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Abstract— The stochastic stability and robust stochastic sta-
bilization for time-delay discrete Markovian jump singular
systems with parameter uncertainties are discussed. Based
on stochastic Lyapunov functional, a delay-dependent linear
matrix inequalities (LMIs) condition for the time-delay discrete
Markovian jump singular systems to be regular, causal and
stochastically stable is given. With this condition, the problem
of robust stochastic stabilization is solved. A numerical example
to illustrate the effectiveness of the method is given in the paper.

I. INTRODUCTION

In practice, many dynamical systems can not be repre-

sented by the class of linear time-invariant model since the

dynamics of these systems is random with some features,

for example, abrupt changes, breakdowns of components,

changes in the interconnections of subsystems, etc. Such

class of dynamical systems can be adequately described

by the class of stochastic hybrid systems. A special class

of hybrid systems referred to as Markovian jump systems,

systems with random structures, has attracted a lot of re-

searchers and many problems have been solved, such as

stability, stabilization and H∞ control problems, see [1-4].

On the other hand, time-delay is commonly encountered

in various engineering systems and is frequently a source

of instability and poor performance. The robust stability,

robust stabilization and H∞ control for uncertain time-

delay discrete Markovian jump linear systems have been

extensively investigated [1-4]. Commonly, the approaches to

solve time-delay systems can be classified into two types:

delay-dependent condition, which include information on

the size of delays [1,5-7], and delay-independent condition,

which are applicable to delays of arbitrary size [2-4]. Since

the stability of systems depends explicitly on the time-

delay, delay-independent conditions are more conservative,

especially for small delays, while delay-dependent conditions

ones are usually less conservative.

Singular systems, which are also referred to as implicit

systems, descriptor systems, have comprehensive practical

background, they are more general representation than state-

space systems. Great progress has been made in the theory

and applications on the class of systems since 1970s [8,9].

In recent years, much attention has been focussed on robust

stability, robust stabilization and H∞ control problems for

singular systems [10-19]. Xu and Lam [10], and Ma and

Cheng [11] gave some results on robust stability and robust
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stabilization for discrete singular systems. The H∞ control

problem for time-delay singular systems were investigated

in [12-16]. For example, Xu, Lam and Yang [15] solved

the robust stabilization and H∞ control problems based

on the delay-independent not strict linear matrix inequality

condition, Ma et al [16] solved the robust H∞ control

problem based on state-control pairs transformation and

the delay-dependent LMI. For Markovian jump singular

systems, the stability for discrete Markovian jump singular

systems was discussed in [17]. Boukas et al [18] and Boukas

[19] discussed the stability and stabilizability and output

feedback control for continue-time Markovian jump singular

systems, respectively. To the best of our knowledge, the

delay-dependent conditions for stochastic stability and ro-

bust stochastic stabilization problems for time-delay discrete

Markovian jump singular systems have not been investigated

in the literature.

In this paper, the stochastic stability and robust stochastic

stabilization for time-delay discrete Markovian jump singular

systems with parameter uncertainties are discussed. A delay-

dependent linear matrix inequalities (LMIs) condition for the

time-delay discrete Markovian jump singular systems to be

regular, causal and stochastically stable is given. With this

condition, the problem of robust stochastic stabilization is

solved, and the delay-dependent LMIs condition is obtained.

A numerical example to illustrate the effectiveness of the

method is given in the paper.

Notations: Throughout this paper, for real symmetric

matrices X and Y , the notation X ≥ Y (respectively,

X > Y ) means that the matrix X−Y is semipositive definite

(respectively, positive definite). I is the identity matrix with

appropriate dimension, the superscript “T” represents the

transpose, diag{· · ·} denotes a block-diagonal matrix. ‖x‖
refers to Euclidean norm of the vector x, that is ‖x‖2 = xT x.

Z denotes the set of non-negative integer numbers, and E{·}
denotes the mathematical expectation. ∗ denotes the matrix

entries implied by symmetry of a matrix.

II. DESCRIPTION OF PROBLEM

The time-delay discrete Markovian jump singular system

considered in this paper is described by the following
{

Exk+1 = A(k, rk)xk + Ad(k, rk)xk−d + B(k, rk)uk,

xk = φ(k), k = −d, · · · ,−1, 0,
(1)

where k ∈ Z , xk ∈ Rn is the system state, uk ∈ Rp is the

control input, d > 0 is an constant integer time-delay, φ(k)
is a initial value at k. {rk, k ∈ Z} is a Markov chain taking

values in finite space S = {1, 2, · · · , N}, with transition
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probability from mode i at time k to mode j at time k + 1,

k ∈ Z:

pij = Pr{rk+1 = j|rk = i} (2)

with pij ≥ 0 for i, j ∈ S, and
N
∑

j=1

pij = 1. The matrix

E ∈ Rn×n is singular, and rank(E) = r < n. For each

i ∈ S, we have

A(k, i) = A(i) + δA(k, i), Ad(k, i) = Ad(i) + δAd(k, i),
B(k, i) = B(i) + δB(k, i)

where A(i), Ad(i), B(i) are known constant matrices with

appropriate dimensions; δA(k, i), δAd(k, i), δB(k, i) are

unknown matrices, denoting the uncertainties in the system.

In this paper, the uncertainties are norm-bounded and are

assumed to be of the following form
[

δA(k, i) δAd(k, i) δB(k, i)
]

= E1(i)∆(k, i) [Fa(i) Fd(i) Fb(i)] ,
(3)

where E1(i), Fa(i), Fd(i), Fb(i) are known constant ma-

trices with appropriate dimensions, ∆(k, i) ∈ Rq×s are

unknown time-varying matrices function satisfying

∆T (k, i)∆(k, i) ≤ I, (4)

Consider system (1) with δA(k, rk) = 0, δAd(k, rk) = 0
and uk = 0, i.e.

Exk+1 = A(rk)xk + Ad(rk)xk−d,

xk = φ(k), k = −d, · · · ,−1, 0.
(5)

Definition 1 [17]. System Exk+1 = A(rk)xk (or the pair

(E, A(rk))) is said to be

(1) regular if det(zE −A(rk)) 6≡ 0 for any rk = i, i ∈ S.

(2) causal if it is regular and degree (det(zE−A(rk))) =
rank(E) for any rk = i, i ∈ S.

Definition 2. (1) System (5) is said to be regular and

causal, if the pair (E,A(rk)) is regular, causal.

(2) System (5) is said to be stochastically stable, if for

every initial state (φ, r0), the following condition:

E{
∞
∑

k=0

‖xk(φ, r0)‖
2|φ, r0} < ∞

is satisfied.

(3) System (1) with uk = 0 is said to be robust stochasti-

cally stable, if it is stochastically stable for all uncertainties

satisfying (3) and (4).

(4) System (1) is said to be regular, causal and robust

stochastically stabilizable via state feedback if there exists a

state feedback controller

uk = K(rk)xk (6)

with K(i), when rk = i, a constant matrix such that the

resulting closed-loop system is regular, causal and stochas-

tically stable for all uncertainties satisfying (3) and (4).

Remark 1 [18]. In the case when system (5) is regular and

causal, then for any initial value φ(k), there exists a solution

of system (5) for any rk = i, i ∈ S.

The purpose of this paper is to develop delay-dependent

LMI conditions such that system (5) is regular, causal and

stochastically stable, and design a state feedback controller

of the form (6) such that the resulting closed-loop system is

regular, causal and robust stochastically stable.

Lemma 1 [20]. Given matrices X, Y,Z with appropriate

dimensions, and Y > 0. Then

−ZT Y −1Z ≤ XT Y X + XT Z + ZT X.

Lemma 2 [21]. Given a symmetric matrix Ω and ma-

trices Γ, Ξ with appropriate dimensions, then Ω + Γ∆Ξ +
ΞT ∆T ΓT < 0 for all ∆ satisfying ∆T ∆ ≤ I , if and only if

there exists a scalar ǫ > 0 such that Ω+ǫΓΓT +ǫ−1ΞT Ξ < 0.

III. MAIN RESULTS

In this section, first of all, we consider the regularity,

causality and stochastic stability for system (5).

Theorem 1. System (5) is regular, causal and stochasti-

cally stable, if for each mode i ∈ S , there exist matrices

Xi > 0, Z > 0, U > 0, Ni1, Ni2, and symmetric matrix Si

satisfying the following set of coupled LMIs:

Φi =





Φi11 Φi12 dNi1

∗ Φi22 dNi2

∗ ∗ −dZ



 < 0, (7)

where

Φi11 = AT (i)X̄iA(i) − AT (i)RT S̄iRA(i)
−ET XiE + U + Ni1E + ET NT

i1

+d(A(i) − E)T Z(A(i) − E),
Φi12 = AT (i)X̄iAd(i) − AT (i)RT S̄iRAd(i)

−Ni1E + ET NT
i2 + d(A(i) − E)T ZAd(i),

Φi22 = AT
d (i)X̄iAd(i) − AT

d (i)RT S̄iRAd(i) − U

−Ni2E − ET NT
i2 + dAT

d (i)ZAd(i),

X̄i =
N
∑

j=1

pijXj , S̄i =
N
∑

j=1

pijSj .

(8)
R ∈ Rn×n is any constant matrix satisfying RE = 0,

rank(R) = n − r.

Proof. First, let us prove that system (5) is regular and

causal. Since E is singular and rank(E) = r, there exist two

nonsingular matrices M, N ∈ Rn×n such that

MEN =

[

Ir 0
0 0

]

. (9)

Accordingly, let

MA(i)N =

[

A1(i) A2(i)
A3(i) A4(i)

]

,

M−T XiM
−1 =

[

Xi1 Xi2

XT
i2 Xi3

]

,

NT Ni1M
−1 =

[

Ni11 Ni12

Ni13 Ni14

]

,

RM−1 =
[

R1 R2

]

.

(10)

So from RE = 0, rank(R) = n − r yields that R1 = 0 and

rank(R2) = n − r, R2 ∈ Rn×(n−r), i.e.

RM−1 =
[

0 R2

]

. (11)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC08.5

3405



From (7), it follows that Φi11 < 0, and Xi > 0, U > 0,

Z > 0 and d > 0, we get

−AT (i)RT S̄iRA(i)−ET XiE+Ni1E+ET NT
i1 < 0. (12)

Then

NT (−AT (i)RT S̄iRA(i)−ET XiE+Ni1E+ET NT
i1)N < 0

it is equivalent to that

[

⋆ ⋆

⋆ −AT
4 (i)RT

2 S̄iR2A4(i)

]

< 0,

where ⋆ represents the matrix block we do not need,

and X̄ik =
N
∑

j=1

pijXjk, k = 1, 2, 3. It follows that

−AT
4 (i)RT

2 S̄iR2A4(i) < 0, and then A4(i) is nonsingular.

From Definitions 1, 2 and (Dai,[9]), system (5) is regular

and causal.

Next, to prove that system (5) is stochastically stable,

rewrite system (5) as

xk+1 = xk + yk,

0 = −Eyk + (A(rk) − E)xk + Ad(rk)xk−d,
(13)

and construct a stochastic Lyapunov functional candidate as


































V (k, rk) =
3
∑

i=1

Vi(k, rk), V1(k, rk) = xT
k ET Xrk

Exk,

V2(k, rk) =
k−1
∑

l=k−d

xT
l Uxl,

V3(k, rk) =
0
∑

θ=−d+1

k−1
∑

l=k−1+θ

yT
l ET ZEyl,

(14)
where matrices Xrk

> 0, U > 0, Z > 0. Let the mode at

time k be i, that is rk = i. Recall that at time k + 1, the

system may jump to any mode rk+1 = j. One can then

obtain that

∆V1(k) = E[V1(k + 1, rk+1)|rk = i] − V1(k, i)
= E[xT

k+1E
T Xrk+1

Exk+1|rk = i]
−xT

k ET XiExk

= E[(xk + yk)T ET Xrk+1
E(xk + yk)|rk = i]

−xT
k ET XiExk

= (xk + yk)T ET X̄iE(xk + yk) − xT
k ET XiExk

(15)

∆V2(k) = E[V2(k + 1, rk+1)|rk = i] − V2(k, i)

= E[
k
∑

l=k−d+1

xT
l Uxl|rk = i] −

k−1
∑

l=k−d

xT
l Uxl

= xT
k Uxk − xT

k−dUxk−d,
(16)

∆V3(k) = E[V3(k + 1, rk+1)|rk = i] − V3(k, i)

= E[
0
∑

θ=−d+1

k
∑

l=k+θ

yT
l ET ZEyl|rk = i]

−
0
∑

θ=−d+1

k−1
∑

l=k−1+θ

yT
l ET ZEyl

= dyT
k ET ZEyk −

k−1
∑

l=k−d

yT
l ET ZEyl.

(17)

From (15)-(17) and the second formula of (13), it is obtained

that

∆V (k) = E[V (k + 1, rk+1)|rk = i] − V (k, i)
= xT

k AT (i)X̄iA(i)xk + 2xT
k AT (i)X̄iAd(i)xk−d

+xT
k−dA

T
d (i)X̄iAd(i)xk−d − xT

k ET XiExk

+d((A(i) − E)xk + Ad(i)xk−d)
T Z

·((A(i) − E)xk + Ad(i)xk−d)

+xT
k Uxk − xT

k−dUxk−d −
k−1
∑

l=k−d

yT
l ET ZEyl.

(18)
From the first formula of (13), for any appropriate dimen-

sions Ni1, Ni2, the following equation is true for rk = i:

2(xT
k Ni1+xT

k−dNi2)(Exk−Exk−d−
k−1
∑

l=k−d

Eyl) = 0. (19)

And from RE = 0, the following equation holds for any

symmetric matrix Si with appropriate dimensions and rk =
i:

0 = −
N
∑

j=1

pijx
T
k+1E

T RT SjRExk+1

= −(A(i)xk + Ad(i)xk−d)
T RT S̄iR

·(A(i)xk + Ad(i)xk−d).

(20)

From Lemma 1, it is obtained that the following holds:

−2(xT
k Ni1 + xT

k−dNi2)
k−1
∑

l=k−d

Eyl

= −2
k−1
∑

l=k−d

[

xT
k xT

k−d

] [

NT
i1 NT

i2

]T
Eyl

≤ d

[

xk

xk−d

]T [

Ni1

Ni2

]

Z−1

[

Ni1

Ni2

]T [

xk

xk−d

]

+
k−1
∑

l=k−d

yT
l ET ZEyl.

(21)
Then, adding (19), (20) to (18), together with (21), it is

obtained that

∆V (k) ≤
[

xT
k xT

k−d

]

Λi

[

xT
k xT

k−d

]T
, (22)

where

Λi =

[

Φi11 Φi12

∗ Φi22

]

+ d

[

Ni1

Ni2

]

Z−1

[

Ni1

Ni2

]T

. (23)

Then inequality (7) is equivalent to Λi < 0, according to

Schur complement. Let α0 = λmin{−Λi, i ∈ S}, then α0 >

0. From (22), we obtain that for any k ≥ 0

E[V (k + 1, rk+1)|rk = i] ≤ V (k, rk) − α0x
T
k xk. (24)

Setting k = 0 and k = 1 in (24) yields

E[V (1, r1)|r0] ≤ V (0, r0) − α0x
T
0 x0,

and

E[V (2, r2)|r1] ≤ V (1, r1) − α0x
T
1 x1.

Then, we can get

E[V (2, r2)|r0] ≤ V (0, r0) − α0

1
∑

l=0

E[xT
l xl|r0].
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Then, one can continue the iterative procedure (24) to obtain

E[V (T + 1, rT+1)|r0] ≤ V (0, r0) − α0

T
∑

l=0

E[xT
l xl|r0],

implying that

∞
∑

l=0

E[xT
l xl|r0] ≤

1

α0
V (0, r0) < ∞.

This indicates that system (5) is stochastically stable. The

proof is completed.

When E = I in system (5), then R = 0, and we get in

the case the following result for normal systems.

Corollary 1. System xk+1 = A(rk)xk + Ad(rk)xk−d is

stochastically stable, if for each mode i ∈ S, there exist

matrices Xi > 0, Z > 0, U > 0, Ni1 and Ni2 satisfying the

following set of coupled LMIs:





Φ̄i11 Φ̄i12 dNi1

∗ Φ̄i22 dNi2

∗ ∗ −dZ



 < 0,

where

Φ̄i11 = AT (i)X̄iA(i) − Xi + U + Ni1 + NT
i1

+d(A(i) − I)T Z(A(i) − I),
Φ̄i12 = AT (i)X̄iAd(i) − Ni1 + NT

i2

+d(A(i) − I)T ZAd(i),
Φ̄i22 = AT

d (i)X̄iAd(i) − U − Ni2

−NT
i2 + dAT

d (i)ZAd(i).

Remark 2. In (7), without loss of generality, the matrix

Si can be chosen as positive definite directly.

Although (7) is a set coupled LMIs, but it is difficult to use

it to the design a robust state feedback controller for system

(1). In order to design the robust state feedback stabilization

controller for system (1) in the LMI setting, the following

theorem is given.

Theorem 2. System (5) is regular, causal and stochasti-

cally stable, if for each mode i ∈ S , and given scalars ti1,

ti2, ǫ1, ǫ2, ǫ3, there exist matrices Pi > 0, Si > 0, W > 0,

Ū > 0, and L satisfying the following set of coupled LMIs:





















Ψi11 Ψi12 dti1W LT AT (i)
∗ Ψi22 dti2W LT AT

d (i)
∗ ∗ −dW 0
∗ ∗ ∗ P̄i + L + LT

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ǫ2In dLT (A(i) − E)T ǫ1L

ǫ3In dLT AT
d (i) 0

0 0 0
0 0 0

−S̄i 0 0
∗ −dW 0
∗ ∗ −Pi





















< 0, (25)

where

Ψi11 = Ū + ǫ1L
T ET + ǫ1EL + ti1EL

+ti1L
T ET + ǫ2L

T AT (i)RT + ǫ2RA(i)L
Ψi12 = −ti1EL + ti2L

T ET

+ǫ3L
T AT (i)RT + ǫ2RAd(i)L

Ψi22 = −Ū − ti2EL − ti2L
T ET

+ǫ3L
T AT

d (i)RT + ǫ3RAd(i)L.
(26)

Proof. First, based on Lemma 1 and Xi > 0, Si > 0, for

any matrix L with appropriate dimensions, and scalars ǫ1 ǫ2
ǫ3, the following inequalities holds

−X̄−1
i ≤ LT X̄iL + LT + L, (27)

−LT ET XiEL ≤ ǫ1L
T ET + ǫ1EL + ǫ21X

−1
i , (28)

−

[

LT AT (i)
LT AT

d (i)

]

RT S̄iR

[

LT AT (i)
LT AT

d (i)

]T

≤

[

LT AT (i)
LT AT

d (i)

]

RT

[

ǫ2In

ǫ3In

]T

+

[

ǫ2In

ǫ3In

]

R

[

LT AT (i)
LT AT

d (i)

]T

+

[

ǫ2In

ǫ3In

]

S̄−1
i

[

ǫ2In

ǫ3In

]T

.

(29)

Since Xi > 0, applying Schur complement, (7) is equiv-

alent to

Φ̄(i) =









Φ̄i11 Φ̄i12 dNi1 AT (i)
∗ Φ̄i22 dNi2 AT

d (i)
∗ ∗ −dZ 0
∗ ∗ ∗ −X̄−1

i









< 0, (30)

where

Φ̄i11 = −AT (i)RT S̄iRA(i) − ET XiE + U + Ni1E

+ET NT
i1 + d(A(i) − E)T Z(A(i) − E),

Φ̄i12 = −AT (i)RT S̄iRAd(i) − Ni1E

+ET NT
i2 + d(A(i) − E)T ZAd(i),

Φ̄i22 = −AT
d (i)RT S̄iRAd(i) − U − Ni2E

−ET NT
i2 + dAT

d (i)ZAd(i).
(31)

According to inequality (27), it is obtained that

Φ̄(i) ≤ Φ̂(i)

=









Φ̄i11 Φ̄i12 dNi1 AT (i)
∗ Φ̄i22 dNi2 AT

d (i)
∗ ∗ −dZ 0
∗ ∗ ∗ LT X̄iL + LT + L









. (32)

Obviously, if Φ̂(i) < 0, then Φ̄(i) < 0, and Φ(i) < 0. From

Φ̂(i) < 0, it follows that LT X̄iL + LT + L < 0, then L is

nonsingular. Let T = diag{L,L,Z−1, In}, and

Ni1 = ti1L
−T , Ni2 = ti2L

−T , LT UL = Ū ,

LT XiL = Pi, W = Z−1.
(33)

Then from TT Φ̂(i)T < 0, according to inequalities (28),

(29), and applying Schur complement, it is obtained that (25)

holds. The proof is completed.
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In the following, we focus on the design of a robust state

feedback controller in the form of (6) for system (1) such

that the resulting closed-loop system is regular, causal and

robust stochastically stable. The closed-loop system formed

by system (1) and the state feedback (6) is

Exk+1 = [A(k, rk) + B(k, rk)K(rk)]xk + Ad(k, rk)xk−d,

(34)
From Theorem 2, replacing A(i), Ad(i) in (25) with

A(k, i) + B(k, i)K(i) and Ad(k, i), then the closed-loop

system (34) is regular, causal and robust stochastically stable.

Notice (3), it follows that

ΨK(i) + Ψia∆(k, i)Ψib + (Ψia∆(k, i)Ψib)
T < 0, (35)

where

ΨK(i) =





















Ψi1K Ψi2K dti1W LT (A(i) + B(i)K(i))T

∗ Ψi22 dti2W LT AT
d (i)

∗ ∗ −dW 0
∗ ∗ ∗ P̄i + L + LT

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ǫ2In dLT (A(i) + B(i)K(i) − E)T ǫ1In

ǫ3In dLT AT
d (i) 0

0 0 0
0 0 0

−S̄i 0 0
∗ −dW 0
∗ ∗ −Pi





















< 0,

Ψi1k = Ū + ǫ1L
T ET + ǫ1EL + ti1EL + ti1L

T ET

+ǫ2L
T (A(i) + B(i)K(i))T RT

+ǫ2R(A(i) + B(i)K(i))L,

Ψi2K = −ti1EL + ti2L
T ET

+ǫ3L
T (A(i) + B(i)K(i))T RT + ǫ2RAd(i)L,

Ψia =
[

ǫ2(RE1(i))
T ǫ3(RE1(i))

T 0

ET
1 (i) 0 dET

1 (i) 0
]T

,

Ψib =
[

(Fa(i) + Fb(i)K(i))L Fd(i)L 0
0 0 0 0

]

.
(36)

Based on Lemma 2, (35) holds if and only if there exists a

scalar λi > 0 such that

ΨK(i) + λiΨiaΨT
ia + λ−1

i ΨT
ibΨib < 0, (37)

According to Schur complement, (37) is equivalent to





ΨK(i) λiΨia ΨT
ib

∗ −λiI 0
∗ ∗ −λiI



 < 0. (38)

Let K(i)L = K̄(i), it is obtained that





























Ψi1K̄ Ψi2K̄ dti1W (A(i)L + B(i)K̄(i))T

∗ Ψi22 dti2W LT AT
d (i)

∗ ∗ −dW 0
∗ ∗ ∗ P̄i + L + LT

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ǫ2In d(A(i)L + B(i)K̄(i) − EL)T ǫ1L

ǫ3In dLT AT
d (i) 0

0 0 0
0 0 0

−S̄i 0 0
∗ −dW 0
∗ ∗ −Pi

∗ ∗ ∗
∗ ∗ ∗

ǫ2λiRE1(i) (Fa(i)L + Fb(i)K̄(i))T

ǫ3λiRE1(i) (Fd(i)L)T

0 0
λiE1(i) 0

0 0
dλiE1(i) 0

0 0
−λiI 0
∗ −λiI





























< 0, (39)

Ψi1K̄ = Ū + ǫ1L
T ET + ǫ1EL + ti1EL

+ti1L
T ET + ǫ2(A(i)L + B(i)K̄(i))T RT

+ǫ2R(A(i)L + B(i)K̄(i)),
Ψi2K̄ = −ti1EL + ti2L

T ET + ǫ2RAd(i)L
+ǫ3(A(i)L + B(i)K̄(i))T RT ,

(40)
Based on the above discussion, we have

Theorem 3. Let ti1, ti2, ǫ1, ǫ2 and ǫ3 be given scalars.

There exists a robust state feedback control law for system

(1) such that the resulting closed-loop system is regular,

causal and robust stochastically stable, if for each mode

i ∈ S , there exist matrices Pi > 0, Si > 0, W > 0,

Ū > 0, K̄(i), L, and scalar λi > 0 such that the set of

the coupled LMIs (39) holds, the controller gain is given by

K(i) = K̄(i)L−1.

Remark 3. The conditions (7), (25), (39) given in The-

orem 1, Theorem 2 and Theorem 3, respectively are LMIs

and delay-dependent. If the parameters ti1, ti2, ǫ1, ǫ2, ǫ3 that

were introduced in Theorem 2, Theorem 3 are not chosen

first, then (25), (39) are not LMIs. So in Theorem 2, Theorem

3, ti1, ti2, ǫ1, ǫ2, ǫ3 are chosen first, and the optimal values

of the parameters can be found by the approach stated in [

6, Remark 5]. A numerical solution to this problem can be

obtained by using a numerical optimization algorithm, such

as fminsearch in Optimization Toolbox.
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IV. EXAMPLE

Consider the following uncertain time-delay discrete-time

singular system

E =

[

1 1
0 0

]

,

A(1) =

[

3 −3
2 1

]

, Ad(1) =

[

0.1 −0.1
0 −0.2

]

,

B(1) =

[

−2
−3

]

, E1(1) =

[

0.002
0.001

]

, Fb(1) = 0.001,

Fa(1) =
[

0.001 0
]

, Fd(1) =
[

0.001 0.001
]

,

A(2) =

[

0 2
−2 0

]

, Ad(2) =

[

0 −0.2
0.1 −0.1

]

,

B(2) =

[

0
1

]

, E1(2) =

[

0.001
0.002

]

, Fb(2) = 0.001,

Fa(2) =
[

0.005 0.005
]

, Fd(2) =
[

0 −0.001
]

.

The time-delay d = 7. The mode switching is governed by

a Markov chain that has the following transition probability

p11 = 0.75, p12 = 0.25; p21 = 0.3, p22 = 0.7.

Let R =

[

0 0
0 1

]

, t11 = 0.05, t12 = 0.005, t21 = −0.004,

t22 = 0.001, ǫ1 = 0.5, ǫ2 = −2, ǫ3 = −0.06. Solving the

LMIs (39), we get

P1 =

[

15.1528 1.4169
1.4169 1.1651

]

, P2 =

[

15.5186 2.3950
2.3950 0.6785

]

,

W =

[

312.9124 37.4353
37.4353 153.8325

]

,

Ū =

[

2.5979 0.2965
0.2965 0.6437

]

S1 =

[

489.7182 −1.6862
−1.6862 440.6565

]

,

S2 =

[

431.4255 11.5454
11.5454 436.9694

]

,

L =

[

−20.3060 −0.8535
−6.0873 −3.1401

]

,

K̄(1) =
[

−14.5944 −4.7568
]

, λ1 = 422.6738,

K̄(2) =
[

−42.4461 4.2179
]

, λ2 = 423.5840.

Thus the gain matrices of a robust state feedback stabilization

controller can be obtained as

K(1) =
[

0.2881 1.4365
]

,

K(2) =
[

2.7141 − 2.0809
]

.

V. CONCLUSIONS

In this paper, the stochastic stability and robust stochastic

stabilization via state feedback for time-delay discrete-time

Markovian jump singular systems with parameter uncertain-

ties are discussed. Based on stochastic Lyapunov functional,

a delay-dependent linear matrix inequalities (LMIs) condi-

tion for the time-delay discrete Markovian jump singular

systems to be regular, causal and stochastically stable is

given. With this condition, the problem of robust stochastic

stabilization are solved.
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