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Abstract— In this article we consider the problem of de-
signing a controller for a formation of vehicles. We present a
novel method that allows the synthesis of distributed controllers
with H∞ performance; the method is based on a modal
decomposition technique and it makes use of LMIs (Linear
Matrix Inequalities).

One of the interesting results of this paper is that for
certain relevant situations the size of the synthesis LMIs is
independent of the size of the formation: this means that with
a single, small LMI test it is possible to compute a controller
with guaranteed disturbance rejection performance for all the
formations of a kind. This method can then be considered as
a significant generalization of the famous result presented by
Fax and Murray in [10], where the authors showed a how it
was possible to prove the stability of a formation with a single
Nyquist diagram, irrespectively of the formation size.

I. INTRODUCTION

In recent times, the control theory community has put
much effort into the development of methods for control-
ling vehicle formations. This interest is due to the variety
of applications that have been made possible by modern
technological advances, for example, in satellite formation
flying [4], car platoons [21] or unmanned aerial vehicles [1],
[11].

Vehicle formations can be considered as a set of identical
agents which are basically dynamically decoupled, but share
a common goal, i.e. keeping relative positions or fulfilling
a common sensing task. This common goal introduces a
coupling between the systems, making it necessary to con-
sider the set of agents as a whole: if we assume the agent
to be an lth order model, and the number of agent is N ,
then the control problem is of order Nl, which can be
difficult to manage for large N . Moreover, a centralized
controller can be difficult to implement in practice, as it
would require the presence of a central unit with knowledge
of all the agents and that can command all of them. For these
reasons, the literature presents different methods for either
simplifying the computational complexity of the synthesis or
for designing controllers in a distributed fashion, that means,
with the agents managed by local controllers having a limited
knowledge of the other agents. Different approaches to this
problem have appeared in literature, from simple leader-
follower architectures [22], to more complex algorithms
based on consensus rules [8].
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In this paper we focus on the approach of [10], where it
is assumed that every vehicle of the formation has identical
dynamics and is controlled locally, and that every controller
has only visibility of a limited set of the other vehicles.
In this situation, the formation can be schematized as a
graph [7] that mimics the information flow, and it is possible
to prove a formation stability criterion which requires the
evaluation of systems of the order of the agents, instead of
the full order formation. After summarizing these results,
we will show the main contribution of this paper, a kind
of generalization from simple stability to H∞ performance.
This result is based on an LMI sufficient condition and it will
allow the synthesis of distributed controllers for formations
on the basis of disturbance attenuation criteria.

The paper is organized as follows. In Section II we
introduce the notation and the notions of graph theory that
are used in the article, while in Section III we briefly
summarize the results of [10]. Section IV shows the novel
approach that is proposed here and Section V shows how
this approach can be used for H∞ synthesis of a distributed
controller. Finally, Section VI shows some special cases of
particular interest, and Section VII contains an example of
an application. The conclusions are in Section VIII.

II. PRELIMINARIES

We denote by R the field of real numbers and by Rn×m

the set of real n×m matrices. Let ⊗ indicate the Kronecker
product, In the identity matrix of order n and let j be the
imaginary unit. The notation A � 0 indicates that all the
eigenvalues of the Hermitian matrix A are strictly positive,
and the bullet • denotes a symbol that is either not relevant
or clear from the context.

In this paper we will make use of some results of graph
theory. For this reason, we will summarize here a few
definitions and a theorem that will be fundamental in the
following Sections. The interested reader can find out more
in [7] and [5].

Definition 1: A directed graph G consists of a set of
vertices V and a set of edges A ⊂ V2, which can be
interpreted as connections between vertices: for an edge
(a, b), we call the vertex a the tail and b the head. We assume
that each element of A is unique and that there are no self-
loops, that means (a, a) /∈ A ∀a ∈ V . A graph with the
property that (a, b) ∈ A ⇔ (b, a) ∈ A ∀a ∈ V is called an
undirected graph.

Graph theory becomes useful in control thanks to the
properties of special kinds of matrices which are associated
with graphs. For introducing these matrices, we assume that
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the N vertices of the graph G are enumerated, and each of
them is denoted ai.

Definition 2: The normalized adjacency matrix G of a
graph is an N × N matrix defined by Gi,k = 1/do(ai) if
(ai, ak) ∈ A and 0 otherwise; do(ai) is the out-degree of ai,
that is, the number of edges that feature ai as tail (assume
do(ai) 6= 0 ∀ai).

Definition 3: The normalized Laplacian matrix1 L of a
graph is defined as L = IN −G.

The property that we will use in this paper is stated in the
following Theorem.

Theorem 4: The eigenvalues of the normalized Laplacian
are located in a disk of radius 1 centered at 1 + 0j in
the complex plane. In addition, for undirected graphs the
eigenvalues of the normalized Laplacian are real, and thus
they are located between 0 and 2.

In the next Section we will show a result that relates the
stability properties of a formation to the eigenvalues of a
normalized Laplacian matrix; this explains why it can be
very important to have a priori information on the location
of these eigenvalues.

III. FORMATION STABILITY

In this Section we report briefly the results of [10], in
order to be able to build on them later. Let us consider a set
of N identical linear systems (agents, vehicles, etc.), whose
dynamics is modeled by the equation:

ẋi = Axi + Bui (1)

where xi ∈ Rl are the agents’ states, ui ∈ Rm their control
inputs and i = 1, . . . , N is the index for the vehicles in
the formation. From this it follows that the dynamics of the
formation is described by the equation:

ẋ = (IN ⊗A)x + (IN ⊗B)u (2)

where we have x = [xT
1 xT

2 . . . xT
N ]T ∈ RlN and u =

[uT
1 uT

2 . . . uT
N ]T ∈ RmN .

Let us now assume that each vehicle has a limited visibility
with respect to the others; for this purpose we define the set
Ji ⊂ [1, N ]\{i} of the vehicles that the ith vehicle can sense.
Then, each vehicle has the following measurements available
for feedback control:

yi = Caxi

qi =
1
|Ji|

Cb

∑
j∈Ji

(xi − xj) (3)

where |Ji| is the number of elements of the set Ji (assume
all |Ji| 6= 0: all agents can see at least one other agent). In
this way, the global output function is equivalent to:

y = (IN ⊗ Ca)x
q = (L ⊗ Cb)x

(4)

1In [10] this matrix is called just “Laplacian”; but, as stated there, in
literature there are different definitions for it. In this article we have chosen
to define the matrix used here as “normalized”, in order to distinguish it
from the other definition of the Laplacian matrix, that can be found e.g. in
[13].

where as before y = [yT
1 yT

2 . . . yT
N ]T ∈ RryN and q =

[qT
1 qT

2 . . . qT
N ]T ∈ RrqN ; thanks to the definition of q in

(3), it is possible to prove that L is indeed the normalized
Laplacian of the graph that describes the information flow
in the formation (i.e., an edge connects vertex i to vertex k
iff agent k receives the output of agent i).

Let us now assume that each vehicle is locally controlled
by identical local controllers K:

v̇i = KAvi + KByyi + KBqqi

ui = KCvi + KDyyi + KDqqi

(5)

Then the following Theorem holds.
Theorem 5 (Formation stability): A local controller K as

in (5) stabilizes the formation dynamics in (1), (3) if and
only if it simultaneously stabilizes the following set of N
“modal” subsystems:

˙̂xi = Ax̂i + Bûi

ŷi = Cax̂i

q̂i = λiCbx̂i

(6)

where the λi are the eigenvalues of the matrix L of (4).
It has to be pointed out that λi can be complex, leading to

complex-valued systems. The proof (see [10] for the details)
is based on the fact that for any square matrix L there exists
a Schur transformation [14] such as:

L = T−1UT

where T is unitary and U is upper diagonal, with the
eigenvalues of L on the diagonal; both T and U can be
complex-valued. Through this observation it is possible to
show that the formation in closed loop is equivalent to a
block upper diagonal system, and so its stability depends on
the stability of the diagonal blocks, which are equivalent to
the N systems of Theorem 5 in closed loop with the local
controllers. This result is valid for any matrix L, not only
for Laplacians, but the use of Laplacians will allow having
information on the λi without computing them.

It is also possible to derive a kind of Nyquist criterion
for the formations in the case of single-input single-output
agents; by comparing the agent equations and the modal
subsystem equation (6), it is clear that if the transfer function
from ui to Cbxi of an agent is G, then the transfer functions
of the modal subsystems (from ûi to q̂i ) are λiG. Then,
if we assume a feedback on q alone, if K is the transfer
function of the controller, the formation is stable if and only
if the point −1 is correctly encircled by the Nyquist diagram
of all of the closed loop transfer functions λiGK (see [10]
for details.). This is equivalent to saying that the function
GK must correctly encircle all the points − 1

λi
, so a single

Nyquist diagram can be enough to grant the stability of the
formation. Moreover, in certain situations, these points are
restricted a priori to be in certain specific areas: for example,
for normalized Laplacians of undirected formations, we will
have − 1

λi
∈ R and −∞ ≤ − 1

λi
6 − 1

2 (Theorem 4). A
Nyquist diagram that correctly encircles all this region will
grant stability for all undirected formations; so with a single,
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simple test it is possible to prove a very general result. In
Section VI we will show a kind of extension of this result
to performance.

IV. THE DECOMPOSITION APPROACH
We take three steps forward with respect to what was

shown in the previous Section. The first step is that we will
not assume anymore that the formation is described by means
of a Laplacian L, which we now replace with a generic
“pattern matrix” P; this matrix is not necessarily a Laplacian,
but of course it will still have to represent the pattern of
communication between the agents, so we can imagine it as
sparse matrix. Secondarily, we will allow a certain (limited)
dynamic interaction between the subsystems, an interaction
that follows the same pattern matrix, as it will be shown
shortly. At last, we assume this P (or L) to be diagonalizable.
Then we can prove a variant of Theorem 5.

Theorem 6 (Decomposition): Consider an Nl-th order
linear time invariant system described by the equations:

ẋ = (IN⊗Aa + P⊗Ab)x + (IN⊗Ba + P⊗Bb)u
y = (IN⊗Ca)x
q = (P⊗Cb)x

(7)

with Aa, Ab ∈ Rl×l, Ba, Bb ∈ Rl×mu , Ca ∈ Rry×l and
Cb ∈ Rrq×l. We assume that P is diagonalizable, with:
P = Z−1ΛZ, where Λ is a diagonal matrix containing the
eigenvalues λi of P . Then:

1) the system in (7) is equivalent to the following set of
N systems:

˙̂xi = (Aa + λiAb)x̂i + (Ba + λiBb)ûi

ŷi = Cax̂i

q̂i = λiCbx̂i

(8)

2) the controller (5) stabilizes the formation if and only
if it simultaneously stabilizes all the systems in (8).

Proof: For 1), consider the following change of vari-
ables:

x̂ = (Z ⊗ Il)x, û = (Z ⊗ Imu
)u,

ŷ = (Z ⊗ Iry )y, q̂ = (Z ⊗ Irq )q
(9)

which turns (7) into:
˙̂x = (Z ⊗ Il)(IN ⊗Aa + P ⊗Ab)(Z ⊗ Il)−1x̂+

+ (Z ⊗ Il)(IN ⊗Ba + P ⊗Bb)(Z ⊗ Imu)−1û

ŷ = (Z ⊗ Iry )(IN ⊗ Ca)(Z ⊗ Il)−1x̂

q̂ = (Z ⊗ Irq )(P ⊗ Cb)(Z ⊗ Il)−1x̂
(10)

From the properties of Kronecker product [2] we have that:

(Z ⊗ Il)(IN ⊗Aa + P ⊗Ab)(Z ⊗ Il)−1 =
= (ZINZ−1)⊗ (IlAaIl) + (ZPZ−1)⊗ (IlAbIl) =

= IN ⊗Aa + Λ⊗Ab

(11)
so (7) is equivalent to:

˙̂x = (IN ⊗Aa + Λ⊗Ab)x̂ + (IN ⊗Ba + Λ⊗Bb)û
ŷ = (IN ⊗ Ca)x̂
q̂ = (Λ⊗ Cb)x̂

(12)

Since all of the matrices in this last expression are block
diagonal, then the system is equivalent to the N independent
systems of (8). Then 2) is a straightforward consequence of
the first part of the Theorem.

Notice that Theorem 5 states an equivalence only for the
stability of the systems: the modal systems in (6) are stable
if and only if the original system is stable. This last Theorem
instead states that the systems themselves are equivalent,
through (9), in their dynamics from the input to the output.
This means that we can evaluate also the performance of a
system by looking at its decomposed version.

Before deriving the control synthesis method, we redefine
the systems which are object of this paper according to
the framework that is common in literature for evaluating
disturbance rejection performance. We will define them in
a very general way in order to include all the systems for
which a decomposition can be achieved like in Theorem 6.
We also move to a discrete time setting, for reasons that will
be clear later on.

Definition 7: Let us consider the Nl-th order linear dy-
namical system described by: x(k + 1) = Ax(k) + Bww(k) + Buu(k)

z(k) = Czx(k) +Dzww(k) +Dzuu(k)
y(k) = Cyx(k) +Dyww(k)

(13)

Where u ∈ RNmu is the control input, w ∈ RNmw is the
disturbance, y ∈ RNry is the measured output and z ∈ RNrz

is the performance output. We call such systems “decompos-
able systems” iff P is diagonalizable (P = Z−1ΛZ) and

A = IN ⊗Aa + P ⊗Ab

B• = IN ⊗B•,a + P ⊗B•,b
C• = IN ⊗ C•,a + P ⊗ C•,b

D•• = IN ⊗D••,a + P ⊗D••,b

(14)

In the case that P is symmetric, then we call the system
a “symmetric decomposable system”; then 1) Z is real and
orthogonal (Z−1 = ZT ) and 2) Λ is real [15].

Remark 8: In the remainder of the paper we will consider
only symmetric systems, as the two properties mentioned
above greatly simplify the reasoning. Non symmetric systems
are still manageable at the cost of some extra attentions (like
dealing with complex-valued LMIs; see [18] for details).
We generalize Theorem 6 for this kind of systems.

Theorem 9: A symmetric decomposable system of order
Nl as described in Definition 7 is equivalent to N indepen-
dent “modal” subsystems of order l. Each of these subsys-
tems has only mu inputs, md disturbances, rz performance
outputs and ry measured outputs: x̂i(k + 1) = Aix̂i(k) + Bw,iŵi(k) + Bu,iûi(k)

ẑi(k) = Cz,ix̂i(k) + Dzw,iŵi(k) + Dzu,iûi(k)
ŷi(k) = Cy,ix̂i(k) + Dyw,iŵi(k)

for i = 1, . . . , n

(15)

where for all the matrices in bold font it holds that:

M•,i = M•,a + λiM•,b (16)

where the λi are the eigenvalues of P and the matrices M•,a,
M•,b are defined as in (14). Conversely, it is true that all the

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB12.2

2908



sets of systems as in (15) for which the parameterization (16)
holds are equivalent to a decomposable system.

Proof: The system is decomposed with the following
change of variables:

x = (Z ⊗ Il)x̂, w = (Z ⊗ Imw
)ŵ, u = (Z ⊗ Imu

)û,
z = (Z ⊗ Irz )ẑ, y = (Z ⊗ Iry )ŷ

(17)
For the details see [18].

This last Theorem basically says that a decomposable
system (that is, a system for which all the state space matrices
M can be parameterized as M = IN ⊗ Ma + P ⊗ Mb)
is equivalent to a set of N independent systems with state
matrices Mi = Ma + λiMb. Conversely, if a set of N
independent systems has state matrices which are parame-
terized as Mi = Ma + λiMb, then they are equivalent to
a decomposable system. This is of fundamental importance,
because:

1) for a decomposable system, it is possible to simplify
control problems by evaluating them in the frame of
the N independent systems, which are of quite smaller
order;

2) if the state space matrices of the controllers of the N
independent systems are parameterized as in (16) (with
the same P), then the controller in its untransformed
form will be a decomposable system with the same
sparsity of the plant.

These considerations will be used in the next Section.
Notice that the idea of the decomposition is already present
in literature for other kinds of systems, for example for
symmetrically interconnected systems [16] and for circulant
systems [3], that in some cases overlap with the decompos-
able systems defined here.

Remark 10: From now on, we will always use the bold
font to identify matrices which can be parameterized accord-
ing to (16).

V. H∞ CONTROLLER SYNTHESIS

For the class of decomposable systems, problems can
be approached in the domain of the transformed variables,
where the system is equivalent to a set of smaller independent
modal subsystems. Once the solution has been obtained inde-
pendently for each subsystem, one can retrieve the solution
to the original problems through the inverse of (17).

For example, let us consider for a symmetric decompos-
able system as in (13) the problem of finding a stabilizing
static state feedback:

u(k) = Kx(k) (18)

which yields an H∞ norm from w to z smaller than γ.
The approach to the solution would now be to find N H∞

controllers for the system in its decomposed state as in (15)
and then retrieve the controller in the non-decomposed form.

A. A note on the H∞ norm

The first question that we have to solve is how the
H∞ norms of subsystems which make the system in the

decomposed form relate to the H∞ norm of the undecom-
posed system. This question is quickly answered through the
following Lemma.

Lemma 11: Let Twz be the transfer function of a discrete
time symmetric decomposable system (Definition 7) from
the disturbance w to the output z; let T̂ŵẑ be the transfer
function of the same system after transforming it with (17),
from the new disturbance ŵ to the new output ẑ, and let
us call T̂ŵiẑi

the transfer functions of each of the N modal
subsystems into which the system can be decomposed, from
ŵi to ẑi. Then it holds:

||Twz||H∞ = max
i
||T̂ŵiẑi ||H∞ (19)

With this Lemma we can then approach the problem of
H∞ synthesis in the following way: by constraining the H∞
norm of all the modal subsystems to be smaller than a certain
value γ, we then have the guarantee that the norm of the
global, untransformed system will be smaller than γ as well.

B. LMI-based H∞ control with state feedback

The basic LMI approach for solving the problem is to
find a feasible solution to the following set of decoupled
inequalities [12]:

Xi AiXi + Bu,iLi Bw,i 0
∗ Xi 0 XiCT

z,i + LT
i DT

zu,i

∗ ∗ Imw
DT

zw,i

∗ ∗ ∗ γ2Irz

�0

for i = 1 . . . N
(20)

where Ai = Aa + λiAb, Bu,i = Bu,a + λiBu,b, etc. and
the symbol ∗ is used to fill in the block symmetric matrix
without repetitions of symbols. The decision variables are
Xi = XT

i and Li. These LMIs have a solution if and only if
a controller that yields an H∞ norm smaller than γ exists.

The static state gains can then be obtained as Ki =
LiX

−1
i ; if we then construct a block diagonal matrix K by

putting these Ki matrices in the diagonal blocks, the gain
for the global, untransformed system will be:

K = (Z ⊗ Imu)K(Z−1 ⊗ Il) (21)

In general this matrix K will have no sparsity, so the con-
troller will be a full global controller, which will correspond
to the solution of the H∞ control problem for the global
system.

C. Distributed H∞ control with state feedback

Theorem 9 basically states that to a “bold” matrix as in
(16) corresponds a matrix M = IN ⊗ Ma + P ⊗ Mb for
the untransformed global systems. So the matrix K obtained
through (21) would be sparse, that is, of the form K = IN ⊗
Ka+P⊗Kb, if and only if the Ki matrices are parameterized
as Ki = Ka + λiKb. A controller of this kind could be
implemented locally, as the computation of the control input
for each agent would require only local information: the state
of the agent itself and that of its “neighbors”, the ones which
are connected to it through the pattern matrix, as shown in
Fig. 1.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB12.2

2909



Fig. 1. On the left, a formation of 5 agents; the arrows indicate the inter-
connections among the agents as in the pattern matrix P . These interactions
could be dynamic (through the Ab matrix), or in the performance indices
(through Cz,b), or of other kind. On the right, the smaller circles represent
local controllers implementing a distributed controller; the controller follows
the pattern too and thus it uses only local information.

This objective can be easily achieved by adding to the set
of LMIs in (20) the following constraints:

Xi = X
Li = Li = La + λiLb

for i = 1 . . . N (22)

where we write now Li in bold to comply with the notation
rule of Remark 10. This means that also Ki will be a “bold”
matrix:

Ki = LiX
−1 = LaX−1 + λiLbX

−1 = Ki (23)

This “trick” is quite similar to the so-called multiobjective
optimization [19], where in order to optimize different pa-
rameters of a system, it is necessary to equate the matrix
associated to the Lyapunov function (the Xi matrices in this
case) in different LMIs. This method is also called Lyapunov
shaping. Of course the introduction of the constraints adds
conservatism to the LMIs, so the method is not based
anymore on an “if and only if” statement. We summarize
this result in the following Theorem.

Theorem 12: Consider a discrete time symmetric decom-
posable system (Definition 7). A sufficient condition for the
existence of a sparse static state feedback gain K as in (18)
of the kind:

K = IN ⊗Ka + P ⊗Kb (24)

that yields a ||Twz||H∞ < γ is that the following set of LMIs
has a feasible solution:

X AiX + Bu,iLi Bw,i 0
∗ X 0 XCT

z,i + LT
i DT

zu,i

∗ ∗ Imw
DT

zw,i

∗ ∗ ∗ γ2Irz

�0

for i = 1 . . . N
(25)

where X = XT and Li = La + λiLb are the optimization
variables; Ka = LaX−1, Kb = LbX

−1.
The constraints can be quite conservative, considering

that the number of LMIs may be large, and each of them
must have the same Lyapunov matrix. But there is in the
literature another approach to the problem that allows some
relaxation. In [6] it is proven that the synthesis LMIs can be

replaced with equivalent ones where an additional matrix
is introduced, and this additional matrix can be equated
in all the LMIs in the place of the Lyapunov matrix for
multiobjective optimization. This method is called G-shaping
from the symbol of this additional matrix (G), and it is
available only for discrete time (this is why we use this
assumption).

Then, according to [6], the set of LMIs in (20) can be
replaced equivalently by:

Xi AiGi + Bu,iLi Bw,i 0
∗ Gi + GT

i −Xi 0 GT
i CT

z,i + LT
i DT

zu,i

∗ ∗ Imw
DT

zw,i

∗ ∗ ∗ γ2Irz

�0

for i = 1 . . . N
(26)

where the decision variables are Xi = XT
i , Gi and Li. The

introduction of the constraints:

Gi = G
Li = Li = La + λiLb

for i = 1 . . . N (27)

lets us arrive at the following Theorem, which is one of the
main results of this paper.

Theorem 13: Consider a discrete time symmetric decom-
posable system (Definition 7). A sufficient condition for the
existence of a sparse static state feedback controller K as
in (18) of the kind: K = IN ⊗ Ka + P ⊗ Kb that yields
a ||Twz||H∞ < γ is that the following set of LMIs has a
feasible solution:

Xi AiG + Bu,iLi Bw,i 0
∗ G + GT −Xi 0 GT CT

z,i + LT
i DT

zu,i

∗ ∗ Imw
DT

zw,i

∗ ∗ ∗ γ2Irz

�0

for i = 1 . . . N
(28)

where Xi = XT
i , G and Li = La+λiLb are the optimization

variables; Ka = LaG−1, Kb = LbG
−1.

D. Distributed H∞ control with dynamic output feedback

The same kind of approach can be used for the synthesis
of distributed dynamic output feedback. Again, using a result
from [6] for each single modal subsystem and introducing a
parameterization we can get all the state space matrices of
the controller as in (16). We report the result in the following
Theorem.

Theorem 14: Consider a discrete time symmetric decom-
posable system (Definition 7), in one of the cases of Table I.
A sufficient condition for the existence of a decomposable
dynamic output feedback controller of the kind:{

xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k) (29)

that yields a ||Twz||H∞ < γ is that the set of LMI constraints
in (30) (at the top of next page) has a feasible solution. The
decision variables are X , Y , S and Pi = PT

i , Hi = HT
i , Ji,

Li = La + λiLb, Fi = Fa + λiFb, Qi = Qa + λiQb, Ri =
Ra + λiRb for i = 1, . . . , N . Table I shows also additional
constraints which might be needed. The state space matrices
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26666664

Pi Ji AiX + Bu,iLi Ai + Bu,iRiCy,i Bw,i + Bu,iRiDyw,i 0
∗ Hi Qi Y Ai + FiCy,i Y Bw,i + FiDyw,i 0
∗ ∗ X + XT − Pi Il + ST − Ji 0 XT CT

z,i + LT
i DT

zu,i

∗ ∗ ∗ Y + Y T −Hi 0 CT
z,i + CT

y,iR
T
i DT

zu,i

∗ ∗ ∗ ∗ Imw DT
zw,i + DT

yw,iR
T DT

zu,i

∗ ∗ ∗ ∗ ∗ γ2Irz

37777775 � 0 for i = 1, . . . , N

(30)

of the controller (in the decomposed form) can be retrieved
through the following relations:

V U = S − Y X (with U, V non singular)
Dc,i = Ri

Cc,i = (Li −RiCy,iX) U−1

Bc,i = V −1 (Fi − Y Bu,iRi)
Ac,i = V −1 (Qi − Y (Ai + Bu,iRiCy,i) X+

−V Bc,iCy,iX) U−1 − V −1Y Bu,iCc,i

(31)

TABLE I
CASES AND ADDITIONAL CONSTRAINTS FOR OUTPUT FEEDBACK.

Case Additional constraints
1 Cy,b = 0, Bu,b = 0 none
2 Bu,b = 0 Rb = 0, Fu,b = 0
3 Cy,b = 0 Rb = 0

In this last Theorem, (30) and (31) are adapted versions
of the formulas shown in [6]. The additional constraints
in Table I are necessary to make sure that the state space
matrices found with (31) are always parameterized as in (16);
this means that in (31) we must avoid products between bold
matrices. For example, we have that:

Cc,i = (Li −RiCy,iX) U−1 =
= (Lc,a + λiLc,b − (Ra + λiRb)(Cy,a + λiCy,b)X) U−1

(32)
So if we want Cc,i to be parameterized as Cc,i = Cc,a +
λiCc,b, then we either need to have Cy,i constant (Cy,b = 0)
or to set Ri as constant (Rb = 0).

VI. EXTENSIONS

In the previous Section we have shown a method for
computing suboptimal H∞ controllers for a formation of N
systems, through the solution of a set on N cross-coupled
LMIs. Actually there are some special cases where this
computation can be further reduced, as we point out in the
following Remark.

Remark 15: There are some cases when the set of N
LMIs in (28) or in (30) are actually equivalent to just two
LMIs. Considering (28), if Bu,b = 0 and Dzu,b = 0 (that
is, if Bu and Dzu are block diagonal) then Bu = Bu,b

and Dzu = Dzu,a, that means, they are constant with
respect to i. Thus there are no more products involving
two “bold” matrices, making the matrices in the inequality
all affine in λi. This allows expressing all the LMIs as a
convex combination of the two which contain the extreme
(maximum and minimum) values of λi. Since solving LMIs
is a convex optimization problem [20], then the feasibility

of the two inequalities with the extreme values of λi will
guarantee the feasibility of the whole set. For (30), under the
conditions of Table I, a similar reduction in the complexity
can be done in the case of Bu,b = 0, Dzu,b = 0, Dyw,b = 0.

With these assumptions, the problem of finding a dis-
tributed controller is no longer depending on the size of
the formation; whatever N is, the size of the LMIs and the
number of decision variables involved are always the same.

There is one last observation to be made, that completes
this article and makes a final connection with the work and
the theory of graphs that was cited in the beginning.

Remark 16: Consider the situation of Remark 15. If P is
a normalized Laplacian matrix of an undirected graph, then
0 6 λi 6 2. Then the synthesis LMIs, either (28) or (30),
can be used to find a controller with guaranteed boundaries
on the H∞ for all the possible undirected formations, if we
assume a maximum λi of 2 and a minimum one of 0.

As a last consideration, the reader should also be aware
that equivalents of Theorem 13 and Theorem 14 are available
for the H2 case, and that the methods shown here apply to
a wider class of systems than just vehicle formations (for
example, agents with dynamic interactions). The interested
reader can find out more in [18].

VII. EXAMPLE

As an example, we apply the methods of this article
to a problem taken from [9]. Let us consider a swarm of
satellites orbiting around a planet on a circular orbit; the
small perturbations of the motion of each one of them with
respect to the nominal circular trajectory are described by
the Clohessy-Wiltshire equations [17]: ẍ1 = 3ω2

nx1 + 2ωnẋ2 + a1

ẍ2 = −2ωnẋ1 + a2

ẍ3 = −ω2
nx3 + a3

where x1, x2 and x3 are respectively the displacements
in the radial, tangential and out-of-plane direction with
respect to an ideal body which is covering perfectly the
circular orbit at an angular speed ωn; a1, a2 and a3 are
the accelerations of the spacecraft due to either propulsion
or external disturbances.

Let us now assume that N satellites are uniformly2

distributed on the same circular orbit, and that we would
like to design a controller that minimizes the error on their
relative positions, with an H∞ criterion. This means that if
we consider the set of satellites as a single system, all the

2This assumption is not critical, the relative distance between the satellites
just determines a “bias” term in the x2 direction, that can be neglected in
the synthesis procedure.
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matrices will be block diagonal except Cz . If we want each
satellite to interact only with the one preceding and the one
following it, then we can assume as output the following:

zxh,i = −1
2
xh,i−1 + xh,i −

1
2
xh,i+1 for h = 1, 2, 3

where xh,i indicates the hth coordinate of the ith satellite (the
index i has to be considered modulo N ).

In this way, we can express Cz with the help of a
symmetric normalized Laplacian matrix L:

L =


1 − 1

2 0 · · · 0 − 1
2

− 1
2 1 − 1

2 · · · 0 0
...

...
...

. . .
...

...
− 1

2 0 0 · · · − 1
2 1


As a last addition, we consider a non-zero Dzu matrix in
order to penalize the use of the actuators (the consumption
of propellant).

We formulate the problem in discrete time; as we are
in the case of Remark 16, then just two LMIs (one for
λ = 0 and the other for λ = 2) are sufficient to solve
the dynamic output feedback problem, for any number of
satellites. Fig. 2 compares the performance of different con-
trollers: 1) a completely decentralized one, which computes
the control actions for each satellite only on the base of its
(absolute) measures, 2) an optimal, centralized one and 3)
the distributed controller computed with the method of this
paper. As it could be expected, the centralized controller
offers the best performance; but we can also see that the
distributed controller is quite close to it with respect to the
decentralized solution.

Fig. 2. H∞ norm of the controlled formation with three different types
of controllers.

VIII. CONCLUSIONS

In this article we have shown a simple method for de-
signing H∞ controllers for formations. The method can be
considered as a spin-off of the ideas shown in [10]. One of

the most interesing results of this reference is a variant of the
Nyquist criterion that relates the stability of the formation to
the number of encirclements of certain points in the Nyquist
plot. As these points are related to the eigenvalues of a
normalized Laplacian, then it is possible to define a region
where they are restricted to be, and this makes it possible to
find a controller that stabilizes all the possible formations of
a kind with a single simple test. In fact, we can claim that
Theorem 14 together with Remark 16 are a generalization of
this method from simple stability to performance: as shown
in the example, a single LMI test, which does not grow
with the size of the formation, can be enough to guarantee
disturbance rejection performance for all the formations of
a kind.
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