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Abstract— In this paper we present a novel algorithm to
identify LPV systems with affine parameter dependence oper-
ating under open and closed-loop conditions. A factorization
is introduced which makes it possible to form predictors
which are based on past inputs, outputs, and scheduling data.
The predictors contain the LPV equivalent of the Markov
parameters. Using the predictors, ideas from Predictor Based
Subspace IDentification (PBSID) are developed to estimate
the state sequence from which the LPV system matrices
can be constructed. A numerically efficient implementation is
presented.

Index Terms— Subspace identification, Linear Parameter-
Varying systems, System identification

I. INTRODUCTION

Linear Parameter Varying (LPV) systems attracted consid-

erable attention in the past years [1], [2], [3], [4]. Some of the

applications with a considerable LPV behavior are unstable

by nature and have to operate in closed loop before they can

be identified, e.g. aero space applications [5] and wind tur-

bines [6]. For these systems it is common practice to develop

a low-level controller to stabilize the system and identify a

number of local linear models in different operation points.

Interpolation is performed between the different local models

to obtain an LPV representation [7], [8]. In [9] it is shown

that the interpolation between these local models can lead

to unstable representations of the LPV structure while the

original system is stable. In this paper we present a novel

subspace identification algorithm to identify LPV systems

operating under open and closed-loop conditions which does

not require interpolation or identification of local models.

An overview of literature in the area of LPV identifi-

cation is given in [10]. In the input-output setting, work

can be found in [11], [12], [13]. However, to deal with

multiple input and output systems and to exploit the nu-

merical properties of subspace techniques (these techniques

are solely depending on well-established techniques from

linear algebra) the focus of this paper is on subspace-based

LPV identification. Recently, a number of papers appeared

where the structure of the scheduling sequence is exploited.

It turns out that if the scheduling is periodic [14], piecewise

constant [15], [16], or white noise [17], well-established LTI

subspace techniques can be used to identify LPV or bilinear

systems. The identification of LPV systems with arbitrarily

varying scheduling sequences has proven to be challenging

from a numerical point of view [18]. The data matrices

involved in this algorithm grow exponentially with the size
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of the prediction window. With the introduction of the kernel

method to this framework the curse of dimensionality was

partially solved, however, a bias was introduced [19]. For

optimization based algorithms [20] these models appeared

to be a good starting point.

The literature on the identification of LPV systems so

far is dedicated to the open-loop setting. Recently, a paper

appeared [21] where they extend the PBSIDopt algorithm [22]

to LPV systems (we will refer to this algorithm as LPV-

PBSIDopt). In this paper we will follow a similar approach,

however, instead of using the PBSIDopt algorithm we use

the PBSID algorithm [23] (we will refer to this algorithm

as LPV-PBSID). The big difference between these two

algorithms is the number of terms you take into account

in the product between the observability and controllability

matrix. In the LPV-PBSID algorithm the matrices have a

similar size as in [24] and are significantly larger than

the matrices in [21]. However, it is of interest to see

how these algorithms relate and furthermore their kernel

representation is completely different (see [25] for a more

elaborate discussion). With respect to [21] we also contribute

by presenting a computationally efficient scheme.

The outline of this paper is as follows; we start in

Section II with the problem formulation and assumptions.

In Section III we present a factorization that separates the

unknown system matrices from the known input, output, and

scheduling data. In Section IV the basic idea behind the LPV-

PBSID identification scheme is presented and the curse of

dimensionality will appear. In Section V the kernel method

is presented, where compact formulations of the kernels are

presented. In Section VI a simulation example is presented

where we compare LPV-PBSIDopt with LPV-PBSID. We end

this paper with our conclusions.

II. PROBLEM FORMULATION AND ASSUMPTIONS

For the derivation of the algorithm we consider the fol-

lowing LPV system:

xk+1 =
m

∑
i=1

µ
(i)
k

(
A(i)xk + B(i)uk + K(i)ek

)
, (1)

yk = Cxk + ek, (2)

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rℓ, are the state, input and

output vectors. ek ∈ Rℓ denotes the zero mean white in-

novation process. The matrices A(i) ∈ Rn×n, B(i) ∈ Rn×r,

C ∈ Rℓ×n, K(i) ∈ Rn×ℓ are the local system, input, output,

direct feed through, and the observer matrices; and µ
(i)
k ∈ R

the local weights. The index m is referred to as the number of

local models or scheduling parameters. Note that the system,
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input, and the observer matrices depend linearly on the time-

varying scheduling vector. The time-varying system matrix

is now given by:

Ak =
m

∑
i=1

µ
(i)
k A(i),

and a similar thing can be done for the other system matrices.

We assume that we have an affine dependence and the

scheduling is given by:

µk =
[

1, µ
(2)
k , · · · , µ

(m)
k

]T

.

We can rewrite (1)-(2) in the predictor form as:

xk+1 =
m

∑
i=1

µ
(i)
k

(
Ã(i)xk + B(i)uk + K(i)yk

)
, (3)

yk = Cxk + ek, (4)

with

Ã(i) = A(i) −K(i)C.

It is well-known that an invertible linear transformation of

the state does not change the input-output behavior of a

state-space system. Therefore, we can only determine the

system matrices up to a similarity transformation T ∈ Rn×n:

T−1A(i)T , T−1B(i), T−1K(i), and CT .

The identification problem can now be formulated as:

given the input sequence uk, the output sequence yk, and

the scheduling sequence µk over a time k = {0, . . . ,N −1};

find, if they exist, the LPV system matrices A(i), B(i), K(i),

and C up to a global similarity transformation.

A. Assumptions and notation

First we define the transition matrix for discrete-time time-

varying systems [26] and this is given by:

φ j,k = Ãk+ j−1 · · · Ãk+1Ãk. (5)

To make the notation more transparent we define:

zk =
[

uT
k , yT

k

]T
, B̆k =

[
Bk, Kk

]
, and B

(i)
=[

B(i), K(i)
]
. Similar as in [23] we define a past

and a future window denoted by p and f , respectively. The

past window is used to define the following stacked vector:

z
p
k =

[
zT

k , zT
k+1, · · · , zT

k+p−1

]T
.

We assume that the state sequence:

X =
[

xp+1, · · · , xN− f+1

]
,

has full row rank and the matrix:

Γ f =

[
CT , (CÃ(1))T , . . . ,

(
C
(

Ã(1)
) f−1

)T
]T

, (6)

has full column rank. This last matrix can be interpreted as

the extended observability matrix of the first local model. For

persistency of excitation it is also required that the scheduling

sequence satisfies the following relation:

rank
([

µ0, µ1, · · · , µN−p− f

])
= m,

and N− p− f +1 > m. The problem formulation so far does

not require any assumptions on the correlation between the

input and noise sequence which opens the possibility to apply

the algorithm in closed-loop.

These definitions and assumptions are used in Section IV

but first we define a factorization to extend the framework

described in [22] to LPV systems.

III. FACTORIZATIONS

In this section we define a fundamental factorization

in which we separate the unknown system matrices from

the known weighting sequence. The same factorization is

introduced in [21] but to make the derivation of the algorithm

complete we include this crucial factorization.

We will factorize the time-varying extended controllability

matrix which is defined here.

Definition 1: Given the transition matrix in (5) the time-

varying extended controllability matrix is given by:

K
p

k =
[

φp−1,k+1B̆k, · · · , φ1,k+p−1B̆k+p−2, B̆k+p−1

]
.

The time-varying extended controllability matrix can be

factorized in a matrix containing only the scheduling terms

and a constant matrix which depends only on the system

matrices Ã(i), and B(i). Before we formulate this factorization

in a lemma we have to introduce a number of definitions.

We start with the following definition:

Definition 2: We define the matrix:

L j =
[

Ã(1)L j−1, · · · , Ã(m)L j−1

]
,

with

L1 =
[

B(1), · · · , B(m)
]
.

To illustrate this definition see the following example:

Example 1: For m = 2 one obtains:

L1 =
[

B(1), B(2)
]
,

L2 =
[

Ã(1)B(1), Ã(1)B(2), Ã(2)B(1), Ã(2)B(2)
]
.

The number of block-columns grows exponentially as m j.

Using this definition we define the matrix K p which we

refer to as LPV extended controllability matrix.

Definition 3: The operator L j is used to define the LPV

extended controllability matrix:

K
p =

[
Lp, Lp−1, · · · , L1

]
. (7)

To present the factorized expression of the time-varying

extended controllability matrix in Lemma 1, we still need

the following two definitions:

Definition 4: We define the matrix:

Pp|k = µk+p−1 ⊗·· ·⊗ µk ⊗ Ir+ℓ

where ⊗ is the Kronecker product defined in [27].

Now we define:

Definition 5: With Definition 4 we can define:

N
p
k =





Pp|k 0

Pp−1|k+1

. . .

0 P1|k+p−1




, (8)

with N
p
k ∈ Rq̃×p(r+ℓ).

Now we can state the following lemma:
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Lemma 1: Given the model structure in (3)-(4) we use

Definition 3, and 5 to obtain:

K
p

k = K
pN

p
k ,

where K
p

k is the time-varying extended controllability ma-

trix which equals Definition 1, N
p
k depends on the known

scheduling sequence (8), and K p is an unknown matrix

defined in (7). Note that the number of columns of K
p

(rows of N
p
k ), denoted by q̃, increases exponentially with p

according to the relation q̃ = (r + ℓ)∑
p
j=1 m j.

Proof: Proof follows through straightforward compu-

tations.

IV. CLOSED-LOOP LPV IDENTIFICATION

With the factorization defined in the previous section we

now come to the core of this paper and present the LPV

identification algorithm.

A. Regression problem

The first objective of the algorithm is to reconstruct the

state sequence up to a similarity transformation. The state

xk+p is given by:

xk+p = φp,kxk +K
pN

p
k z

p
k , (9)

where φp,k is the transition matrix given in (5), K p is the

time-invariant LPV controllability matrix and the matrix N
p
k

is a matrix solely depending on the scheduling sequence. The

key approximation in this algorithm is that we assume that

φ j,k ≈ 0 for all j ≥ p. Similar as in the LTI case it can be

shown that if the system in (3)-(4) is uniformly exponentially

stable the approximation error can be made arbitrarily small

by making p large [18]. With this assumption the state xk+p

is approximately given by:

xk+p ≈ K
pN

p
k z

p
k . (10)

In a number of LTI subspace methods it is well known to

make this step [23], [28]. The input-output behavior is now

approximately given by:





yk+p ≈ CK pN
p
k z

p
k + ek,

yk+p+1 ≈ CK
p+1N

p+1
k z

p+1
k + ek+1,

...

yk+p+ f−1 ≈ CK
p+ f−1N

p+ f−1
k z

p+ f−1
k + ek+ f−1.

Now we define the stacked matrices Yi and Zi for all i ∈
{0, · · · , f −1}.

Yi =
[

yp+1+i, · · · , yN− f+1−i

]
, (11)

Zi =
[

N
p+i
1 z

p+i
1 , · · · , N

p+i
N−p− f+1z

p+i
N−p− f+1

]
. (12)

If the matrix Zi for all i ∈ {0, · · · , f − 1} has full row rank

the matrix CK p+i can be estimated by solving the following

linear problems:

min
CK p+i

||Yi −CK
p+iZi||

2
F , ∀i ∈ {0, · · · , f −1}. (13)

for all i ∈ {0, · · · , f − 1} and where || · · · ||F represents the

Frobenius norm [29]. For finite p this linear problem will

be biased due the approximation made in (10). In the LTI

literature a number of papers appeared that studied the effect

of the window size and although they proved the asymptotic

properties of the algorithms (if p → ∞ the bias disappears)

it is hard to quantify the effect for finite p [22], [23],

[30]. The product K pZ0, which by definition represents the

state sequence X, can not directly be estimated. In the LTI

literature it is common practice to use the estimates of similar

matrices as CK p+i to construct the extended observability

matrix times the controllability matrix. For the LPV situation

a similar approach can be followed. However, in this case we

look at the product Γ f
K

p with Γ f defined in (6). This full

block matrix can be constructed with Definition 2 to equal

the following matrix

Γ f
K

p =





CK p

C

(
Ã(1)

)
K p

...

C
(

Ã(1)
) f−1

K p




. (14)

Observe that from the linear problems formulated in (13)

and the factorizations presented in Definition 2 we can

construct the (i+ 1)th
block row of Γ f K p from the estimate

of CK p+i. From which we can construct Γ f K pZ0 which

equals by definition the extended observability matrix times

the state sequence, Γ f X . The construction of Γ f K p is a

rather cumbersome task. However, when we introduce the

kernel method the construction of this matrix significantly

simplifies.

In this particular step the big difference with LPV-

PBSIDopt appears [21]. In LPV-PBSIDopt the assumption

that φk, j = 0 if j ≥ p is also used in the construction of

Γ f K p. This assumption results in an upper block triangular

matrix representation of Γ f K p and this representation only

contains elements from CK
p. Consequently, we only have to

solve the linear problem in (13) for i = 0 which significantly

simplifies the identification algorithm.

By computing a Singular Value Decomposition (SVD) of

Γ̂ f K pZ0 we can estimate the state sequence and the order

of the system. We will use the following SVD:

Γ̂ f K pZ0 =
[

U Uσ⊥

][ Σn 0

0 Σ

][
V

V⊥

]
, (15)

where Σn is the diagonal matrix containing the n largest

singular values and V is the corresponding row space. Note

that we can find the smallest singular values by detecting

a gap between the singular values [31]. The state is now

estimated by:

X̂ = ΣnV. (16)

It is well known that when the state, input, output, and

scheduling sequence are known the LPV system matrices

can be estimated [18]. First we use (2) which is now a linear

relation in C and where ek represents white noise. From this

equation an estimate can be found of the C matrix while also

the noise sequence can be estimated. The estimated noise

sequence is used to transform (1) into a linear expression
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TABLE I

TOTAL NUMBER OF ROWS IN THE MATRIX Zi FOR m = 4 AND r = l = 1

i=0 i=1 i=2 i=3 i=4

p=2 40 168 680 2728 10920
p=3 168 680 2728 10920 43688
p=4 680 2728 10920 43688 174760
p=5 2728 10920 43688 174760 699048

depending on A(i), B(i), and K(i) and consequently all the

system matrices can be estimated.

B. Curse of dimensionality

Like in [18] the method suffers from the curse of dimen-

sionality. The number of rows of Zi grows exponentially with

the past and future window. The number of rows is given by:

ρZi
= (r + ℓ)

p+i

∑
j=1

m j.

In Table I the curse of dimensionality is illustrated. Observe

that the growth of the dimensions is almost similar to the

work of [18] (see Table 1 in [18]) . In the LPV-PBSIDopt

version of the proposed algorithm only one least squares

problem should be solved which coincides with a future

window of 1. So we can conclude that the computational

complexity of the proposed algorithm is significantly higher.

In LPV-PBSIDopt the dimensional grows rapidly and the

kernel method was proposed. A similar thing can be done

for LPV-PBSID, but first we summarize the algorithm.

C. Summary of the algorithm

Algorithm 1 (LPV-PBSID): The algorithm can be summa-

rized as follows:

1) Create the matrices Yi, and Zi using (11) and (12),

2) Solve the linear problems given in (13),

3) Construct Γ f K pZ0 using (12) and (14),

4) Compute the state sequence using (15) and (16),

5) With the estimated state use the linear relations (1)-(2)

to obtain the system matrices.

V. KERNEL METHOD

The LPV identification method presented in the previous

paragraph suffers from the curse of dimensionality. However,

like in [19] we can use the kernel method to overcome this

drawback. In Section V-A we present the kernel method

for the proposed LPV identification scheme. In Section V-

B a computationally efficient formula is presented for the

proposed model structure. The kernel method is normally ill-

conditioned, but in Section V-C regularization is proposed to

overcome this drawback. In the last subsection a summary

of the algorithm with kernels is given.

A. Kernel Method

The LPV identification approach presented in the previous

section resulted in a set of linear problems formulated in (13).

This equation can be solved by using traditional Least

Squares (LS). However, the data matrices grow exponentially

with the past and future window, p and f . In [19] it was

shown that the solution of this least squares problem is equal

to the solution of the dual problem if the solution with the

minimum two norm is considered. In this subsection we show

how the kernel method can be exploited for the presented

LPV identification scheme.

The least squares problem in (13) has a unique solution if

the matrix Zi has full row rank and is given by:

ĈK p+i = YiZ
T
i

(
ZiZ

T
i

)−1
.

When the matrix Zi has no full rank the solution is not

unique. This will occur when the past window is large. How-

ever, the solution with the smallest norm, min ||CK
p+i||2F ,

can still be computed by using the SVD of the matrix:

Zi =
[

Ui Ui,⊥

][ Σi,n 0

0 0

][
V T

i

V T
i,⊥

]
, (17)

where Σi,n is the diagonal matrix containing the largest

singular values and V T
i and Ui are the corresponding row and

column space, respectively. The solution with the minimum-

norm is now given by:

ĈK p+i = YiViΣ
−1
i,n UT

i . (18)

The computations take place in a large dimensional space

spanned by the columns of Zi. If we consider the minimum

norm solution of (13) the dual problem [32] avoids com-

putations in this large dimensional space. The dual problem

results in:

min
αi

‖αi‖
2
F with Yi −αiZ

T
i Zi = 0, (19)

where αi are the Lagrange Multipliers and ZT
i Zi is referred

to as the kernel matrix. If the matrix Zi has full column rank

the solution to this dual problem is given by:

α̂i = Yi

(
ZT

i Zi

)−1
(20)

= YiViΣ
−2
i,n V T

i . (21)

The estimate of CK p+i is now given by:

ĈK p+i = α̂ZT
i ,

= YiViΣ
−1
i,n UT

i .

Because we are not interested in ĈK p+i but in ĈK p+iZ0,

we do not have to construct the matrices Zi explicitly, we

only have to construct ZT
i Zi for the computation of αi.

The dual least squares problem can be solved and we can

construct the matrix:

ĈK p+iZi = α̂i(Zi)
T Zi, (22)

with this above we can not reconstruct the extended con-

trollability matrix times the state sequence directly. In the

previous section we used this estimate to build the matrix

in (14). We mentioned that this was a rather cumbersome

task. However, in the next lemma things clear up.

Lemma 2: Given the model structure in (3)-(4) and the

Definition 4. Now we have

C
(

Ã(1)
)i

K
p = αiZ

T
0 . (23)
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So with α =
(

αT
0 , αT

1 , · · · , αT
f−1

)T
we can construct

the matrix Γ f K pZ0 as follows

Γ f
K

pZ0 = αZT
0 Z0 (24)

Proof: The proof follows from the derivation of the

dual problem.

With this lemma we can go back to the original problem and

compute an SVD of this estimate to find the state sequence.

Again it is important to stress that we do not require Zi but

we only need ZT
i Zi. This observation makes it possible to

derive a computationally more efficient implementation.

B. Computation of the kernel matrices

In the previous subsection it was already stressed that

we do not have to compute Zi but we only need ZT
i Zi. In

this section an analytic expression is given which does not

require the calculation of Zi. First we define the matrix Ñ =[
1 2 · · · N − p− f + 1

]
, and the following Lemma

Lemma 3: Given the vectors λ1, λ2, · · · , λν ∈
Rκ×1 and θ1, θ2, · · · , θν ∈ Rκ×1 the product

(λ1 ⊗λ2 ⊗·· ·⊗λν)T (θ1 ⊗θ2 ⊗·· ·⊗θν) , (25)

is given by
ν

∏
j=1

λ T
j θ j (26)

Proof: With the properties of the Kronecker prod-

uct (⊗) defined in [27], (A⊗B)(C⊗D) = AC⊗BD, we can

rewrite (25) as: λ T
1 θ1 ⊗·· ·⊗λ T

ν θν and observing that all the

elements between the Kronecker products are scalers results

in (26).

With Lemma 3 we can define the kernels for the model

structure given in (1)-(2)

Theorem 1 (Kernels LPV): Given Lemma 3 and the

model structure given in (1)-(2) we have for i∈{0, · · · , f −1}

ZT
i Zi =

p−1+i

∑
q=0

((
p−1+i

∏
v=q

µT
N+v

µN+v

)(
zT

N+q
zN+q

))

(27)

We can solve (19) and construct (24) .

Proof: Using Lemma 3 the proof follows by straight-

forward computations

C. Regularization

The kernel ZT
i Zi described in the previous paragraph is

square and has the size of the number of data points available.

This normally leads to an ill-conditioned set of equations.

This conditioning problem can be circumvented by regu-

larization. There are a number of regularization techniques.

In [19] a simulation study is performed to select the optimal

regularization technique and corresponding regularization

parameter selection method. In this study they concluded that

Tikhonov regularization with generalized cross validation

regularization parameter selection gives the best result and

this is what we use in the simulations.

D. Summary of the algorithm

We end this chapter with the summary of the closed-loop

kernel LPV identification algorithm.

Algorithm 2 (LPV-PBSID (kernel)): The algorithm can be

summarized as follows:

1) Create the matrices ZT
i Zi using Theorem 1.

2) Solve the linear problems given in (19). If desired

regularized.

3) Construct Γ f K pZ0 using (24)

4) Compute the state sequence using (15) and (16)

5) With the estimated state use the linear relations (1)-(2)

to obtain the system matrices.

VI. SIMULATION RESULTS

In this section we show some of the features of the new

algorithm on a simulation example and we compare the

performance with LPV-PBSIDopt.

We have tested the proposed LPV identification method

on the benchmark model used in [18], [19], [21]. This is

a fourth order MIMO open-loop LPV model with m = 4,

r = 2, and l = 3. The collected data uk, yk, and µk are used

for the identification algorithm. The algorithm described in

Algorithm 2 with Tikhonov regularization is used to identify

an LPV model.

The performance of the identified system is evaluated by

looking at the value of the variance-accounted-for (VAF) on

a data set different from the one used for identification. The

VAF value is defined as:

VAF = max

{
1−

var(yk − ŷk)

var(yk)
,0

}
∗ 100%

where ŷk denotes the output signal obtained by simulating

the identified LPV system, yk is the output signal of the

true LPV system, and var() denotes the variance of a

quasi-stationary signal. To investigate the sensitivity of the

identification algorithm with respect to noise, a Monte-Carlo

simulation with 100 runs was carried out. For each of the

100 simulations a different realization of the input uk and

scheduling sequence µk is used.

In Table II the results of the different identification meth-

ods are summarized (where the VAF values are based on a

validation data set). If we look at the identification results for

the system with N = 1000 and no noise (SNR=∞) the results

are significantly better than the results presented in [19].

However, the LPV-PBSIDopt algorithm performs in general

better. It is questionable if this is a fair comparison because

we assumed that the past window equals the future window.

In LPV-PBSIDopt there is no future window and this indicates

that the future window is an additional tuning parameter in

the LPV-PBSID algorithm. In Table III where the past and

future windows are decoupled this statement is confirmed.

VII. CONCLUSIONS

In this paper we presented a novel Linear Parameter

Varying (LPV) subspace identification method which is an

extension of LTI Prediction Based Subspace IDentification

(PBSID). The methodology from LTI PBSID is used to
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TABLE II

THE VAF ON A FRESH DATA SET FOR 100 MONTE CARLO SIMULATIONS. THE EXPERIMENTS ARE PERFORMED FOR DIFFERENT SETTINGS

p = f = 3 LPV-PBSID+reg. LPV-PBSIDopt+reg.
Output 1 Output 2 Output 3 Output 1 Output 2 Output 3

N=500, SNR=40 94.1 94.2 94.2 96.8 96.7 96.8
N=500, SNR=∞ 99.9 99.9 99.9 99.9 100.0 100.0

N=1000, SNR=40 97.3 97.3 97.3 98.4 98.4 98.5
N=1000, SNR=∞ 100 100 100 99.9 99.9 99.9

TABLE III

THE VAF ON A FRESH DATA SET FOR 100 MONTE CARLO SIMULATIONS

FOR A DECOUPLED SETTING OF F AND P

p = 2, f = 3 LPV-PBSID+reg.
Output 1 Output 2 Output 3

N=1000, SNR=40 98.4 98.3 98.4

formulate the input-output behavior of an LPV system. From

this input-output behavior the LPV equivalent of the Markov

parameters can be estimated. We showed that with this

estimate the product between the observability and state

sequence can be reconstructed and an SVD can be used

to estimate the state sequence and consequently the system

matrices. The curse of dimensionality in subspace LPV

identification appeared and the kernel method was proposed.

A computational efficient representation of the kernel is

presented which makes the approach numerical attractive.

We also showed the similarities with LPV-PBSIDopt and on

a benchmark problem we evaluated their performances.
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