
  

  

Abstract—This paper addresses the design of a reliable 
control system for a linear, asymptotically stable plant. 
Specifically, the considered problem consists of finding a 
regulator which, besides guaranteeing closed loop asymptotic 
stability and zero error regulation when all the instrumentation 
is in operation, also ensures that these properties are preserved, 
at their maximum possible extent, when some sensors and/or 
actuators faults occur, that is, some of the feedback loops open. 
Thus, a single regulator has to be found, able to contemporarily 
solve a certain number of classical regulator problems. 

Referring to a fully decentralized control structure, the 
paper presents a constructive necessary and sufficient 
condition for the problem to admit a solution when the 
exogenous signals are polynomial in time. 

I. INTRODUCTION 
HE problem of designing control systems tolerant with 
respect to faults has received some interest in the past. 

See, for instance, the recent book [1]. 
Within this general context, the Reliable Regulator 

Problem (RRP) considered in this paper makes reference to 
a linear environment and consists of finding a regulator 
which, besides guaranteeing closed loop asymptotic stability 
and zero error regulation when all the instrumentation is in 
operation, also ensures that these properties are preserved, at 
their maximum possible extent, when some sensors and/or 
actuators faults occur, that is, some of the feedback loops 
open. Thus, the problem basically amounts to synthesizing a 
single regulator capable of contemporarily solving a certain 
number of standard regulation problems [2], [3]. In this 
sense, it follows the stream of research which led to [4]-[14], 
among many other contributions. All the mentioned papers 
made reference to only constant exogenous signals and 
decentralized regulators, apart from [12], where also some 
periodic exogenous signals and centralized regulators are 
considered. Further, the recent paper [15] dealt with 
polynomial exogenous signals and centralized regulators, 
and showed that a solution to RRP there exists if and only if 
all the single regulator problems composing the overall RRP 
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separately admit a solution. 
Here, reference is made to polynomial exogenous signals, 

but the case where the regulator is fully decentralized is 
considered. Under this new constraint, the separate 
solvability of the single regulator problems composing the 
overall RRP is not sufficient anymore for a solution to RRP 
to exist. 

As in [15], a necessary and sufficient condition for the 
solvability of RRP is given, whose proof is constructive and 
proposes a decentralized regulator of the least order, which 
has a small gain and supplies the control system with a 
generalized form of the unconditional stability property [7]. 

The layout of the paper is the following. Next section 
formally introduces RRP and Sections III, IV and V are 
devoted to the presentation of the necessary, sufficient, and 
constructive necessary and sufficient conditions for its 
solvability, respectively. Then, Sections VI contains a 
couple of illustrative examples and Section VII some 
concluding remarks. The proofs of the main results are 
sketched in the Appendix. 

II. THE RELIABLE REGULATOR PROBLEM 
This section presents the problem considered in the paper, 

which is stated with reference to the control system 
represented in Fig. 1. 

Loosely speaking, the problem consists of designing a 
decentralized stabilizing controller R for the plant P, also 
ensuring zero error regulation, in the presence of exogenous 
signals polynomial in time, both when the multivariable 
actuator A and sensor S are in operation and when faults 
occur at some local actuator Ai and/or sensor Si. In order to 
face plant parameters variations, it is known that the 
controller must incorporate an appropriate internal generator 
of the modes of the exogenous signals, which make it not
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Fig. 1. The control system. 

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThB17.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4998



  

asymptotically stable. 
The plant P under control is asymptotically stable, square 

and described by 
( ) ( ) ( ) ( ) ( )sWsHsUsGsY +=  , (1) 

where s  is the complex variable, U , W  and Y  are the 
Laplace transforms of the m -dimensional, p - dimensional 
and m -dimensional control, disturbance and output vectors, 
respectively, and ( ) ( ){ }sGsG ij=:  and ( )sH  are two rational 

transfer function matrices of appropriate sizes, which are 
assumed strictly proper and proper, respectively. 

The set point and the disturbance are signals polynomial 
in the time t ; their Laplace transforms oY  and W  are 
strictly proper and take on the form 

( ) ( ) ( )sy
s

sY oo ˆ1
γ

=  , (2.a) 

( ) ( ) ( )sw
s

sW ˆ1
γ

=  , (2.b) 

where 
( ) rss =γ  , (3) 

with 1≥r  integer, whereas oŷ  and ŵ  are unknown 
polynomial vectors of degree less than r . 

The assumption that the denominator γ  is common to the 

vectors oY  and W  does not imply any loss of generality 
since cancellations can occasionally occur between γ  and 

the single elements of oŷ  and ŵ ; however, it is assumed 

that no root of γ  is completely hidden by oŷ  and ŵ , so 

that a signal going to infinity as goes 1−rt  is actually applied 
to the plant. 

As a whole, the multivariable sensor S and actuator A are 
described by 

( ) { } ( )sYsY smss βββ ,...,,diag~
21=  , (4.a) 

( ) { } ( )sUsU amaa
~,...,,diag 21 βββ=  , (4.b) 

respectively, where, for { }mMi ,...,2,1:=∈ , 1=siβ  
( 1=aiβ ) if the i -th local sensor Si (actuator Ai) is in 
operation and 0=siβ  ( 0=aiβ ) in the opposite case. 

On this regard, let assume that all the local sensors and 
actuators are subject to fault and any combination of such 
simple faults may contemporarily occur. 

The regulator R to be designed makes its output, with 
Laplace transform U~ , to depend on the sensed error, with 
Laplace transform 

( ) ( ) ( )sYsYsE o ~:~
−=  . (5) 

More specifically, it is fully decentralized, i.e., it is 
constituted by a set of m local regulators Ri's, each one of 
which determines the i-th component iU~  of U~  as a function 

of the i-th component iE~  of E~  only. 

The actual control system error is 
( ) ( ) ( )tytyte o −=:  , (6) 

with Laplace transform ( ) ( ) ( )sYsYsE o −=: . 

Observe that ii EE ~
=  only if 1=siβ  and ii UU =

~  only if 
1=aiβ , iE  being the i -th component of E  and iU  the i -

th component of U . 
The regulator R is basically linear, that is, the relationship 

it establishes between E~  and U~  is linear for each condition 
of the actuators Ai's and sensors Si's. However, Ri is 
assumed to be aware of the status of the local sensor, that is, 
it knows the value taken on by siβ  and modifies 

accordingly the way iU~  depends on iE~ . Note that this 
assumption does not jeopardize the fully decentralized 
nature of the regulator. 

Specifically, in the absence of faults, that is, if 1=aisiββ , 
Mi ∈ , it turns out that 

( ) ( ) ( )sEsRsU ~~
=  , (7) 

where ( ) ( ) ( ) ( ){ }sRsRsRsR m,...,,diag: 21= , because of the 
decentralization requirement. 

If 0=siβ , Ri sets the effect of iE~  on iU~  to zero, so that 
also 0=iU , which is equivalent to setting ( ) 0=sRi . In 

fact, in this case ii EE ≠
~  does not carry any piece of 

information useful for control. As a consequence, letting a 
nonzero signal iE~  to actually influence the output iU~  of the 
regulator (which must include appropriate reduplications of 
the generator of the exogenous signals [2], [3]) would render 
impossible the zeroing of the error components different 
from the i -th one. 

On the contrary, 0=aiβ  renders impossible the zeroing 
of the i -th error variable, but does not prevent the other 
errors from going to zero. Then, there is no need to detect 
the status of the actuator and take specific actions. However, 
even in this case ( )sRi  can be considered as zeroed. 

Now, let 
{ } MMiif aisi ⊆=∈= 0,|: ββ  (8) 

specify any given pattern of faults. Note that f  is the empty 
set if no fault occurs. 

Then, for any Mf ⊆ , denote by ( )sR f  the transfer 

function matrix obtained from ( )sR  after zeroing the entries 
on the diagonal with indices in f . Then, (7) is substituted 
by 

( ) ( ) ( )sEsRsU f
~~

=  . (9) 

Thus, if it is desired to design ( )sR  such as to guarantee 
asymptotic stability and zero error regulation of all the error 
variables if no fault occurs and to preserve this property to 
the maximum possible extent under any pattern of faults (8), 
the following problem has to be solved. 
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Reliable regulator problem (RRP) 
Find a diagonal proper transfer function matrix ( )sR  such 

that, for all Mf ⊆ : 
(i) The closed loop systems (1), (4), (5), (9) are 

asymptotically stable; 
(ii) The control system error (6) is such that the 

regulation constraints 
( ) fMitei

t
−∈=

∞→
,0lim  , 

hold true in systems (1)-(5), (9) for all perturbations 
of ( )sG  and ( )sH , which preserve the asymptotic 
stability of the closed loop systems (1), (4), (5), (9). 

⁬ 
A couple of remarks are now in order. First, what is 

required concerning stability is the maximum one can call 
for. In fact, asymptotic stability of (1), (4), (5), (7) can never 
be achieved in failed conditions, since the system resulting 
from the cascade connection of S, R and A with input Y  
and output U  will contain not asymptotically stable parts 
which are unreachable and/or unobservable. Second, the 
situation where Mf =  from one hand renders necessary the 
asymptotic stability of the plant, and from another hand is 
plainly trivial, since no error has to be zeroed. Hence, in the 
sequel the only nontrivial patterns of faults, that is, the 
elements of the set { }MffF ⊂= |:  will be considered. 

III. NECESSARY CONDITIONS FOR THE RELIABLE 
REGULATOR PROBLEM 

The RRP essentially consists of solving simultaneously a 
set of classical regulator problems in a linear, time-invariant 
framework. Hence, necessary solvability conditions can 
immediately be derived from [2], [3], where necessary and 
sufficient solvability conditions are given for a single 
standard regulator problem. For this reason the forthcoming 
lemma, which presents them, is given without proof. 

 
Lemma 1 
If the RRP admits a solution, then, all the principal minors 

of ( )0G  are different from zero. 
⁬ 

This lemma can be restated in a form which is more 
suitable for the following developments. 

For any mm×  matrix Λ , let ( )ϕΛ  denote the matrix 
obtained from Λ  after deleting its rows and columns with 
indices in the set M⊂ϕ ; conventionally, if ϕ  is the empty 
set no row and column is deleted. Analogously, for any z , 
let adopt the notation ( )ϕ;zΛ  for a matrix function ( )zΛ . 

Lemma 1 states that, if RRP is solvable, then 
( )( ) FffG ∈∀≠ ,0;0det  . (10) 

Observe that ( )0G  is the plant dc gain from U  to Y  and 
is well defined since ( )sG  is asymptotically stable by 
assumption. The matrix ( )fG ;0  represents the dc gain, as 

seen from the regulator if the pattern of faults is f . Then, 
condition (10) simply means that the plant, deprived of the 
inputs and outputs with indices in f , possesses a 
nonsingular dc gain, and in particular ( )( ) 00det ≠G . 

As shown in [15], the condition of Lemma 1 is also 
sufficient for RRP to admit a solution when a centralized 
regulator is sought, that is, when ( )sR  is allowed to be a full 
matrix. In the present context, where a fully decentralization 
requirement has to be encompassed, this is not so anymore. 
In fact, the following Lemma 2 holds, where 

( ) ( ){ }sGsG iiD diag:= . 
 
Lemma 2 
If the RRP admits a solution, then 

( )( ) ( )( ) FffGfG D ∈∀> ,0;0det;0det  . (11) 
⁬ 

Of course, condition (11) is more demanding than (10). 

IV. SUFFICIENT CONDITIONS FOR THE RELIABLE 
REGULATOR PROBLEM 

As a first step towards the statement of a sufficient 
solvability condition, a third lemma is now introduced, 
which is a slight variation of Lemma 2 in [15]. It guarantees 
the solvability of RRP and supplies an explicit expression of 

( )sR  under the assumption that a suitable matrix, to be 
called V , can be found. Later in the paper (Theorem 1) an 
explicit formula for such a matrix V  will be supplied, so 
getting a condition of a constructive nature. 

 
Lemma 3 
If there exists an mm×  real diagonal matrix V , such 

that, for all Ff ∈ , the eigenvalues of the matrices 
( ) ( )fVfG ;0  all have positive real part, then RRP admits a 

solution. 
Furthermore, there exists 0>ε  such that, for all 

( )εε ,0∈ , the transfer function matrix 

( ) ( )
( )∑ =

+−= r
i

iiirs
s

VsR 1
211 ε

γ
 (12) 

solves RRP. 
⁬ 

The regulator of Lemma 3 is of the least possible order, as 
it only contains an m -fold reduplication of the system 
generating the exogenous signals, which is anyhow 
necessary in order to steer the control system errors to zero 
if all the instrumentation is in operation [2], [3], and supplies 
the control system with a generalized form of the 
unconditional stability property, as defined in [7], in the 
sense that any reduction of ε , with respect to a given value 
belonging to the interval ( )ε,0 , determines a new regulator 
(12) which still solves the RRP. 

Further, trivial, but cumbersome, computations show that 
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the regulator (12) can be rewritten as 

( ) ( ) ( )( )∏ = ++= r
i

ii os
s

VsR 2
1 εεε

γ
 , 

where ( )ϑo  is such that ( ) 0lim 0 =→ ϑϑϑ o , which means 
that the regulator introduces in the loop ( )1−rm  real 
negative transmission zeros, m  of which have order of 

magnitude iε , ri ,,3,2 …= . 
The second step towards sufficiency concerns the 

existence and actual determination of a matrix V  with the 
properties required in Lemma 3. 

Some particular cases have already been dealt with in [4], 
where it has been shown that if ( )0G  is triangular (besides 
being nonsingular) or else diagonally dominant, than it can 
simply be set ( ) ( ){ }00diag: iiii GGV = . Of course, in the 
former case only the signs of the entries of V  are relevant, 
so that each one of them can be scaled by any arbitrary 
positive factor. 

The following lemma shows that an appropriate V  can 
always be found under no condition additional to (11). 
 

Lemma 4 
If condition (11) holds, then there exists 0>ζ  such that, 

for all Ff ∈  and for any ( )ζζ ,0∈ , the eigenvalues of the 
matrices ( ) ( )fTfG ;;0 ζ , where ( ) ( ) ( )ζζ ZGT D 0:= , 

( ) { }mZ ζζζζ ...,,,diag: 2= , all have positive real part. 
⁬ 

It is clear that, for any ( )ζζ ,0∈ , the matrix 
( ) ( )ζZGV D 0:=  has the properties required in Lemma 3, so 

that condition (11) is also sufficient. 

V. NECESSARY AND SUFFICIENT CONDITIONS FOR THE 
RELIABLE REGULATOR PROBLEM 

By combining the results presented in the preceding 
sections, and in particular those stated in Lemmas 2-4, the 
following constructive necessary and sufficient condition for 
RRP to admit a solution, encompassing the fully 
decentralization constraint considered in this paper, can 
immediately be proven. 

 
Theorem 1 
The RRP admits a solution if and only if 

( )( ) ( )( ) FffGfG D ∈∀> ,0;0det;0det  . (13) 

Furthermore, if (13) is satisfied, then there exist 0>ζ  

and a real function ( ) 0>⋅ε  such that, for any ( )ζζ ,0∈  and 
any ( )( )ζεε ,0∈ , the diagonal transfer function matrix 

( ) ( ) ( ) ( )
( )∑ =

+−= r
i

iiir
D s

s
ZGsR 1

2110 ε
γ

ζ  (14) 

solves RRP. 
⁬ 

This theorem shows that the solvability of RRP does not 
depend on r , and turns out to depend only on the plant dc 
gain from U  to Y , which can easily be determined 
experimentally, since the plant is asymptotically stable. 

As for the regulator, it can always be chosen in the class 
of the least order and small gain ones, according to (14), 
where the values of ε  has to be finely tuned by trial and 
error so that condition (i) of the statement of RRP is 
satisfied, after ζ  has been chosen so that, for all Ff ∈ , the 
eigenvalues of the matrices ( ) ( )fTfG ;;0 ζ , all have positive 
real part. 

On this respect, see [16]. 
To the best of the authors' knowledge, RRP has been 

tackled till now for step exogenous signals and under the 
decentralization constraint almost exclusively (with the 
exception of [12], [15]). 

In this framework, the roots of the above necessary and 
sufficient condition for the solvability of RRP are in 
Theorem 1 of [4], where a condition is given, essentially 
equivalent to the one here, but stated as sufficient only and 
not explicit in terms of the problem data, i.e., in the form of 
Lemma 3. The same sufficient condition also appears as 
Theorem 6 in [7], where it is erroneously conjectured 
(Remark 2) that it is not also a necessary one. 

Further, Theorem 1 can also be viewed as a generalization 
of Theorem 11.2 of [5], where however reference is made to 
decentralized PI regulators only. The condition of Theorem 
1 constitutes also a generalization of Theorem 3.1 of [8], 
where only 2 control channels ( 2=m ), though MIMO and 
not necessarily square, are considered. The papers [9]-[11], 
[13], [14] deal with variations and extensions of the problem 
in [8], but do not give totally general, explicit and simple 
solutions to the problem of finding the regulator transfer 
function matrix. 

VI. ILLUSTRATIVE EXAMPLES 
Example 1 According to [17] and [14], the relationships 

between the flow rates of dopamine and sodium 
nitroprusside (control variables) and main arterial pressure 
and cardiac output (controlled variables) in a patient subject 
to anesthesia are described by 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

++
−

=

ss

sssG

21
5

67.01
12

21
3

67.01
6

 , 

which satisfies condition (13). For this system, the reference 
signals are taken as  unitary ramps, so that ( ) 2ss =γ . 

Setting ( )fT ;ζ  as in Lemma 4, it follows that, for all 
Ff ∈ , the eigenvalues of the matrices ( ) ( )fTfG ;;0 ζ  all 

have positive real part for any positive ζ . The choice 
5.0=ζ  supplies 36.0≅ε . Then, the decentralized 

regulator (14) has been applied with 18.0=ε . 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB17.1

5001



  

Figure 2 shows the transients of the error variables if no 
fault occurs ((a), (b)) and a single loop is open ((c), (d)). In 
(a) and (c) ( ) ttyo =1  and ( ) 02 =tyo , whereas in (b) and (d) 

( ) 01 =tyo  and ( ) ttyo =2 . 
Apparently, RRP is solved, even though the transients are 

sluggish and underdamped. 

Example 2 The head box of a paper machine, already 
considered in [18] and [4], and characterized by two control 
inputs (stock flow and air flow) and two controlled outputs 
(total pressure and stock level), is described by 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

−

++

+
++++

+

=

0004.026.0
013.0

0004.026.0
004.01.0

0004.026.0
3.1

0004.026.0
004.02.2

22

22

ssss
s

ss
s

ss
s

sG  , 

which satisfies condition (13). The reference signals are 
again taken as unitary ramps. 

Since ( )0G  is triangular, in accordance with the remark 
before Lemma 4, one can set { }01.0,01.0diag −=V . Then, 

033.0≅ε  and the decentralized regulator (14) has been 
applied with 025.0=ε . 

Figure 2 shows the transients of the error variables when 
no fault occurs ((a), (b)) and a single loop is open ((c), (d)). 
In (a) and (c) ( ) ttyo =1  and ( ) 02 =tyo , whereas in (b) and  

(d) ( ) 01 =tyo  and ( ) ttyo =2 . 
Again, RRP is solved, even though the transients are 

unsatisfactory. This is not only due to the regulator very 
simple structure, but is also a consequence of the fact that 
one of the plant poles ( 00150.s −=  and 260.s −= ) is very 
close to the origin of the complex plane. 

VII. CONCLUDING REMARKS 
This paper presented some new results on the problem of 

designing control systems reliable with respect to faults in 
the instrumentation. The case of exogenous signals 
polynomial in time has been dealt with, and a necessary and 
sufficient condition for solving the problem by means of a 
fully decentralized regulator has been given. 

The here extension of the result of [15], relative to a 
centralized framework, to encompass the decentralization 
constraint is conceptually nontrivial. Indeed, in the latter 
case, the solvability of the single classical regulator 
problems composing an RRP turns out to be no more 
sufficient for its solution. 

The main result is of a constructive nature, but the 
suggested regulator has a least order, so that it may produce 
sluggish and underdamped transients in the control system. 
Hence, the determination of design criteria leading to more 
efficient, though more complex, regulators still remain a 
problem deserving attention. 

Other significant extensions concern both the presence of 
exogenous signals with Laplace transforms having multiple 
nonzero poles on the imaginary axis, and the case where the 
zero-non-zero structure of the regulator transfer function 
matrix must comply with constraints more general than the 
diagonal one dealt with in this paper. 

APPENDIX 
Proof of Lemma 2 (sketch) 
Without loss of generality ([2], [3]), the regulator takes on 

the form ( ) ( ) ( )( ){ }sdssnsR i
r

idiag:= , where the degree of 

( )sni  is less than or equal to the degree of ( )sds i
r , ( )sdi  is 

monic and ( ) 00 ≠in , Mi ∈ . 
For any Ff ∈ , the (rational) characteristic equation of 

the control system is ( ) ( )( ) 0;;det =+ fsRfsGI . 
Let fκ  be the cardinality of f , ff mm κ−=: , 

{ }ffmfff iiifM ...,,,:: 21=−=Ψ , ( ) ( ) ( )sssG ijijij δν=: , 

where the degree of ( )sijν  is less than the degree of ( )sijδ , 

( )sijδ  is monic and Hurwitz, Mi ∈ , Mj ∈ . 

Then, the (polynomial) characteristic equation becomes
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Fig. 2. Error responses for Example 1: (a), (b) system without faults; 
(c) system with a fault in loop 2; (d) system with  a fault in loop 1. 
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Fig. 3. Error responses for Example 2: (a), (b) system without faults; 
(c) system with a fault in loop 2; (d) system with a fault in loop 1. 
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( )( ) 0;det =fsP , where ( ) ( ){ }fspfsP hj ;:; = ,  

( ) ( ) ( ) ( )( ) ( )fssnsGsdsfsp fhifhifhifhi
r

hh ;:; ∆+=  , 

( ) ( ) ( ) ( ) jhfssnsGfsp fjifjifhihj ≠∆= ,;:;  , 

and ( )fs;∆  is the monic least common multiple of the 
( )sijδ 's, fi Ψ∈ , fj Ψ∈ . 

Asymptotic stability implies that the coefficients of the 
terms with highest and lowest degree of ( )( )fsP ;det  have 
the same sign. The former originates from 

( ) ( )∏ Ψ∈ fi i
r

ii sdssδ  and is equal to 1, since the ( )siiδ 's and 

( )sdi 's are monic. Then, the latter is 

( )( ) ( ) ( )fnfG fm
fi i ;00;0det ∆∏ Ψ∈  and must be positive 

too, which, in turn, implies ( )( ) ( ) 00;0det >∏ Ψ∈ fi infG , 

since ( ) 0;0 >∆ ffm , because ( )fs;∆  is monic and 
Hurwitz. 

Considering in particular { }iMfi −=: , Mi ∈ , the above 
condition is equivalent to ( ) ( ) 000 >iii ng , so that, for any 

Ff ∈ , ( )( ) ( )( ) 0;0det;0det >fGfG D , because 

( ) ( )( )fGG Dfi ii ;0det0 =∏ Ψ∈ . 

⁬ 
Proof of Lemma 4 (sketch) 
For any Ff ∈ , the characteristic equation of 

( ) ( )fTfG ;;0 ζ  is ( ) ( )( ) 010 =+−∑ =
−fm

i
ifmi

fi
i so µζζη , 

where 1:0 =fη  and fiη , { }ff mMi ,...,2,1:=∈ , is the 

determinant of the matrix constituted by the first i  rows and 
columns of ( ) ( )fGfG D ;0;0 , whereas 0:0 =µ , 

∑ == i
h fhi i1:µ , under the assumption that the indices fhi  

satisfy ffmff iii <<< ...21  (here fm  and the fhi 's are as 

defined in the proof of Lemma 2). 
For 0=ζ , the characteristic equation possesses exactly 

fm  roots at the origin. Then, by continuity, the lemma is 

proven if it is shown that the multivalued algebraic function 
( )fs ;⋅ , representing the roots as functions of ζ , has all the 

branches ( )fsh ;⋅  moving towards the right half plane for 
small positive ζ . 

By applying standard arguments [19], [20], it turns out 
that 

( ) ( )( ) f
fhi

fhh Mhofs ∈+= ,; ζζξζ  , 

where 1−= fhfhfh ηηξ , fMh ∈ . 

Now, since ( ) ( )( )fhDfhfh GG χχη ;0;0det= , where 

{ }ffmfhfhfh iiif ...,,,: 21 ++∪=χ , it turns out that 0>fhξ , 

in view of condition (11). Then, there exists 0>fζ  such 

that, for all ( )fζζ
K

,0∈ , the eigenvalues of ( ) ( )fTfG ;;0 ζ  

all have positive real part. 
Hence, the proof of the lemma follows by letting 

f
Ff

ζζ
∈

= min: . 

⁬ 
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