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Abstract— This paper provides a reformulation of closed-loop
systems that have negative imaginary frequency response to
closed-loop systems that have bounded gain, so that theory and
results from H∞ control can be borrowed to enable controller
synthesis for the former class of systems. Systems with negative
imaginary frequency response arise for example in structures
with co-located position sensors and force actuators, and finding
a systematic controller synthesis treatment for such systems has
important applications in, for example, lightly damped large
space structure problems. The key result in this paper assists
by reformulating such systems into a bounded-real framework.

An example demonstrates the feasibility of the reformulation
given herein.

Index Terms— Positive real, bounded real, negative imagi-
nary frequency response, lightly damped systems, H∞ control,
small-gain theorem, passivity.

NOTATION AND SYMBOLS

Let RH∞ denote the set of real-rational stable transfer

function matrices and RHn×m
∞ denote the systems in RH∞

that have m columns and n rows. Let R and C denote

fields of real and complex numbers respectively, C− and C̄−

denote the open and closed left-half planes respectively. Let

A∗ denote the complex conjugate transpose of matrix A. Let

σ̄(A) denote the largest singular value of matrix A. Let λi(A)
denote the i-th eigenvalue of a square complex matrix A. Let

‖P‖∞ denote the H∞-norm of P ∈ RH∞. Let Fℓ(G, K)
denote the lower Linear Fractional Transformation (LFT) of

transfer function matrices G and K [1]. Let G ⋆ K denote

the Redheffer Star-Product of transfer function matrices G

and K with respect to some appropriate partitioning [1].

Let diag(A, B) be shorthand for

[

A 0
0 B

]

. Let 〈G, K〉

denote the feedback interconnection shown in Fig.1 and

correspondingly let T (G, K) denote the transfer function

from





ω
(

u1

u2

)



 to





z
(

v1

v2

)



. We say 〈G, K〉 is

internally stable when T (G, K) ∈ RH∞.
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Fig. 1. LFT Interconnection

I. INTRODUCTION

It is a well-known fact that mechanical systems modelled

with force actuators and co-located velocity sensors give

rise to positive-real (or passive) transfer functions [2]. It

is, however, a less known fact that the same systems mod-

elled with force actuators and co-located position sensors,

as opposed to velocity sensors, (i.e. when the variable to

be controlled is position instead of velocity) give rise to

systems with negative imaginary frequency response [3] in

the LTI case (or systems with counter-clockwise input-output

dynamics [4] in a nonlinear time-varying setting). This is a

consequence of Newton’s second law of motion that typically

produces a transfer function of the form K
s2+2ζωns+ω2

n

when

co-located position measurements are used in conjunction

with force actuation. Broadly speaking, systems with nega-

tive imaginary frequency response are stable systems whose

Nyquist plot has a phase lag between 0 and −π for all

frequencies, and hence have a Nyquist plot below the Real

axis for all frequencies. Studying these systems has impor-

tant engineering applications in, for example, large space

structures and multi-link robots. When these structures are

lightly damped (i.e. flexible) with co-located position sensors

and force actuators, they give rise to transfer functions

which consist of the sum of a large number of second order

terms with negative imaginary frequency response. Normally,

only a small number of modes are considered for control

design so that the truncated modes will give rise to spill-

over dynamics that can destabilize the systems, especially

at high frequencies. The SISO LTI case of such systems

have been studied extensively in positive position feedback

literature, where much of the analysis and synthesis is based

on graphical Nyquist approaches [8] [9]. Recently, non-

convex optimization methods to damp structural vibrations

of lightly damped structures with co-located actuators and

sensors have also been proposed [10]. In [3] [11], an analysis

result was proposed for MIMO LTI systems with negative

imaginary frequency response. It shows that a positive feed-
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back interconnection of two systems, each of which having

a negative imaginary frequency response, is internally stable

if and only if the DC loop gain is less than unity. Systems

with negative frequency response are also closely connected

to nonlinear/time-varying systems with counter-clockwise

input-output dynamics [4].

This paper will take a first step towards controller synthesis

for systems with negative imaginary frequency response

based on the analysis result in [3] [11]. More specifically,

for uncertain systems where the perturbation belongs to the

class of systems with negative imaginary frequency response,

it is natural to seek to design a stabilizing controller such that

the closed-loop LFT satisfies negative imaginary frequency

response properties. Via results in [3], it is then possible

to quantity the largest family of perturbations that have

negative imaginary frequency response properties in terms

of the reciprocal of the DC gain of the nominal system.

This paper will reformulate the problem of finding such a

controller to an equivalent problem of finding an internally

stabilizing controller for a transformed system such that the

closed-loop is bounded-real.

II. PRELIMINARIES

First we define some sets for compactness of notation.

Definition 1: Let the set of square stable transfer functions

with negative imaginary frequency response [3] be defined

by

I := {X ∈ RHn×n
∞ :

j[X(jω) − X(jω)∗] ≥ 0 ∀ω ∈ (0,∞)}. (1)

Definition 2: Let the set of square stable positive real

transfer functions be defined by

P := {X ∈ RHn×n
∞ :

[X(jω) + X(jω)∗] ≥ 0 ∀ω ∈ R}. (2)

It is easy to see that X ∈ I implies s[X(s) − X(∞)] ∈ P
[3].

Definition 3: Let the set of square stable contractive trans-

fer functions whose Nyquist plot does not pass through

−1 + j0 point be defined by

B := {X ∈ RHn×n
∞ : ‖X‖∞ ≤ 1,

det(I + X(jω)) 6= 0 ∀ω ∈ R ∪ {∞}}. (3)

The next three simple technical lemmas are given here to

streamline presentation of the proof of the main result in the

next section. The first two lemmas state that if X ∈ P or

X ∈ B, then (I + X)−1 is stable. These standard properties

will be used to make a connection amongst different parts

of the proof of the main result.

Lemma 1: Given X ∈ P , then (I + X)−1 ∈ RH∞.

Proof: This lemma is trivially established via simple

application of the passivity theorem [12].

Lemma 2: Given Y ∈ B. Then (I + Y )−1 ∈ RH∞.

Proof: First note that (I +αY )−1 ∈ RH∞ ∀α ∈ (0, 1)
and also Y ∈ B gives det(I + Y (jω)) 6= 0 ∀ω ∈ R ∪ {∞}.

As α increases continuously to unity, the transmission zeros

of (I + αY (s)) vary continuously and are in C− for all

α ∈ (0, 1), and they do not intersect the jω-axis at α = 1.

Therefore, at α = 1, they must remain in C−. Thus (I +
Y )−1 ∈ RH∞.

The third technical lemma gives a simple necessary and

sufficient condition for input-output stability of a particular

Redheffer Star-Product. It will be used in the next section to

make a connection between systems in P and B.

Lemma 3: Given T =

(

T11 T12

T21 T22

)

∈ RH∞. Then,

(

I −2I

I −I

)

⋆ T ∈ RH∞ ⇔
(

I + T11

)−1
∈ RH∞. (4)

Proof: This equivalence can be seen directly from an

expansion [1, Section 10.4] of the Redheffer Star-Product of
(

I −2I

I −I

)

⋆ T .

The left side of equivalence in (4) is essentially a bilinear

transformation on T which is similar to the transformation

used to map systems in P to systems in B [5] [1]. Note

that instead of these transformations, there are also direct

solutions of systems in P [6] [7].

III. THE MAIN RESULT

The main result of this paper is given in Theorem 4 below.

The theorem broadly states that a controller internally stabi-

lizes a generalized plant Σ and makes the input-output map

satisfy a negative imaginary frequency response property if

and only if the same controller internally stabilizes a different

generalized plant G (constructed from Σ) and makes the

input-output map contractive.

Theorem 4: Given a controller K and a generalized plant

Σ =





A B1 B2

C1 D11 0
C2 D21 0



 (5)

with (A, B2) stabilizable, (C2, A) detectable, and D11 =
D∗

11. Then, 〈Σ, K〉 is internally stable and j
[

Fℓ(Σ, K)(jω)−
Fℓ(Σ, K)(jω)∗

]

≥ 0 ∀ω ∈ (0,∞) if and only if 〈G, K〉
is internally stable,

∥

∥Fℓ(G, K)
∥

∥

∞
≤ 1 and det(I +

Fℓ(G, K)(jω)) 6= 0 ∀ω ∈ R ∪ {∞}, where

G =

[

V
−1

A B1U
−1

V
−1

B2

−2U
−1

C1A (I − C1B1)U
−1

−2U
−1

C1B2

C2 − D21U
−1

C1A D21U
−1

−D21U
−1

C1B2

]

,

U = I + C1B1 and V = I + B1C1. (6)

Proof: We will prove the result via a sequence of

equivalent reformulations:

(a) 〈Σ, K〉 is internally stable and j
[

Fℓ(Σ, K)(jω) −
Fℓ(Σ, K)(jω)∗

]

≥ 0 ∀ω ∈ (0,∞).
(b) 〈Σ̄, K〉 is internally stable and j

[

Fℓ(Σ̄, K)(jω) −
Fℓ(Σ̄, K)(jω)∗

]

≥ 0 ∀ω ∈ (0,∞), where

Σ̄ =





A B1 B2

C1 0 0
C2 D21 0



 . (7)

[

The equivalence (a)⇔(b) follows on noting that

Fℓ(Σ, K)(∞) = D11 = D∗
11.
]
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(c) 〈Σ̂, K〉 is internally stable and
[

Fℓ(Σ̂, K)(jω) +

Fℓ(Σ̂, K)(jω)∗
]

≥ 0 ∀ω ∈ R, where

Σ̂ =

(

sI 0
0 I

)

Σ̄ =





A B1 B2

C1A C1B1 C1B2

C2 D21 0



 . (8)

[

The internal stability parts can be seen to be equivalent on

noting that K is the same, Σ̂ and Σ̄ are both stabilizable and

detectable, and that

Σ̄22 = Σ̂22 =

[

A B2

C2 0

]

, (9)

thus allowing use of [13, Lemma A.4.1]. The frequency do-

main inequalities are also equivalent since Fℓ(Σ̂, K)(jω) =
jω · Fℓ(Σ̄, K)(jω).

]

(d) 〈G, K〉 is internally stable, σ̄
[

Fℓ(G, K)(jω)
]

≤ 1 ∀ω ∈
R, and det(I + Fℓ(G, K)(jω)) 6= 0 ∀ω ∈ R ∪ {∞}, where

G =

[(

I −2I

I −I

)

⋆ Σ̂

]

=

[

V
−1

A B1U
−1

V
−1

B2

−2U
−1

C1A (I − C1B1)U
−1

−2U
−1

C1B2

C2 − D21U
−1

C1A D21U
−1

−D21U
−1

C1B2

]

,

U = I + C1B1 and V = I + B1C1.

[

(c) ⇒ (d): Since Fℓ(Σ̂, K) ∈ P , it follows that (I +

Fℓ(Σ̂, K))−1 ∈ RH∞ via Lemma 1. Then define Y = (I −
Fℓ(Σ̂, K))(I +Fℓ(Σ̂, K))−1 and note that Y = Fℓ(G, K) ∈
RH∞. Also, since (I + Y )−1 = 1

2 (I + Fℓ(Σ̂, K)) ∈ RH∞,

it follows that det(I + Y (jω)) 6= 0 ∀ω ∈ R ∪ {∞}. Also,

[Fℓ(Σ̂, K)(jω) + Fℓ(Σ̂, K)(jω)∗] ≥ 0 ∀ω ∈ R implies

σ̄ [Y (jω)] ≤ 1 ∀ω ∈ R. Finally, since 〈Σ̂, K〉 is internally

stable, we have T (Σ̂, K) ∈ RH∞. Noting that T11(Σ̂, K) =
Fℓ(Σ̂, K) ∈ P , we get (I + T11(Σ̂, K))−1 ∈ RH∞ via

Lemma 1 and this in turn gives

(

I −2I

I −I

)

⋆ T (Σ̂, K) ∈ RH∞ (10)

via Lemma 3, which implies 〈G, K〉 is internally stable as

T (G, K) = T

([

I −2I

I −I

]

⋆ Σ̂, K

)

=

(

I −2I

I −I

)

⋆ T (Σ̂, K). (11)

(d) ⇒ (c): Since Fℓ(G, K) ∈ B, (I + Fℓ(G, K))−1 ∈
RH∞ via Lemma 2. Then define X =
(I − Fℓ(G, K)) (I + Fℓ(G, K))−1 ∈ RH∞ and note

that X = Fℓ(Σ̂, K). Then σ̄ [Fℓ(G, K)(jω)] ≤ 1 ∀ω ∈ R

implies [X(jω) + X(jω)∗] ≥ 0 ∀ω ∈ R. Finally, since

〈G, K〉 is internally stable, we have T (G, K) ∈ RH∞.

Noting that T11(G, K) = Fℓ(G, K) ∈ B, we get

(I + T11(G, K))−1 ∈ RH∞ via Lemma 2 and this in turn

gives
(

I −2I

I −I

)

⋆ T (G, K) ∈ RH∞ (12)

via Lemma 3, which implies 〈Σ̂, K〉 is internally stable as
(

0 2I
1
2I 0

)

⋆ T (Σ̂, K) (13)

=

(

I −2I

I −I

)

⋆ T (G, K) via (11).
]

This theorem states that the original problem of synthesising

an internally stabilizing controller such that a closed-loop

LFT has negative imaginary frequency response can be

transformed to an equivalent bounded-real problem. This is

a first step towards a controller synthesis method for closed-

loop systems with negative imaginary frequency response,

allowing results to be borrowed from H∞ control theory.

The following lemma shows that the restriction of D12 = 0
and D22 = 0 in the realization of the generalized plant for

Σ in (5) can be easily circumvented.

Lemma 5: Given a strictly proper controller K and a

generalized plant

Σ =





A B1 B2

C1 D11 D12

C2 D21 D22



 (14)

with (A, B2) stabilizable, (C2, A) detectable, and D11 =
D∗

11. Then, 〈Σ, K〉 is internally stable and j
[

Fℓ(Σ, K)(jω)−

Fℓ(Σ, K)(jω)∗
]

≥ 0 ∀ω ∈ (0,∞) if and only if 〈Σ̆, K̆〉 is

internally stable and j
[

Fℓ(Σ̆, K̆)(jω) − Fℓ(Σ̆, K̆)(jω)∗
]

≥
0 ∀ω ∈ (0,∞), where

Σ̆ =









A B2 B1 0
0 −τI 0 τI

C1 D12 D11 0
C2 D22 D21 0









, (15)

K̆(s) =
( s

τ
+ 1
)

K(s), and any arbitrary τ > 0.

Proof: Easily follows on noting that

T (Σ, K)





I 0 0
0 I 0
0 0 1

s/τ+1I





=





I 0 0
0 I 0
0 0 1

s/τ+1I



T (Σ̆, K̆) (16)

because

Σ̆ = Σ

(

I 0
0 1

s/τ+1I

)

.

Two remarks are appropriate on Theorem 4 at this stage.

Remark 1: Under the suppositions (A, B2) stabilizable

and (C2, A) detectable, the state-space realization for G

given in Theorem 4 is stabilisable and detectable.

Proof: This can be easily shown via a PBH test [1].

Remark 2: Whenever det(A) 6= 0, we have G12(0) = 0,

and hence the Riccati method for H∞ controller synthesis

[1] cannot be used.

Proof: This is trivial on noting that

G12(s) = −2U−1C1B2 − 2U−1C1A(sI − V −1A)−1V −1B2
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Fig. 3. Rearranged LFT interconnection

Remark 2 states that whenever A is nonsingular, there is

a blocking zero at zero frequency for G12, and thus the

standard assumption of “no invariant zeros on imaginary

axis” for the existence of solutions for the Riccati equations

in the DGKF formulae [1] is not satisfied. Thus, in this

case, structured perturbation techniques [14] or techniques

in [15] [16] may help address controller synthesis in this

situation.

It may also not be possible to use the DGKF solution

to H∞ control synthesis [1] because it may happen that

(−2U−1C1B2) does not have full column rank or (D21U
−1)

does not have full row rank. Again an LMI based solu-

tion [17] may address controller synthesis in such a situation.

IV. ILLUSTRATIVE EXAMPLE

This section uses the same lightly damped mechanical

plant as in [3] to illustrate the key reformulation of this paper.

The uncertain plant considered is:

P△(s) = p(s)δ(s)

×

[

s2 + (α + 1)s + (k + 1) (αs + k)
(αs + k) s2 + (α + 1)s + (k + 1)

]

where α and k are unknown real parameters, p(s) = 1
s2+s+1

and δ(s) = 1
s2+(2α+1)s+(2k+1) . For the purpose of robust

controller synthesis, the controlled closed-loop system in

Fig.2 is rearranged in a standard LTF interconnection shown

in Fig.3. In these two figures, the generalized plant Σ, the

nominal plant P and the uncertainty ∆ are given respectively

by

Σ =

[

0 I

−I −P

]

, P (s) = Ψdiag(
1

2
p(s), 0)Ψ∗

and ∆(s) = Ψ−1diag(
1

2
δ(s), 0)(Ψ−1)∗, (17)

10
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The largest singular value

Fig. 4. The largest singular value plot of Fℓ(G, C̆)(jω)

where Ψ =

[

1 0
1 1

]

. Since the uncertainty ∆(s) belongs

to I, a particular choice of controller C(s) that internally

stabilises Σ and makes Fℓ(Σ, C) belong to I was chosen

in [3] as C(s) = Ψ−∗diag( −2(s2+s+1)
2s3+4s2+4s+3 , −1

s+1 )Ψ−1. This

guarantees robust stability for all perturbations in I as long

as the DC loop gain condition is also satisfied [3, Theorem

5].

Since C(s) is strictly proper and the D12 matrix of Σ is

nonzero, we first use Lemma 5 to give C̆(s) = ( s
τ + 1)C(s)

and Σ̆ =

(

0 1
s/τ+1I

−I − 1
s/τ+1P

)

where we arbitrarily set τ =

1. Then, using the construction in Theorem 4, we obtain the

transformed generalised plant G(s) as:

G =



















−0.9778 −0.8526 0.6992 0.6992 0 0 0 0
1.1474 −0.0222 −0.1054 −0.1054 0 0 0 0

0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1
0 0 2 0 1 0 −2 0
0 0 0 2 0 1 0 −2

−0.1054 −0.6992 −1 0 −1 0 1 0
−0.1054 −0.6992 0 −1 0 −1 0 1



















.

Since we know from [3] that the chosen C(s) internally

stabilises Σ(s) and makes Fℓ(Σ, C) ∈ I, then via Lemma 5

and Theorem 4, we should get that C̆(s) internally stabilises

G(s) and ‖Fℓ(G, C̆)‖∞ ≤ 1 and the MIMO Nyquist plot of

Fℓ(G, C̆) does not intersect −1 + j0 for all frequencies.

A simple computation gives ‖Fℓ(G, C̆)‖∞ = 1 and a plot

of σ̄
[

Fℓ(G, C̆)(jω)
]

is given in Fig.4. Also, C̆ internally

stabilises G as the poles of T (G, C̆) are at: −0.5 ±j 0.8660,

−0.5 ±j 0.8660, −1, −0.7236, −0.2764. Finally, a Nyquist

plot of λi

[

Fℓ(G, C̆)(jω)
]

is given in Fig.5 for i = 1, 2.

This illustrative example demonstrates that the problem of

finding an internally stabilizing controller such that the input-

output map has negative imaginary frequency response can
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Fig. 5. Nyquist plot of λi

[

Fℓ(G, C̆)(jω)
]

be reformulated to a bounded-real problem.

V. CONCLUSION

This paper is a first step towards a controller synthesis

technique for systems with negative imaginary frequency

response. In [3], an analysis result was proposed, similar

to the small-gain or passivity theorem, for the systems

with negative frequency response. This paper shows how an

LFT interconnection that has negative imaginary frequency

response closed-loop properties can be reformulated into a

bounded-real LFT interconnection. Although this paper does

not tackle the important step of explicit controller synthesis

for such a class of systems, the main results in this paper

could constitute a first step in allowing results from H∞

control synthesis to be borrowed for controller synthesis

for closed-loop systems with negative imaginary frequency

response.
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