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Abstract— In this paper we consider Loosely Time-Triggered
Architectures (LTTA) as a networked infrastructure for de-
ploying discrete control. LTTA are distributed architectures in
which 1/ each computing unit is triggered by its own local clock,
2/ the local clocks are not synchronized, and 3/ communication
is by the following principle: each communication link acts as
a shared and sustained variable that can be, at will, written
by the source node and read by the destination node. The
loose communication medium used can cause duplication and/or
loss of events, as well as distorsion of the synchronization
between events occurring at different nodes of the network.
While LTT architectures possess significant advantages, their
use for distributed discrete control raises serious difficulties.

Together with other authors, the authors of this paper have
proposed a comprehensive design methodology ensuring the
preservation of semantics, from specification to implementation
over LTTA. This technique uses sophisticated token based
protocols alike so-called elastic circuits recently introduced for
asynchronous hardware.

In this paper we propose a completely different approach,
with no flow of token, and entirely time based. Our approach
relies on upsampling and suitable use of local counters. We
prove the preservation of semantics, from specification to
implementation on LTTA with this technique, and we study
its performance. An extended version of this paper with more
results is found in [5].

Keywords: real-time systems, distributed control, time-triggered,
loosely time-triggered, MoCC.

I. INTRODUCTION

The advantages of using synchronous models to describe
design functionality of embedded systems are well known.
However, this comes at a price: it is hard to implement
synchrony, especially on distributed execution platforms. A
solution for implementing synchronous models on distributed
platforms is to use a clock synchronization protocol (e.g.,
see [10], [11]) to synchronize the clocks of the different
execution nodes of the distributed architecture. This approach
is followed by the Time Triggered Architecture [8]. Tech-
niques for generating semantic-preserving implementations
of synchronous models on TTA have been studied in [6].
However, this approach carries cost and timing penalties that
may not be acceptable for some applications. In particular,
TTA is not easily implementable for long wires (such as in
systems where control intelligence is widely distributed) or
for wireless communications.
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Hence, there has been growing interest in less constrained
architectures, such as the Loosely Time-Triggered Architec-
ture (LTTA) [2]. LTTA is characterized by a communica-
tion mechanism, called Communication by Sampling (CbS),
which assumes that: 1/ writings and readings are performed
independently at all nodes connected to the medium, using
different local clocks; and 2/ the communication medium
behaves like a shared memory. This architecture is very
flexible and efficient as it does not require any clock syn-
chronization, and it is not blocking both for writes and
reads. Consequently, risk of failure propagation throughout
the distributed computing system is reduced and latency is
also reduced albeit at the price of increased jitter. However,
data can be lost due to overwrites or alternatively duplicated
because reader and writer are not synchronized. If, as in
safety critical applications that involve discrete control for
operating modes or handling protection, data loss is not
permitted, then special techniques must be developed to
preserve the semantics of the specification.

LTT architectures are widely used in embedded systems
industries. The authors are personally aware of cases in
aeronautics [13], nuclear, automation, and rail industries
where the LTTA architecture with limited clock deviations
has been used with success. The LTT bus based on CbS was
first proposed in [2] and studied for a single writer-reader
pair and [12] proposes a variation of LTTA where some
master-slave re-synchronization of clocks is performed. More
recently, LTT architecture of general topology was studied in
[1], [14], using techniques reminiscent from so-called back-
pressure [4], [3] and the related elastic circuits [7].

In a different direction, [9] develops an alternative ap-
proach where up-sampling is used in combination with
“thick” events as a way to preserve semantics. The approach
we present in this paper extends and clarifies the above one.

The paper is organized as follows. Artifacts caused by CbS
communication are discussed in Section II. The problem is
set in Section III and solved in Section IV. An extended
version of this paper with more results is found in [5].

II. ARTIFACTS CAUSED BY CBS COMMUNICATION

Throughout this paper, we consider an architecture as
shown in Figure 1. In this figure, a distributed architecture for
discrete control is shown. Communication medium (figured
here as the bus filled in grey) operates by sampling, meaning
that:

Assumption 1:
1) the communication medium behaves like a collection
of shared memories, one for each variable;
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Fig. 1. The considered LTT Architecture. Three shared memories are
depicted as shaded buses, for the three variables z, y, and z. For each
variable, there is one writer and zero or more readers.

2) updates of every variable are visible to every node;

3) writings and readings are performed independently at
all nodes connected to the medium, using different,
non synchronized, local clocks.

CbS communication can be formalized as follows, for in
the input and out the output:

m(t) = max{n|s,+7 <t}
CbS|7] v(t) = iMm 1
outy, = v(tg)

In (1), indexes m and %k count the ticks of the input and
output clock, respectively, s,, and t; are the dates of mth
and kth corresponding clock ticks, and 7 > 0 is the commu-
nication delay (time needed for fetching data). Say that CbS
is zero delay if 7 = 0 in (1). Compare (1) with outy = ing
which corresponds to ideal, zero time communication.

The problem when reading multiple signals is illustrated
on Figure 2. We show here the case of A; reading two
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respectively, and computing their conjunction a; A b;. Cases
1 and 2 correspond to two different outcomes for the local
clock of A;. Observe that the result takes three successive
values F, T, and F for case 1, whereas case 2 yields the
constant value F. The origin of the problem is that events
attached to different signals can be separated by arbitrary
small time intervals—in Figure 2 the problem comes from
the very close jumps for a; and b;. No reasonable assumption
can prevent this from happening in a distributed setting.

III. PROBLEM SETTING

In this section we set the landscape and explain what
the problem is that we want to solve. We first specify the
application for deployment. Then we formalize the objective
of our study, namely preserving application semantics.

A. The application

We are given an underlying set Z of variables. Our spec-
ifications for discrete controllers are modeled using dataflow
diagrams. That is, they consist of a network of computing
nodes of the following form:

Xk = f(Xk_l ul up)
N » Y » Y 2
{yk—ﬂ&%%m%) 2)
In (2), k is the discrete time index, u', ..., uP,v!, ... v? €

Z are the input variables of the node, X C Z is the tuple
of state variables of the node, y € Z is the output variable
of the node, and f, g are functions.

Our model seems to require that every input and output
flow is involved in all transitions of the discrete controller.
This may not be always the case, however. In particular, in
applications for deployment over LTT Architectures, events
of interest are typically represented as changes in some of
the variables. Such changes need not to occur at all instants
k. For instance, that node N of formula (2) is not active

—As3 Ay As af instant k is captured by the fact that all of its variables
rdmain unchanged at that instant.
2 Nodes Ny,...,N,, can be composed by output-to-input
b cpnnections to form systems, i.e., networks of nodes, denoted
7 b
R S = Ni|...|IN, 3)
t
- - Skstems can be further composed in the same way, denoted
0; :
case
ag Nby — SIHHSI %)
Node (2) is abstracted as the following labeled directed
] graph:
case
%@& XX | Xeu |, ..., Xeup
G(N) " | (5)
b y—X |, y<—v y eee o, Y0
t |

Fig. 2. Sensing multiple signals, for distributed clocks subject to indepen-
dent drifts and jitters.

boolean inputs a; and b; originating from A, and Ag,

A branch y < X indicates that y depends on X through
a Unit Delay, whereas a branch y « v indicates a direct
dependency. Systems S = Ny || ... || N,, are abstracted as
the union of the associated graphs G(S) = G(N;) U ... U
G(N,,), and the same holds, inductively, for G(S) when S =
Syl ... || Sr.
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Assumption 2: We require that, in G(S), no loop exists
involving branches not labeled by delay symbols UD.

Referring to Figure 4, consider G(S) = G(S1)U...UG(S)).
Using Assumption 2, erasing, in G(S), branches labeled by
delay symbols UD yields a partial order denoted by =; set
<==< N #. For z a vertex of G(5), define its level {(z) as
being
the largest index ¢ > 0 such that a chain
20 < 21 < ... =z = z exists in G(5).

(6)

The level is illustrated on Figure 3.

UD

UD X :4 ‘ ‘ u:0 ‘ ‘ v:0 ‘

Fig. 3.

Ilustrating the level of a node.

B. Deployment and semantics preserving

Deploying the application Sy || ... || .S; of formula (4) is
performed by mapping each sub-system .S; to the correspond-
ing processor A;. Consequently, communications between
sub-systems are now implemented using CbS communica-
tion, as modeled by formulas (1).

S

0O

/
o

Fig. 4. The problem: showing flow equivalence between LTTA design (top)
and strictly synchronous design (bottom). The set of all shared memories
is depicted here as a single bus.

The problem we need to solve is explained in Figure 4. In
this figure we show 1/ the LTT, CbS-based, Architecture of
Figure 1, and 2/ the same architecture in which we assume
that all clocks are strictly synchronized with ideal commu-
nication taking no time. Deployment of the application over
the strictly synchronous architecture of Figure 4, bottom, is
straightforward. The different computing units compute in
lock steps—we call them reactions—according to the global
clock. Each node N is assigned some computing unit for its
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execution. Then, the computation of the different variables
is scheduled within each reaction, by respecting partial order
<. Note that such a scheduling can be statically defined byt
need not be so.

In this method, variables can be updated at each reaction.
Observe that we can instead update variables at every second
(or third, etc.) reaction and keep silent otherwise. We can
even cluster successive clock ticks together to form succes-
sive macro-reactions of the architecture. This can be, e.g.,
performed by downsampling the clock by a constant factor,
so the macro-reactions involve a fixed number of clock ticks
in this case. But a variable number of clock ticks can be also
considered, for the successive macro-reactions. Now, inside
each macro-reaction, one need to schedule the computation
of the different variables by respecting partial order <. This
leaves room for computing different variables at different
clock ticks.

All the above designs implement correctly the application
function, which consists in mapping input streams to out-
put streams as specified by formulas (2)—(4). We say that
application semantics is preserved.

In the following section we show that the above notion of
macro-reaction can be further adapted to the LTT Architec-
ture of Figure 4, top, in such a way that application semantics
is preserved. This will show that the two architectures of
Figure 4 can be made equivalent, from the point of view of
preserving semantics.

IV. PROTOCOL DESIGN

In this section we develop a protocol ensuring that the
LTT Architecture of Figure 4, top, preserves application
semantics. We first begin by stating assumptions regarding
clocks and communication delays.

A. Assumptions regarding clocks and communication delays

We assume a distributed set (k%);c; of quasi-periodic
LTTA clocks. Quasi-periodicity consists in assuming the
existence of lower and upper bounds Ti,i, and Ti,.x for
the interval between any two successive ticks of any clock:
vk e N:

Tmin < K — Kj_1 < Tmax (7)
Then, we assume communication delays to be bounded:
0 < Tmin €7 < Tiax < +00 (8)
B. A simple protocol
Consider the following additional assumptions:

Assumption 3: Every communication between different
sites occurs through state variables and is thus subject to
a unit delay.

In the framework of Section III-A, this corresponds to a level
0 for all input nodes of the different systems, see formula
(6) and Figure 3.

Assumption 4: For each computing unit, executions take
at most one clock cycle and a computing unit which starts
executing freezes its input data.
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n = 0;
sees no
other write

n>0/n:n—1 —

broadcast

lalb
n>0/n:—n—1g %n>0/n:—n—l
" 0/[ start exec } 2a 2b n:O/{ start exec }
n = N2q n = n2p

| | start exec | |
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|

sees write
other write n = Nip

Q !n>0/n:—n—l

start exec

broadcast | |

Fig. 5.
transitions.

We stress that communicated variables are not updated at
each reaction of the application, but only when required by
the application. Consequently, a processor does not know a
priori which variable update it is supposed to see at a given
reaction.

Protocol 1 (simple protocol): Assumptions 1-4 are in

force. The protocol is shown on Figure 5.

Referring to figure 5, protocol 1 is modeled as an automaton
whose transitions are labeled by actions and are guarded,
either by observations from the CbS medium, or by condi-
tions on the counter n. Thus, transitions are labeled by a pair
guard/ action; action is optional, whereas an empty guard
means true. The net can progress at each tick of the local
clock of processor A;, guards permitting. The requirement
is that real-time periods alternate in which broadcast events
(shown in blue on the net) and start executing events (shown
in red on the net) occur, for all processors.

Action “start exec” (attached to red transitions) indicates
that processor A; can start executing at the referred clock
tick. Action “write” (attached to blue transitions) indicates
that processor A; possibly updates its outputs at the referred
clock tick.! Guard “sees other write” indicates that, at the
considered tick of its own clock, A; sees an update of some
output from some other processor. Guard “sees no other
write” indicates that, at the considered tick of its own clock,
A; sees no update of some output from some other processor.

Observe that the guards of transitions outgoing from places
(a) or (b) are not exclusive. Resulting nondeterminism is
removed by specifying that the transition labeled with the

Recall that communicated variables are updated only when needed by
the application, whence the mention of “possibly”.

'

Showing the protocol for a generic processor A; (top) and the requirement (bottom). The same label is attached to each of the three blue sibling

guard “sees other write” has higher priority.

Proof: For Protocol 1 to be correct we must find condi-
tions on the parameters 114, M1p, N2, Nop €nsuring that the
following two requirements remain satisfied, see Figure 5:

o Requirement 1 (start execution): For each computing
unit, execution starts after everybody’s writes have
been all read—this ensures that every computing unit
executes with the same data.

« Requirement 2 (broadcast): For each computing unit,
new writes start after every computing unit has started
executing—this ensure that current and next logical
reactions do not get mixed.

We prove by induction that the two requirements remain
invariant. Our induction hypothesis is that requirements 1
and 2 are satisfied before time t.

a) Requirement 1: suppose the earliest update occurs
at real-time ¢. Our induction hypothesis is that requirements
1 and 2 are satisfied before time ¢. Then:

o The last readings® occur at latest at time
t + 271’118.)( + Tmax-

To see this, pick a computing unit that is “late to
awake”: this unit just missed the earliest writing, which
was made available at latest at ¢ + T,ax. It can notice
this writing at latest within one period Ty,,x and then it
decides to update its outputs, which takes at most Ty ax
before being made available to other units.

o Executions can occur at earliest at time

min(t + 1714 min , t + Tmin + 2167 min) 9)

2Observe that only first readings are depicted on the net of Figure 5.
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The first case corresponds to a “first to write” unit and
the second one corresponds to a “first to awake” unit
that could notice earliest possible the first writes.

Thus, Requirement 1 reduces to the following condition:
27—max + Tmax < min(nlaTmin » Tmin + nlemin)

which can be satisfied by taking

27—max + Tmax

Nig = ’7Tmin w (10)
27'max + ﬂnax — Tmin

np = [ T w (11)

b) Requirement 2:
o The next writings can start not earlier than

. t + (nla + nQa)Trnin + Tmin
min
Tmin T t+ (nlb + n2b)Tmin + Tmin

The first term corresponds to a “first to write” unit
— notice the 7,;, which corresponds to the minimal
communication delay. The second term corresponds to
a “first to awake” unit.

o The latest execution cannot start later than:

t+ 2Tmax + Tmax + nlemax
tax { t+ nlaTmax (12)
The first term corresponds to a “last to awake” unit. The

second term corresponds to a slow “first to write” unit.
Thus, Requirement 2 reduces to the following condition:
2Tmax + Tmax + nlemax

fax { nlaTmax
< (13)
. Tmin + (nla + n2a>Tmin
fon { 27—mim + (nlb + n2b)Tmin

which can be satisfied by taking appropriate lower bounds for
Na, and ngy, using the values (10,11) for the pair (114, n1p),
namely:

Pmax Trnin+(1+715) Tmax — maTmmW
Tmin
Noe, = max (14)
" —TmintNia max_nlaTmin-I
Tmax—2Tmin~+( 1+nlb)dex*nlemm
[ 1
N9y = max (15)
’V 27'mm+nlaTmax_nlemin—‘
Tmin
This finishes the proof of Protocol 1. ]

Slow-down caused by the protocol: The above analysis
regarding parameters niq, 71p, N2q, Nop Of protocol 1 shows
that the maximum number of computing unit clock cycles
required in the distributed case to execute a single round of
the application is:

r = max{ni, + Noq, N1y + N2y}

It is noticeable that this slow-down is independent from
the number of distributed computing units. Though there
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can be several motivations for distributing programs (fault
tolerance, location of sensors and actuators, etc...) among
which performance is not always the major concern, yet
we can remark here that distribution in general reduces the
task load of each unit allowing them to run faster. Thus this
required slow-down can possibly be compensated by faster
clock cycles.

e [T 0 s
U = =
N ’2_\ ’1 '0/2 ’1 ’o_/:\g ’2

broadcast start exec broadcast

Fig. 6. Illustrating protocol 1. Referring to figure 5, transitions labeled with
0/3 correspond to firings of la; transitions labeled with 0/2 correspond
to firings of 2a or 2b. Small rectangles indicate the delay in broadcasting
updates.

Figure 6 illustrates the protocol with: T34, = 1.5, Thin =
1, Timaz = Tmin = 0.5 which yields n1, = 3 and nqp =
Noe = MNop = 2. We can see clearly how synchrony
is preserved thanks to a separation in time of alternating
broadcast and execution periods. In this case we get r = 5
for the slow-down.

C. An illustration example

This example was suggested to one of the authors by Moez
Yeddes and René David during the CRISYS project [15].
Consider the following synchronous boolean dynamical sys-
tem:

T =
Y =

Only one behaviour is possible for system (16): let k, < 0o
be the first time when u; = T. Then we have (zy,yx) =
(F,F) for k < k. and (zg,yr) = (T,T) for k > k..

We wish to deploy this system on an architecture consist-
ing of three sites S, So, and S3, communicating via CbS.
Input u is read on site Sy; = is computed on site So; and
y is computed on site S3. The needed communications are
CbS.

The following scenario can occur if no precaution is taken:

Wk—1-Uk—1 V Tk—1 , To =F

16
1. U1V Yk—1 , Yo =F (16)

1) At some time ¢,, u changes, from F to T. This change
is broadcast at the subsequent tick of !, which occurs
at real-time t; > t..

2) Due to lack of clock synchronization, this change is
first seen by site S, say at time t5 > t; of its clock K2
Site S5 reacts by emitting immediately, on its output
port, the value T for z.

3) Due to the lack of clock synchronization, site S5 sees,
at the same clock tick of its clock 3, both the above
change in u, and the new change in . This occurs at
time t3.
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4) Following this, the system is stuck at the values (T, F)
for the pair (z,y).
This scenario is illustrated on Figure 7. The graph G(S) is

t1
t
u Sy .
S ta
xz: Sy \1
\\\ \‘\ t3
y: S L |

Fig. 7. A wrong scenario for example (16). The values F, T are represented
as —1, 41. Clock ticks are depicted by pink thick vertical bars. Blues dashed
arrows depict how changes in variables propagate in this scenario.

(with obvious abuse of notation):
u— (z,y), (z,y) = (2,y)

Observe that assumption 3 holds. Let the three clocks x%,i =
1,2, 3, satisfy condition (7), with Ti;, = 1 and Tiax = 2,
as shown on Figure 8. To simplify, we ignore the commu-
nication delays: Tyax = 0. Applying formulas (10,11) and
(14,15) yields in this case ni, = N1y = 2, Nag = Nop = 2,
which yields an upsampling rate of 4. The result is shown
on Figure 8. Note that, at the end of the reaction (marked

broadcast start exec
Uu: o1 |
—
Ll‘\ L -~ -l T w

xS : \\\,
y:Ss \ ‘\E—
TmaX

Tmin

Fig. 8. This figure continues Figure 7, with reduced scale. We see that
changes in inputs from site S are taken into account with a delay of 2 clock
ticks. Memory updating are postponed by a further amount of 2 clock ticks
(depicted with cyan very thick bars).

by the very thick cyan bars), the values for all variables and
memories are correct. This ensures preservation of semantics.

D. Relaxing assumption 3: an improved protocol
An improved version of the simple protocol allows han-
dling the case when assumption 3 does not hold, see the full
paper [5].
V. CONCLUSION
We have proposed a simple way of deploying a syn-
chronous spefication over an LTT architecture. Our approach

is simple and robust in that it does not require any additional
messaging — excess messaging is an additional source of
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problems when fault tolerance is considered. Instead, our
approach entirely relies on a combination of loose synchro-
nization requirements between clocks (limited relative drift
between different clocks), upsampling mechanisms, and local
counters.
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