, (£)x)u(r)
x(0)=(x;(@)yeres x, () eR" ,dt) e D,u(t) eR,t>0

i=1..,n-1

(1

where 7, (¢)x we denote the “7-history” of x at time ¢,
ie, T, ()x=x(t+8);60e[-r,0]. Systems of the form (1)
have been studied in [2,3,4,7,8,9,10]. More specifically, in
[3,4] the global stabilization problem for autonomous and
disturbance-free systems of the form (1) was studied using
Control Lyapunov Razumikhin Functions, while in [8]
stabilization with delayed feedbacks was studied under
certain growth conditions using Lyapunov functions (see
also [7]). In [9] the semiglobal stabilization problem for
partially linear delay systems was studied and backstepping
methods based on Lyapunov functionals under certain
conditions were provided in [2,10] (see also [11]).

In the present work it is shown that the construction of a
stabilizing feedback law for (1) proceeds in parallel with the
construction of a State Robust Control Lyapunov Functional.
Moreover, sufficient conditions for the existence and design
of a stabilizing feedback law wu(¢)=k(x(¢)), which is

independent of the delay are given.
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The notion of the State Robust Control Lyapunov Functional
(SRCLF) used in the present work generalizes the notion of
the Robust Control Lyapunov Function introduced in [1] for
finite-dimensional systems. More specifically, the proposed
notion of the SRCLF can be applied to uncertain systems
described by RFDEs of the form:

X(0) = ft,d®), T, (O)x,u(1) , 1 2

(2)

x)eR",dt)eD,u(t)eU
where r>0 is a constant,
R xDxCO([-r,01; R")xU — R" satisfies

£(t,d,0,00=0 for all (t,d)eR"xD, DcR' is a non-
empty compact set, U < R™ is a closed convex set with
0eU and T, (t)x =x(t+86); 0 €[-r,0]. It is shown that the

existence of a State Robust Control Lyapunov Functional is
a necessary and sufficient condition for the existence of a
stabilizing feedback for (2).

Notations Throughout this paper we adopt the following
notations:

* Let AcR" beaset. By C°(4;Q), we denote the class
of continuous functions on A4, which take values in Q .
By C K(4;Q), where k>1 is an integer, we denote the

class of differentiable functions on 4 with continuous
derivatives up to order k, which take values in Q. By

C” (4;9Q), we denote the class of differentiable functions
on A4 having continuous derivatives of all orders, which
take values in Q , i.e., C*(4Q) = kmlc"(A;Q).

>

* A continuous mapping AxB>(z,x) —>k(z,x)eR",
where BcX, AcY and X,Y are normed linear spaces, is

called completely locally Lipschitz with respect to x € B
if for every closed and bounded set S < Ax B it holds that

sup{w:(z,x)eS,(z,y)eS,x¢y}<+oo. If
=1

the normed linear spaces X,Y are finite-dimensional
spaces then we simply say that the continuous mapping
AxB3(z,x) —>k(z,x) eR" is locally Lipschitz with respect
to x e B if for every compact set S < Ax B it holds that

up{w:(meS,(z,y>es,x¢y}<+oo.
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* For a vector x e R" we denote by |x| its usual Euclidean

norm and by x' its transpose. For xe C°([-r,0];R")

we define ||x|| = max |x(¢9)|.
T 9e[-r,0]

* R* denotes the set of non-negative real numbers.

* E denotes the class of non-negative C° functions

+o0

w: R >R, for which it holds:J.,u(t)dt<+oo and
0

lim 14¢)=0.
t—+o0

* We denote by K" the class of positive C° functions
defined on R™ . We say that a function p:R" — R" is
positive definite if p(0)=0 and p(s)>0 forall s >0.
We say that a positive definite, increasing and continuous

piRY >R is of if

lim p(s) =+ .

s—>+0

function class K

o0

* Let Dc R’ be a non-empty set. By M p we denote the
class of all Lebesgue measurable and locally essentially
bounded mappings d :R* - D .

* Let x:[a—r,b) > R" be a continuous mapping with
b>a>-wo and r>0. By 7,(¢t)x we denote the “r-

tela,b),

Notice

ie.,
that

history”  of  x at  time
T.(t)x=x(t+6);6 [-r,0].

T, ()xeC’([-r0;R").

II. CONTROL LYAPUNOV FUNCTIONALS

We consider control systems of the form (2) under the
following hypotheses:

(S1) The mapping (x,u,d)— f(t,d,x,u) is continuous

for each fixed +>0 and such that for every bounded

I <R* and for every bounded S < C°([-r,0];R")xU ,

there exists a constant L > 0 such that:

(x(0) = ¥(O) (f(tdsx,u) = f(t,d, y,u)) < L]
Vtel ,V(x,u,y,u)e SxS,VdeD

(S2) For every bounded Qc R* xDxC®([-r,0];R")xU
the image set f(Q) = R" is bounded.

(S3) There exists a countable set A < R*, which is either
finite or A={t, ;k=1,..,0} with ¢,,, >¢, >0 for all
k=12,.. that mapping

(t,x,u,d) € R\ A)xCO([-r,01; R")xU x D — f(t,d, x,u)

and lim¢, =+, such

ThC07.6

fixed
have

is continuous. Moreover, for each
(tg.x,u,d) €R* xCO([-r,0;R")xUxD,  we
lim /(¢ d,x,u) = f(tq,d,xu).

t—t]
(S4) For every £>0, teR", there exists & :=3(&,1)>0
such that

sup{|f(r,d,)c,u)|;TEERJr ,deD,ueU,|r—t|+||x”r +|u| <5}<5

(S5) The mapping u — f(t,d,x,u) is Lipschitz on

bounded sets, in the sense that for every bounded 7 < R*
and for every bounded S§c C°([-r,0];R")xU , there
exists a constant L;; >0 such that:

|f(t.d, x,u)— f(t,d,x,v)| < Ly|u—]|
Vtel ,V(x,u,x,v)e SxS,vd e D

(S6) The set D R’ is compact and U < R™ is a closed
convex set.

Let xeCO-r00;%") and
ViR xC? ([—r,O];ﬂ?" )—) R  be a locally bounded

functional. By E,(x;v), where 0<A<r and veR" we
denote the following operator:

-h<6<0
—-r<@0=<-h

Sfor

for ©)

0O)+(@+h
B

and we define

V(t+h,E,(x;v)+hy)=V(t,x)

VO(t,x;v) = limsup

h—0" h
y-0,yeC” ([-r,0:R")

“4)

An important class of functionals is presented next (see [5]
for more details).

Definition 2.1: We say that a continuous functional
ViRt x CO([—r,O];iR") — R, is “almost Lipschitz on
bounded sets”, if there exist non-decreasing functions
Ly :R" >R, P:R" >R, G:R" > [1,40) such that
forall R>0, the following properties hold:

(P1) For every x,ye {x S CO([—r,O];ﬂ%") ; ||x||r < R}, it
holds that:

V(t.) =V (€. 0| <Ly (R) [y -]

.. V1e[0,R]
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(ie., the mapping
R xCO([-r,0;R") > (t,x) > V(t,x) e RT is completely
locally Lipschitz with respect to x € c? ([-r,0; ®™))

(P2) For every absolutely continuous  function

x:[-r,0] > R" with ||x||r <R and essentially bounded
derivative, it holds that:

V(¢ + )=V (6, < hP(R) (l + sup |i(r) j
—-r<r<0

forall r€[0,R] and 0< i < !
G[R+ sup |)'c(z')|j
—r<r<0
The reader should notice that for functionals

ViRt x CO([—r,O];‘R”) — ™, which are almost Lipschitz
on bounded sets we obtain the following simplification for
VOt x;v) defined by (4) for all

(6,x,v) € R xCO =0 R" xR

the derivative

Vo(t,x;v):limsup t+h E,(x;v)=V(t,x)
h—>0" h

We next give the definition of the Output Robust Control
Lyapunov Functional for system (2).

Definition 2.2: We say that (2) admits a State Robust
Control Lyapunov Functional (SRCLF) if there exists an
almost  Lipschitz  on  bounded  sets  functional
VR xC([-r,01;R") > R (called the Output Control

Lyapunov  Functional), which
properties:

satisfies the following

(i) There exist functions a,,a, € K, e K" such that the

following inequality holds for all
(t,x) e R xC[=r0;R")
ay (], )< V@2 < ay (B0, ) (5)

(i) There exists a function ¥ :R' xR xU - RU {+o0}
with ¥ (¢,0,0)=0 for all t >0 such that for each ueU the

mapping (t,p) > Y(t,p,u) is upper semi-continuous, a

function get, a continuous mapping
R xCO([-r,0];R") > (1, x) > D(t,x) € R being
completely  locally  Lipschitz ~ with  respect  to

xe CO([-r,01;R™) with ®(t,0)=0 forall t>0 anda C°

positive definite function p:RY >R such that the

following inequality holds:

ThC07.6

inf W(t,0,u)<q(t),
uelU

V20,99 =(p,....p,) € R’ 6)

Moreover, for every finite set {u,,uy,...uy}cU and for

N
every A; €[0,1] (i=1,...,N ) with 2/1[ =1, it holds that:
i=1

N
sup VOLt, x; f(t, d,x, Z A uij ] < —p(V(t, x))

deD i=1 >

+max{¥ (s, ®(t, x),u;) i =1,..., N }
(6, x) € R xCO=r,01; %" ) %)

If in addition to the above there exist ac K, ye€ K" such
that for every (t,p)eR" xR there exists ueU with
|u| < a(}/(t)|go|) such that

V(. p,u)<q(1) ®)

then we say that V :R* xC°([-r,0];R") > R* satisfies
the “small-control” property.

The feedback stabilization problem for (2) is the problem of
existence/design of a continuous mapping

R xCO([=r,0];R") > (1,x) > k(t,x) e U being
completely  locally  Lipschitz ~ with  respect to
xe C([-r,0];R") with k(#,0)=0 for all >0, such that
0eC’([-r,0];R") is Robustly Globally Asymptotically
Stable (RGAS) for the closed-loop system (2) with

u=k(t,T,(1)x) )

in the sense that the following properties hold for the
solution x(t,¢,,x,,d) of the closed-loop system (2) with (9)

initiated from x, € C°([-r,0];R") at time £, >0 and

corresponding to input d € M :

PI(Stability) Forevery £>0,T >0 it holds that

sup{"x(t,to,xo,d)"r 3ty , ||x0||r <e,t,€[0,T],deMy }< +00

and there exists a & = 6(s,T)> 0 such that
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ol <81 €[0.T1= (1,10 %0.d), <&,V 214y, Vd e M,

P2(Attractivity on bounded sets of initial data) For every
>0, T>0 and R>0, there exists a T::T(g,R,T)ZO,
such that

||x0||r <R, 1, 20:>||x(t,to,x0,d)||r <g,Vt>ty+r, VdeMp,

Moreover, if 6 and 7 involved in properties P1 and P2
above are independent of 7 >0 and

x0||rsg,t020,deMD }<+oo

sup{x(t,to, %0, 32 1y,

then we say that 0 e C°([—r,0];R") is Uniformly Robustly

Globally Asymptotically Stable (URGAS) for the closed-
loop system (2) with (9).

We next present results for systems of the form (2) (see [6])
which show that the existence of a SRCLF is a necessary
and sufficient condition for the existence of a continuous

mapping R x c? ([-r,01;R") > (t,x) > k(t,x) e U being
completely  locally  Lipschitz ~ with  respect to
xeC? ([-7,0]; R") with k(¢,0)=0 for all >0, such that
oec’ ([-r,0];R") is (Uniformly) Robustly Globally

Asymptotically Stable ((U)RGAS) for the closed-loop
system (2) with (9).

Theorem 2.3: Consider system (2) under hypotheses (S1-6).
The following statements are equivalent:

(a) There exists a continuous mapping
Rt xCO([—r,O];‘R")a(t,x)—)k(t,x)eU being
completely  locally  Lipschitz  with  respect to

xe CO([—r,O] sR™) with k(,0)=0 for all t>0, such
that the 0eC°([-r,0];R") is RGAS for closed-loop
system (2) with u =k(t,T, (¢)x).

(b) System (2) admits a SRCLF, which satisfies the small
control property with q(t)=0.

(¢c) System (2) admits a SRCLF.

Theorem 2.4: Consider system (2) under hypotheses (S1-6).
The following statements are equivalent:

(a) System (2) admits a SRCLF, which satisfies the small-
control property and inequalities (5), (8) with p(t)=1,
q()=0.
nek™,

Moreover,

A>(t,p) > K(t,p)eU

A= uo{t} x{peR’ :|¢)| <4n(t)} being locally Lipschitz
>

there exist continuous mappings

where

ThC07.6

with respect to ¢ with K(t,0)=0 for all t>0 and such

that
Y(t, (@, x), K, P(,x)) <0,

for all (¢, x) e R xC*([-r,0]; R")

with |®(z, x)| < 27(¢) (10)

where d):(CI)l,...,CI)p)':E)TxCO([—r,O];iR”)—>ERp and
YR xRP xU - RU {+o} are the mappings involved in

property (ii) of Definition 2.2.

(b) There exists a continuous mapping
R xC° ([-r,01;R") > (¢, x) > k(t,x) e U being completely
locally Lipschitz with respect to x e C°([-r,0];R") with
k(#,0)=0 for all t>0, such that 0eC®([-r,0];R") is
URGAS for the closed-loop system (2) with u =k, T, (t)x).

III. APPLICATIONS TO TRIANGULAR TIME-DELAY
CONTROL SYSTEMS

Our main result concerning triangular time-delay control
systems of the form (1) is stated next. It must be compared
to Theorem 5.1 in [1], which deals with the triangular finite-
dimensional case.

Theorem 3.1: Consider system (1), where r>0, DcC R/
is a compact set, the mappings f;:R" xDxC° ([, 0;R) >R,
g R xDxCO([—r,O];ﬂii)—>9% (i=1,..,n) are continuous
with  f;(t,d,0)=0 for all (t,d)eR"xD and each
g R xDxCO([-r0];R) >R (i=1,..,n) is completely
xe CO([-r,0;R).
Suppose that there exists a function ¢ € C”*(R";(0,+0))

locally Lipschitz with respect to

being non-decreasing, such that for every i =1,...,n, it holds
that:

1
Sgi(tadax)gw xr H
) )

V(t,x,d) e R xCO([-r,0];R)x D (11)

Moreover, suppose that for every i =1,...,n, it holds that

D{f,» (t.d.D—fi(t.d.y|
SUuj .
e—of,

for every bounded S c? ([-r,0]; R

(t,d)eR xD,xeS,y eS,x;ty}<+00,

(12)

Then  for every oc>0  there exist functions

u; € C°(R'5(0,40)), k; € C*(R;R) (i=1,...,n) with
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k(&) =—1 (5 (13)

k(815G ))i=—H; (fla--w‘fj)(fj —k; (815G )),

j=2,.,n (14)
such that the following functional:
V(x)=
2 N 2| (15)
max expeo o) xi (H)+jZ_2]xj QR SCTOMEING)

is a State Robust Control Lyapunov Functional (SRCLF) for
(1), which satisfies the “small-control” property. Moreover,
the closed-loop system (1) with u(t) =k, (x(t)) is URGAS.

More specifically, the inequality VO (x;v) <20V (x) holds
forall (t,x,d)e R* xC°([-r,01; R")x D with

Sit,d,x))+ g (t,d,x)x,(0)
: eR”.

y =

Su(t:d,x)+ g, (1, d, )k, (x(0))

Remark 3.2: The reader should notice that the feedback law
u(t) =k, (x(¢)) is delay-independent. The proof of Theorem

that  the i € C*(R';(0,4%0))
(i=1,..,n) are obtained by a procedure similar to the
backstepping procedure used for finite-dimensional
triangular control systems. Consequently, as in the finite-
dimensional case, the feedback design and the construction
of the State Robust Control Lyapunov Functional proceed in
parallel.

3.1 shows functions

The algorithm for the construction of the functions
py €CP (R (040),  k; € C* (R R)
described next. Notice that inequality (12) in conjunction
with the fact that f;(¢,d,00=0 for all (t,d)eR" xD
(i=1,..,n) implies the existence of a non-decreasing
function L € C*(R™;(0,+0)) such that for every i =1,...,n,
it holds:

(i=1..,n) 1is

e d 0l < L,

V(t,x,d) e R xCO([-r0;R)xD  (16)

Let 0 >0 be a given number. We define the functions
/ui EC’OO(s i;(O’J’_OO))? 7/1' EC'OO(s +;(09+OO))9 bi Ecw(%+;(0’+w))
(i =1,...,n) using the following algorithm:

Step i =1: We define:

ThCO07.6
14 &2

(&)=t ne. a7

by(1+&7)

where

7, (s) =exp(o r)L(s exp(o r)) + qo(s exp(o r)) (18)
by(s) = (19)

e (p(s exp(o r))

Step i>2: Based on the knowledge of the functions
1; €C*(W;(0499), 7, €C*(R*;(0+9), b; eC*(R*;(0+%9))
(j=L...,i—1) we define  the
#; €CT(R5(049), 7, eC7(R5(049), by eC7(R3(049).
First define

will functions

51‘ (Sglv""fj)::

[V (& E |0 21y () o 1 ()

j=li-1 (20)

and

y:(s) =iexp(oc r)L(is exp(o r)B; (is exp(o r)))B,» (is exp(o r))
+ (o(is exp(o r)B; (is exp(o r)))
21)

1
qo(is exp(o r)B,; (is exp(o r)))

b;(s) = 22)

where B; € C*(R*;(0,+)) is a non-decreasing function
that satisfies:

B;(s)=
i-1 i
max{nzyj G )G+ D JE) G| <5
J=1 j=2
forall s 20

(23)

Let functions p; e C*(R";(0,+0)) (j=1,.,i) be such

that the following inequalities hold for all s>s'>0:
b;(s)=b; (s" +s57,(5) _S'Vj (s <(s _S,)p‘/ (s) (24)
We define:

15 (E,E) =by (D(n=D)o +7,(p) + 71 ()5, ()]

b P2+ (D2 G0+ 2 6082 Jod ()
25)
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for the case i =2, where

pi=1+ &2 +]E — ki (&) (26)

and

i-1
(G ) =8 (D) 1=+ (D4 D D) 4G E50)

k=l
i i1
T Ale [CEVAT N S R ERCE) V)
L 2
5 i1 2 i1
B0 ) D70 | 1G5+ D)
k= =

A Y
DA | 516 )+ EADKE)

=2\ k=1

@7

for the case i > 2, where
i " 2
R IR TRLISIGENEY b e
j=2

The proof of Theorem 3.1 is based on the following lemma.
Its proof is omitted due to space limitations. The reader
should notice that Lemma 3.3 in conjunction with definition
(15) of the SRCLF for system (1) indicate one complication
frequently encountered in the study of infinite-dimensional
systems: although the differential equations (1) are affine in

the control input u € R , the derivative O (x;v), where

fl(tﬂdax1)+gl(tadax1)x2(0)
y= : eR”

fn (t7d7x)+gn (Za da x)u
is not affine in the control input u € R .

Lemma 3.3: Let Qe C'(R";R"), o >0 and consider the
functional V :C° ([-r,0];R") > R* defined by:

V(x):= max, exp(20 0)0(x(0)) (29)
e[—r,0

The functional V :C°([-r,0];R") > R* defined by (29), is

Lipschitz on bounded sets of C°([-r,0];R") and satisfies:

v (x;v) <20V (x)
for all (x,v)e CO([-r,0]; R")xR"

with O(x(0)) < ¥ (x) (30)

ThC07.6
V2 (x;v) < max{- 20V (x), VO(x(0))v |
for all (x,v)e CO([-r,0]; R")xR"
with O(x(0)) =V (x) (31)

IV. CONCLUSIONS

The case of uncertain control systems described by RFDEs
of the form (2) is studied. It is shown that the existence of a
SRCLF is a necessary and sufficient condition for the
existence of a stabilizing feedback law. Special results are
developed for the triangular case (1) of control systems
described by RFDEs. It is shown that the construction of a
stabilizing feedback law for (1) proceeds in parallel with the
construction of a State Robust Control Lyapunov Functional.
Moreover, sufficient conditions for the existence and design
of a delay-free stabilizing feedback law are given.
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