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Abstract— The contribution of this paper is a variance
analysis of estimated models of cascade dynamical systems.
Models of such systems are important in for example cascade
control applications. The model quality is analyzed by means
of the asymptotic covariance matrix of the prediction error
method parameters estimates. Recent work has shown that
identification of two cascaded linear systems, where the transfer
functions of the sub-systems are identical, has some fundamen-
tal limitations in terms of asymptotic statistical performance.
Under this condition, the output from the second sub-system
does not influence the quality of the estimated model of the first
subsystem. The objective of this paper is to extend this result
to the case where the transfer functions of the sub-systems are
not completely identical, but do have some common dynamics.
We will also study cascaded systems with three sub-systems,
and show that a similar variance result also holds for this case.
The results are illustrated by some simple FIR examples.

I. INTRODUCTION

System identification is about estimating and validating
models of dynamical systems based on measured data. It is
very common to have some physical structural information,
which should be included in the model structure. The results
to be presented are motivated by the discussion on the use
of structural system identification in process industry given
in [10].

Many physical systems have a cascade form illustrated in
Fig. 1.
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Fig. 1. Cascade system with two subsystems.

The corresponding transfer function model is

y1(t) = G1(q)u(t)+ e1(t)
y2(t) = G2(q)G1(q)u(t)+ e2(t).

The input signal is denoted by u(t) and the two output signals
are y1(t) and y2(t), respectively. The transfer functions are
G1(q) and G2(q), and are both assumed to be stable. By q
we denote the shift operator, q−1u(t) = u(t−1). The signals
e1(t) and e2(t) are the measurement noise processes. We
assume that the dimensions of the input and the two output
signals are all one (the scalar case).

Cascade systems are very common in both process control
and in control of servo mechanical systems. In mechanical
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application y1(t) is often a rate while y2(t) is a position.
In process control application, the primary output y2(t) is
often a quality variable such as temperature or levels, while
the secondary output y1(t) typically concerns an intermediate
variable such as flows or pressures. The quality of the sensors
for measuring the two outputs can be quite different. We
will model this by the size of the variances of e1(t) and
e2(t). High variance means a poor measurement quality. The
resulting model is often used to design a cascade control
system.

We will study the statistical properties of estimated mod-
els of cascade system when a Prediction Error Method
(PEM), [4], is applied to a measured data set of the form
{u(t),y1(t),y2(t)}, t = 1 . . .N. This is an asymptotically
statistically optimal (efficient) method to solve the structured
cascade system identification problem and the correspond-
ing estimates will asymptotically (for large N) achieve the
Cramér-Rao lower bound.

The outline of this paper is as follows. First, we will
review the case when the true two transfer functions in the
cascade structure are identical. These results are based on
[8] and have been inspired by a recent geometric approach
to variance analysis in system identification developed in
[5], [7], [6]. The objective of this paper is to extend these
results to more complex cascade structures. Section III
deals with systems where the two transfer functions have
common dynamics, while Section IV considers identification
of cascade systems with three subsystems. Finally, the paper
is summarized in Section V.

II. REVIEW

Let G1(q,θ1) and G2(q,θ2) be general transfer function
models, with independent parameterizations, of a cascade
system as shown in Fig. 1,

y1(t) = G1(q,θ1)u(t)+ e1(t)
y2(t) = G2(q,θ2)G1(q,θ1)u(t)+ e2(t).

Furthermore, assume that the measurement noise processes
{e1(t)} and {e2(t)} are independent white noises with vari-
ances λ1 and λ2, respectively. We will assume that these
variances are pre-given, but the results can easily be extended
to the case when the noise variances also are estimated.

The notation θ o
1 and θ o

2 will be used for the parameters of
the true underlying system to be identified, which is assumed
to belong to the model set.

Given a data set {u(t),y1(t),y2(t)}, t = 1 . . .N, the PEM
estimates of the model parameters θ1 and θ2 are given by(

θ̂1

θ̂2

)
=arg min

θ1,θ2

(
1
N

N

∑
t=1

[y1(t)−G1(q,θ1)u(t)]2

λ1

+
1
N

N

∑
t=1

[y2(t)−G2(q,θ2)G1(q,θ1)u(t)]2

λ2

)
.
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Let

ψ(t) =

⎛
⎜⎜⎜⎜⎝

G′
1(q,θ o

1 )u(t)√
λ1

G2(q,θ o
2 )G′

1(q,θ o
1 )u(t)√

λ2

0
G′

2(q,θ o
2 )G1(q,θ o

1 )u(t)√
λ2

⎞
⎟⎟⎟⎟⎠ ,

where prime denotes differentiation with respect to the
parameter vectors. The asymptotic covariance matrix of the
parameter estimate is then given by

Cov

(
θ̂1

θ̂2

)
∼ M−1,

where
M = NE{ψ(t)ψT (t)}

See e.g. [4] for details. Introduce

A =
N
λ1

E{[G′
1(q,θ o

1 )u(t)][G′
1(q,θ o

1 )u(t)]T},

B =
N
λ2

E{ [G2(q,θ o
2 )G′

1(q,θ o
1 )u(t)]

× [G2(q,θ o
2 )G′

1(q,θ o
1 )u(t)]T},

C =
N
λ2

E{ [G2(q,θ o
2 )G′

1(q,θ o
1 )u(t)]

× [G′
2(q,θ o

2 )G1(q,θ o
1 )u(t)]T},

D =
N
λ2

E{ [G′
2(q,θ o

2 )G1(q,θ o
1 ))u(t)]

× [G′
2(q,θ o

2 )G1(q,θ o
1 )u(t)]T},

which give

M =
(

A+B C
CT D

)
.

We will use an A,B,C,D notation to specify matrix elements,
which will not necessary be the same throughout the paper.

The key result in [8], which is inspired by a recent geo-
metric approach to variance analysis in system identification
developed in [5], [6], [7] is as follows: Assume that

Condition 1: G2(q,θ o
2 )G′

1(q,θ o
1 ) = G′

2(q,θ o
2 )G1(q,θ o

1 )

This is the case if the two true transfer functions are identi-
cal, G2(q,θ o

2 ) = G1(q,θ o
1 ), and that we are using the same

model structure for both models, G′
2(q,θ o

2 ) = G′
1(q,θ o

1 ).

This assumption implies that M will have the following
block structure

M =
(

A+D D
D D

)

where

A =
N
λ1

E{[G′
1(q,θ o

1 )u(t)][G′
1(q,θ o

1 )u(t)]T},

D =
N
λ2

E{ [G′
2(q,θ o

1 )G1(q,θ o
1 )u(t)]

× [G′
2(q,θ o

1 )G1(q,θ o
1 )u(t)]T}. (1)

Using the transformation matrix

T =
(

I −I
0 I

)
we obtain

TMTT =
(

A 0
0 D

)
and

M−1 = TT
(

A−1 0
0 D−1

)
T =

(
A−1 −A−1

−A−1 A−1 +D−1

)
.

Hence

Cov
(
θ̂1
) ∼ A−1,

Cov
(
θ̂2
) ∼ A−1 +D−1.

If Condition 1 holds we thus can conclude:
• Since the matrix A−1 is the asymptotic covariance

matrix of θ̂1 when only y1(t) is available, the quality of
the estimate of θ1 is never improved by also measuring
y2(t).

• The covariance of the estimate of θ2 equals A−1 +D−1,
and is thus always larger than or equal to the covariance
of θ̂1, since

A−1 +D−1 ≥ A−1

for positive definite matrices. This is true even if one
has noise free measurements of y2(t). The asymptotic
covariance matrix of θ̂2 is also always larger than or
equal to D−1, (A−1 + D−1 ≥ D−1), which equals the
asymptotic covariance matrix of θ̂2 if G1(q) is known
(or equally λ1 = 0).

If it is known in advance that G2 = G1, this should of course
be imposed in the model structure,

y1(t) = G1(q,θ1)u(t)+ e1(t)
y2(t) = G1(q,θ1)G1(q,θ1)u(t)+ e2(t)

The asymptotic covariance matrix M−1 of θ̂1 can then be
calculated using

ψ(t) =
(

G′
1(q,θ o

1 )u(t)√
λ1

2G′
1(q,θ o

1 )G1(q,θ o
1 )u(t)√

λ2

)
,

in M = NE{ψ(t)ψT (t)}. This implies that M = A+4D with
the notation above. Since

(A+4D)−1 < A−1

for positive definite covariance matrices A and D, the vari-
ance of θ̂1 can here be considerably smaller than for the case
with separate parameterizations.

III. GENERALIZATIONS

The objective of this paper is to generalize and extend the
variance results reviewed in the previous section. To start,
consider the condition

Condition 2: G2(q,θ o
2 )G′

1(q,θ o
1 ) = kG′

2(q,θ o
2 )G1(q,θ o

1 )

where k is a constant. This is for example the case if

G2(q,θ o
2 )= β G1(q,θ o

1 ), G′
1(q,θ o

1 )=αG′
2(q,θ o

2 ), k =αβ
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that is G2(q,θ o
2 ) is proportional to G1(q,θ o

1 ) and the models
have the same structure. Then

M =
(

A+ k2D kD
kD D

)
and the asymptotic covariance matrix equals

M−1 =
(

A−1 −kA−1

−kA−1 k2A−1 +D−1

)
.

Here A and D are defined by (1). We thus have the same
result as in the previous section, e.g. the quality of the
estimate of θ1 is not improved by measuring y2(t).

Consider now the more general case when

y1(t) = G1(q,θ1)u(t)+ e1(t)
y2(t) = G22(q,θ22)G21(q,θ21)G1(q,θ1)u(t)+ e2(t),

i.e.

G2(q,θ2) = G22(q,θ22)G21(q,θ21), θ2 = (θT
21, θT

22)
T

The transfer function in the second block in Fig. 1 is
factorized into two transfer functions. Now

ψ(t) =⎛
⎜⎜⎜⎜⎜⎜⎝

G′
1(q,θ o

1 )u(t)√
λ1

G21(q,θ o
22)G21(q,θ o

21)G
′
1(q,θ o

1 )u(t)√
λ2

0
G22(q,θ o

22)G
′
21(q,θ o

21)G1(q,θ o
1 )u(t)√

λ2

0
G′

22(q,θ o
22)G21(q,θ o

21)G1(q,θ o
1 )u(t)√

λ2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Assume that

Condition 3: G21(q,θ o
21)G

′
1(q,θ o

1 ) = G′
21(q,θ o

21)G1(q,θ o
1 )

This is the case if G2(q,θ o
2 ) has G1(q,θ o

1 ) as a factor,
and hence extends the proportional case discussed above by
allowing for common dynamics. We then obtain that the
asymptotic covariance matrix

M =

(
A+B B C

B B C
CT CT F

)
,

where

A =
N
λ1

E{[G′
1(q,θ o

1 )u(t)][G′
1(q,θ o

1 )u(t)]T},

B =
N
λ2

E{ [G22(q,θ o
22)G

′
21(q,θ o

21)G1(q,θ o
1 )u(t)]

× [G22(q,θ o
22)G

′
21(q,θ o

21)G1(q,θ o
1 )u(t)]T},

C =
N
λ2

E{ [G22(q,θ o
22)G21(q,θ o

21)G
′
1(q,θ o

1 )u(t)]

× [G′
22(q,θ o

22)G21(q,θ o
21)G1(q,θ o

1 )u(t)]T},
F =

N
λ2

E{ [G′
22(q,θ o

22)G21(q,θ o
21)G1(q,θ o

1 )u(t)]

× [(G′
22(q,θ o

22)G21(q,θ o
21)G1(q,θ o

1 )u(t)]T}.
We will extend the method to find M−1 by using

T =

(
I −I 0
0 I 0
0 0 I

)
(2)

to obtain

TMTT =

(
A 0 0
0 B C
0 CT F

)
.

Introduce

R =
(

R11 R12
RT

12 R22

)
=
(

B C
CT F

)−1

,

to give

M−1 = TT
(

A−1 0
0 R

)
T

=

⎛
⎝ A−1 −A−1 0

−A−1 A−1 +R11 R12
0 RT

12 R22

⎞
⎠ . (3)

This means that

Cov
(
θ̂1
) ∼ A−1,

Cov
(
θ̂21
) ∼ A−1 +R11,

Cov
(
θ̂22
) ∼ R22.

and the key results under Condition 3 are:

• Since the matrix A−1 is the asymptotic covariance
matrix of θ̂1 when only y1(t) is available, the quality
of the estimate of θ1 is also in this case not improved
by measuring y2(t).

• The covariance of the estimate of θ2 = (θT
21θT

22)
T equals

(
A−1 0
0 0

)
+
(

B C
CT F

)−1

.

The second term in this expression is nothing else but
the asymptotic covariance matrix of θ̂2 = (θ̂21 θ̂22)T

when G1(q) is known (or equally λ1 = 0). Hence, the
quality of the estimate of θ21 is for λ1 > 0 always worse
than the estimate of θ1. However, the quality of the
estimate of θ22 is independent of y1(t) and hence always
of the same quality as if G1(q) is known.

For the constrained model structure, (G21 = G1)

G2(q,θ2) = G22(q,θ22)G1(q,θ1)

we have

ψ(t) =⎛
⎜⎜⎝

G′
1(q,θ o

1 )u(t)√
λ1

2G22(q,θ o
22)G1(q,θ o

1 )G′
1(q,θ o

1 )u(t)√
λ2

0
G′

22(q,θ o
22)G1(q,θ o

1 )G1(q,θ o
1 )u(t)√

λ2

⎞
⎟⎟⎠

and

M =
(

A+B C
CT F

)
,
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where

A =
N
λ1

E{[G′
1(q,θ o

1 )u(t)][G′
1(q,θ o

1 )u(t)]T},

B =
N
λ2

E{ [2G22(q,θ o
22)G

′
1(q,θ o

1 )G1(q,θ o
1 )u(t)]

× [2G22(q,θ o
22)G

′
1(q,θ o

1 )G1(q,θ o
1 )u(t)]T},

C =
N
λ2

E{ [2G22(q,θ o
22)G1(q,θ o

21)G
′
1(q,θ o

1 )u(t)]

× [G′
22(q,θ o

22)G1(q,θ o
1 )G1(q,θ o

1 )u(t)]T},
F =

N
λ2

E{ [G′
22(q,θ o

22)G1(q,θ o
1 )G1(q,θ o

1 )u(t)]

× [(G′
22(q,θ o

22)G1(q,θ o
1 )G1(q,θ o

1 )u(t)]T}.
It is now possible to verify that we now obtain a lower
variance for θ̂1 than for the unconstrained case.

We will now illustrate this result with a simple analytic
example.

Example: Consider the model structure

y1(t) = G1(q,θ1)u(t)+ e1(t)
y2(t) = G22(q,θ22)G21(q,θ21)G1(q,θ1)u(t)+ e2(t),

with first order FIR transfer functions

G1(q,θ1) = 1+b1q
−1, θ1 = b1,

G21(q,θ21) = 1+b21q
−1, θ21 = b21,

G22(q,θ22) = 1+b22q
−1, θ22 = b22,

Assume {e1(t)} and {e2(t)} to be white noise with variances
λ1 and λ2, respectively. Let the input signal u(t) be white
noise with variance 1.

We will study the case when G21(q,θ o
21) = G1(q,θ o

1 ),
i.e. bo

21 = bo
1, for which

ψ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

u(t −1)√
λ1

(1+bo
22q

−1)(1+bo
1q

−1)u(t−1)√
λ2

0
(1+bo

22q
−1)(1+bo

1q
−1)u(t−1)√

λ2

0
(1+bo

1q
−1)(1+bo

1q
−1)u(t−1)√

λ2

⎞
⎟⎟⎟⎟⎟⎟⎠

and

M =

(
a+b b c

b b c
c c f

)
,

where

a =
N
λ1

, b =
N
λ2

(1+(bo
22 +bo

1)
2 +(bo

22b
o
1)

2)

c =
N
λ2

(1+2bo
1(b

o
22 +bo

1)+bo
22(b

o
1)

3)

f =
N
λ2

(1+4(bo
1)

2 +(bo
1)

4).

Direct calculations using determinants and co-factors now
give

M−1 =

⎛
⎜⎜⎜⎝

1
a 0 0

0 1
a + f

b f − c2
−c

b f − c2

0 −c
b f − c2

b
b f − c2

⎞
⎟⎟⎟⎠ .

This means that for example

Var
(
b̂1
)∼ 1

a
=

λ1

N
,

which hence is the same variance as estimating b1 from y1(t)
only.

IV. GENERALIZATION TO THREE CASCADED
SUBSYSTEMS

What can be said when estimating more than two cascaded
subsystems, for example three

y1(t) = G1(q,θ1)u(t)+ e1(t)
y2(t) = G2(q,θ2)G1(q,θ1)u(t)+ e2(t)
y3(t) = G3(q,θ3)G2(q,θ2)G1(q,θ1)u(t)+ e3(t), (4)

where e3(t) is white noise with variance λ3? This structure
is illustrated in Fig. 2.

u
G1 G2

y1 y2

e2

Σ Σ

y3

e3

G3

e1

Σ

Fig. 2. Cascade system with three subsystems.

Define the 3×3 block matrix

ψ(t) =

⎛
⎜⎜⎜⎜⎝

G′
1(q,θ o

1 )u(t)√
λ1

G2(q,θ o
2 )G′

1(q,θ o)u(t)√
λ2

0
G′

2(q,θ o
2 )G1(q,θ o

1 )u(t)√
λ2

0 0

G3(q,θ o
3 )G2(q,θ o

2 )G′
1(q,θ o)u(t)√

λ3
G3(q,θ o

3 )G′
2(q,θ o

2 )G1(q,θ o
1 )u(t)√

λ3
G′

3(q,θ o
3 )G2(q,θ o

2 )G1(q,θ o
1 )u(t)√

λ3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The asymptotic covariance matrix of the parameter estimates
is then given by

Cov

⎛
⎝ θ̂1

θ̂2

θ̂3

⎞
⎠∼ M−1,

where, as before, M = NE{ψ(t)ψT (t)}.
Now consider

Condition 4: G2(q,θ o
2 )G′

1(q,θ o
1 ) = G′

2(q,θ o
2 )G1(q,θ o

1 )

Hence the true first and second block transfer functions
are identical, while G3(q,θ o

3 ) can be arbitrary.

This is very similar to the two cascaded systems case and
the intuition is that the estimate of θ1 should not be improved
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by measuring y3(t), which just a a filtered version of the
noise free y2(t). To verify that this is the case, let

A =
N
λ1

E{[G′
1(q,θ o

1 )u(t)][G′
1(q,θ o

1 )u(t)]T},

B =
N
λ2

E{ [G′
2(q,θ o

2 )G1(q,θ o
1 )u(t)]

× [G′
2(q,θ o

2 )G1(q,θ o
1 )u(t)]T},

C =
N
λ3

E{ [G3(q,θ o
3 )G2(q,θ o

2 )G′
1(q,θ o

1 )u(t)]

× [G3(q,θ o
3 )G2(q,θ o

2 )G′
1(q,θ o

1 )u(t)]T},
D =

N
λ3

E{ [G3(q,θ o
3 )G2(q,θ o

2 )G′
1(q,θ o

1 )u(t)]

× [G′
3(q,θ o

3 )G2(q,θ o
2 )G1(q,θ o

1 )u(t)]T},
F =

N
λ3

E{ [G′
3(q,θ o

3 )G2(q,θ o
2 )G1(q,θ o

1 )u(t)]

× [G′
3(q,θ o

3 )G2(q,θ o
2 )G1(q,θ o

1 )u(t)]T},
which implies

M =

(
A+B+C B+C D

B+C B+C D
DT DT F

)
.

This matrix has almost the same structure as for the common
dynamics case, and it is easy to verify using the transforma-
tion T, defined by (2), that

M−1 = TT
(

A−1 0
0 S−1

)
T

=

⎛
⎝ A−1 −A−1 0

−A−1 A−1 +S11 S12
0 ST

12 S22

⎞
⎠ ,

where

S =
(

S11 S12
ST

12 S22

)
=
(

B+C D
DT F

)−1

.

This means that under Condition 4,

Cov
(
θ̂1
) ∼ A−1,

Cov
(
θ̂2
) ∼ A−1 +S11,

Cov
(
θ̂3
) ∼ S22,

which is very similar to the common dynamics case and the
same conclusions hold. In particular, the statistical properties
of the estimate of θ1 only depends on the input signal u(t)
and the first output signal y1(t).

We can further simplify the variance result by in addition
to Condition 4 also assume

Condition 5: G3(q,θ o
3 )G′

2(q,θ o
2 ) = G′

3(q,θ o
3 )G2(q,θ o

2 )

Hence under Conditions 4 and 5 all three subsystems are
identical, and C = D = F give

S =
(

B−1 −B−1

−B−1 B−1 +C−1

)
.

Example: Let

G1(q,θ1) = 1+b1q
−1, θ1 = b1,

G2(q,θ3) = 1+b2q
−1, θ2 = b2,

G3(q,θ22) = 1+b3q
−1, θ3 = b3,

and {e1(t)}, {e2(t)} and {e3(t)} are white noise with vari-
ances λ1, λ2 and λ3 , respectively. Let the input signal u(t)
be white noise with variance 1. Now assume that Condition 4
holds, i.e. bo

2 = bo
1 �= 0, and furthermore set bo

3 = 0 to simplify
the calculations. This gives

ψ(t) =

⎛
⎜⎜⎜⎜⎝

u(t−1)√
λ1

(1+bo
1q

−1)u(t−1)√
λ2

,
(1+bo

1q
−1)u(t−1)√
λ3

0
(1+bo

1q
−1)u(t−1)√
λ2

(1+bo
1q

−1)u(t−1)√
λ3

0 0
(1+bo

1q
−1)2u(t−1)√
λ3

⎞
⎟⎟⎟⎟⎠ .

Let

a =
N
λ1

, b =
N
λ2

(1+(bo
1)

2), c =
N
λ3

(1+(bo
1)

2),

d =
N
λ3

(1+2(bo
1)

2), f =
N
λ3

(1+4(bo
1)

2 +(bo
1)

4),

to obtain

M =

(
a+b+ c b+ c d

b+ c b+ c d
d d f

)
,

Some calculations now give that under Condition 4

Var
(
b̂1
) ∼ 1

a
=

λ1

N
,

Var
(
b̂2
) ∼ 1

a
+

f
(b+ c) f −d2 ,

Var
(
b̂3
) ∼ b+ c

(b+ c) f −d2 .

Here the quality of the estimate of b1 is only a function of

λ1.

A remaining question is if it is possible to obtain similar
results under

Condition 6: G3(q,θ o
3 )G′

1(q,θ o
1 ) = G′

3(q,θ o
3 )G1(q,θ o

1 )

while G2(q) could be an arbitrary transfer function? The
answer is no, which can be verified by the following simple
example.

Example: Consider again

G1(q,θ1) = 1+b1q
−1, θ1 = b1,

G2(q,θ3) = 1+b2q
−1, θ2 = b2,

G3(q,θ22) = 1+b3q
−1, θ3 = b3,

and {e1(t)}, {e2(t)} and {e3(t)} are white noise with vari-
ances λ1, λ2 and λ3 , respectively. Let the input signal u(t)
be white noise with variance 1.

We will study the case when G3(q,θ o
3 ) = G1(q,θ o

1 ),
i.e. bo

3 = bo
1 �= 0, and bo

2 = 0. The assumption bo
2 = 0 is just

to simplify the computations. Here

M =

(
a+b+ c b+d c

b+d f d
c d c

)
,
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where

a =
N
λ1

, b =
N
λ2

, c =
N
λ3

(1+(bo
1)

2),

d =
N
λ2

(1+2(bo
1)

2),

f =
N
λ2

(1+(bo
1)

2)+
N
λ3

(1+4(bo
1)

2)+(bo
1)

4).

Then

Var
(
b̂1
) ∼ f c−d2

(a+b)( f c−d2)− cb2 ,

Var
(
b̂2
) ∼ (a+b)c

(a+b)( f c−d2)− cb2 ,

Var
(
b̂3
) ∼ (a+b+ c) f − (b+d)2

(a+b)( f c−d2)− cb2 .

For e.g. bo
1 = 1, we obtain

Var
(
b̂1
) ∼ 1

N
4/λ2 +3/λ3

4/(λ1λ2)+3/(λ1λ3)+2/λ 2
2 +3/(λ2λ3)

,

which clearly is a function of the quality of all three output

signals.
The example shows that the ordering of the systems is

important for the results to hold. It is also possible to show
that only Condition 4 is not sufficient for a separation result,
i.e. the variances of parameter estimates will in general
depend on all three outputs.

V. CONCLUSION

The objective of this contribution has been to generalize
some variance analysis results for identification of cascade
systems. Models of cascade system are special in that they
contain products of transfer functions. We have studied the
case when some sub-transfer functions are equal and showed
that this leads to some unexpected variance results in the
sense that the quality of the estimate of the first subsystem
only depends on the first output. From an industrial per-
spective this means that it is extra important to monitor the
quality of estimates of the transfer functions of a cascade
system using validation data.

The results presented in Sections III and IV are related.
Consider the three subsystems case (4) and assume that
Condition 4

G2(q,θ o
2 )G′

1(q,θ o
1 ) = G′

2(q,θ o
2 )G1(q,θ o

1 )

holds. As shown in Section IV, this gives

M =

(
A+B+C B+C D

B+C B+C D
DT DT F

)

for which

M−1 =

⎛
⎝ A−1 −A−1 0

−A−1 A−1 +S11 S12
0 ST

12 S22

⎞
⎠ ,

where (
S11 S12
ST

12 S22

)
=
(

B+C D
DT F

)−1

.

By letting the variance λ2 of e2(t) tend to infinity we remove
all information from the second output y2(t), and the problem
reduces to the two subsystems case with two output signals.
For λ2 = ∞ we have B = 0 and thus

M−1 =

⎛
⎝ A−1 −A−1 0

−A−1 A−1 +R11 R12
0 RT

12 R22

⎞
⎠ ,

where (
R11 R12
RT

12 R22

)
=
(

C D
DT F

)−1

.

We have recovered the result (3) for two subsystems with
some common dynamics. This approach is studied in detail
in [9].

It would be interesting to study the identification problem
for more complex interconnected block structures, and in
particular quality/variance issues. Many tools for modeling
of physical systems are based on such representations. This
information should then be incorporated in the model struc-
ture used in system identification. Identification techniques
for such system are by no means not new. For example,
[1] considered systems composed of cascade, feed-forward,
feedback and multiplicative connections of linear dynamic
and zero memory nonlinear elements, and showed that such
systems can be identified in terms of the individual com-
ponent subsystems from measurements of the system input
and output only. This includes Wiener and Hammarstein
models as special cases. More recent work on identification
of general structured models can be found in [2], [3].
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