
Robust State Estimation Using Error Sensitivity Penalizing

Tong Zhou

Abstract— This paper deals with robust state estimation
when parametric uncertainties nonlinearly affect a plant state-
space model. A new framework is suggested on the basis of
simultaneous minimization of nominal estimation errors and
the sensitivities of estimation errors to model uncertainties.
Under the condition that plant parameters are differentiable
with respect to modelling errors, an analytic solution is derived
for the optimal estimator which can be recursively realized. The
computational complexity of the derived filter is comparable to
that of the Kalman filter. Numerical simulations show that the
obtained filter may have smaller estimation variance than other
methods.
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I. INTRODUCTION

State estimation is one of the most important research

fields in signal processing and industrial automation. The

major reasons behind long and extensive attentions to this

problem appear to lie upon the fact that there usually exist

plant variables that can not be directly measured, and some

widely adopted optimal control strategies, such as H2 and

H∞ control, can be divided into optimal state estimation

and optimal state feedback [3], [5], [6], [7]. As modelling

errors are unavoidable in any plant dynamics description,

it is essential that performances of a state estimator do

not change appreciably when the actual values of plant

parameters deviate to some reasonable extents from their

nominal ones. An estimator with this property is usually

called a robust estimator/filter [1], [4], [8], [9], [10], [13].

Until now, many methods have been proposed for design-

ing a robust state estimator. Among them, the H∞ approach,

the set-valued estimation approach, and the guaranteed cost

paradigm are regarded as the most widely adopted ones.

These approaches enrich the arsenal for state estimator

analysis and synthesis. It is not an easy task, however, to re-

cursively realize a H∞ approach based robust filter, as certain

existence conditions should be verified at every estimation

step. Similar problems arise when the set-valued estimation

approach or the guaranteed cost paradigm is adopted [12],

[14], [16]. Note that recursiveness is an important property of

filters, especially when a plant under investigation has time

varying dynamics and on-line estimation is required [2], [6],

[15].
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To overcome this difficulty, a regularized least-squares

based framework is suggested in [14] for robust filter design.

An attractive characteristic of this method is that the derived

filter shares the same form of the well known and widely

applied Kalman filter. This property makes it formally very

easy to recursively realize the corresponding computations,

and various well developed recursive schemes for the Kalman

filter can be directly adopted. In the realization of this

filter, however, it is necessary to optimize a cost function at

every estimation step. Although it has been proved that this

cost function has a unique minimum, no analytic expression

is available for its optimum. On the other hand, based

on extensive numerical simulation studies, some empirical

values have been suggested for the optimal filter design

parameter, but this approximation is not always valid. Other

insufficiencies of this method include that plant parameters

are required to depend linearly on a uncertainty block,

and when there are structural constraints on the parametric

uncertainty block, only upper bounds are available for the

influences of modelling errors over filter performances and

conservatism will generally be introduced into estimator

design.

In robust filter design, another paradigm is based on

penalizing the sensitivity of estimation errors to parameter

variations [9], [11]. This paradigm has been adopted to

filter design for single-input single-output systems using

transfer function representation and spectral factorization.

Numerical simulations show that when the penalizing factor

is appropriately selected, which is usually not a very difficult

task, the obtained filter may outperform that designed using

the H∞ approach. The derived results, however, are only

applicable to linear time invariant systems.

In this paper, we investigate robust state estimation for

multi-input multi-output systems. Modelling errors are per-

mitted to affect plant parameters in a relatively arbitrary

way, and the plant under investigation is allowed to have

time varying dynamics. On the basis of a relation between

the Kalman filter and regularized least-squares, as well as

sensitivity penalizing on estimation errors to parameter varia-

tions, an analytic expression has been derived for the optimal

estimator, provided that plant parameters are differentiable

with respect to modelling errors. This estimator can be re-

cursively implemented and has a comparable computational

complexity with the Kalman filter. Numerical simulations

show that this estimator may perform better than that of [14].

The rest of this paper is as follows. In the next section, a

plant state-space model is given and some related previous

conclusions are introduced. The robust state estimator is de-

rived in section III, while some numerical simulation results
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are reported in Section IV. Finally, Section V concludes this

paper.

II. PLANT DYNAMICS DESCRIPTION AND PRELIMINARY

RESULTS

Assume that the dynamics of a plant can be described by

the following state-space representation

xi+1 = Ai(εi)xi + Bi(εi)ui, i ≥ 0 (1)

yi = Ci(εi)xi + vi (2)

Here, x0, ui and vi are uncorrelated zero-mean random

variables with a covariance matrix

E











x0

ui

vi









x0

ui

vi





T





=





Π0

Qiδij

Riδij





in which E represents the operation of mathematical expec-

tation, while Π0, Qi and Ri are known positive definite

matrices. Moreover, δij is the Kronecker delta function which

equals to 1 when i = j and to zero whenever i �= j.

Furthermore, εi stands for parametric modelling errors at

the i-th sampled instant which consists of real valued scalar

uncertainties εi,k, k = 1, 2, · · · , L. It is assumed that all

the entries of matrices Ai(εi), Bi(εi) and Ci(εi) are known

differentiable functions of εi, while εi,k, k = 1, 2, · · · , L,

are independent of each other. In addition to these, it is also

assumed that εi,k has been normalized to be contractive, that

is, |εi,k| ≤ 1.

When εi ≡ 0, i = 0, 1, · · · , and x0, ui and vi have normal

distributions, it is well known that under the criterion of

mean-squares, the Kalman filter is the optimal state estimator.

Moreover, let x̂i|k denote the optimal estimate of xi based

on the observations yj |
k
j=0, and Pi|k the estimation error

covariance matrix E
{

(xi − x̂i|k)(xi − x̂i|k)T
}

. Then, when

x̂i|i, Pi|i and yj |
i+1
j=0 are available, the optimal x̂i+1|i+1

can be obtained through solving the following minimization

problem [2], [5], [14].

x̂i+1|i+1 = Ai(0)x̂i|i+1 + Bi(0)ûi|i+1 (3)
[

x̂i|i+1

ûi|i+1

]

= arg min
xi, ui

{

||xi − x̂i|i||
2
P

−1

i|i

+ ||ui||
2
Q

−1

i

+

||yi+1 − Ci+1(0)xi+1||
2
R−1

i+1

}

(4)

Here, ||ξ||W stands for the weighted Euclidean norm of

vector ξ, that is, ||ξ||W =
√

ξT Wξ. In the following

discussions, ||ξ||W is usually abbreviated as ||ξ|| when W is

an identity matrix, in order to simplify notations.

Define matrices Hi(εi, εi+1), Φi and Ψi; vectors αi and

βi(εi, εi+1), respectively as follows,

Hi(εi, εi+1) = Ci+1(εi+1)[Ai(εi) Bi(εi)], Ψi = R−1
i+1

Φi =

[

P−1
i|i

Q−1
i

]

, αi =

[

xi − x̂i|i

ui

]

βi(εi, εi+1) = yi+1 − Ci+1(εi+1)Ai(εi)x̂i|i

then, obviously, the cost function in the optimization problem

of Equation (4) can be re-expressed by the following form

with εi = εi+1 = 0

||αT
i ||

2
Φi

+ ||Hi(εi, εi+1)αi − βi(εi, εi+1))||
2
Ψi

(5)

This means that the Kalman filter design can be converted

to a regularized least-squares problem for which an analytic

solution can be easily obtained through elementary algebraic

operations [2], [5], [14].

III. ROBUST STATE ESTIMATOR DESIGN

While the Kalman filter is optimal under a physically

significant criterion and has been extensively applied to

various engineering and financial problems, such as satellite

orbit estimation, fading communication channel estimation,

etc., it is also well known that its performances may be

appreciably deteriorated by model uncertainties [5], [7], [12].

As modelling errors are generally unavoidable in actual filter

designs, it is evidently essential that a physically meaningful

filter should be robust against plant parameter deviations

and/or inaccuracies. To achieve this purpose, it is suggested

in [14] to minimize the cost function of Equation (5) with

respect to modelling errors (εi,k, εi+1,k)|Lk=1 that maximize

this cost function, that is, to minimize the cost function

in the worst case. While this paradigm is widely adopted

and physically attractive, in the derivation of the optimal

estimator, Lagrange multipliers are introduced for which

there are still not analytic expressions for the desirable filter.

Although some empirical values are suggested for them, only

the one uncertainty block case has been successfully dealt

with.

For notational simplicity, denote Ci+1(εi+1)[Ai(εi)
Bi(εi)]αi − (yi+1 − Ci+1(εi+1)Ai(εi)x̂i|i) by ei(εi, εi+1).
Then, when Ai(εi), Bi(εi) and Ci(εi) are differentiable with

respect to εi, it is obvious that for every k = 1, 2, · · · , L,

we have

∂ei(εi, εi+1)

∂εi,k

= Ci+1(εi+1)

[

∂Ai(εi)

∂εi,k

∂Bi(εi)

∂εi,k

]

αi +

Ci+1(εi+1)
∂Ai(εi)

∂εi,k

x̂i|i (6)

∂ei(εi, εi+1)

∂εi+1,k

=
∂Ci+1(εi+1)

∂εi+1,k

[Ai(εi) Bi(εi)]αi +

∂Ci+1(εi+1)

∂εi+1,k

Ai(εi)x̂i|i (7)

To reduce the sensitivity of the Kalman filter’s perfor-

mances to modelling errors, it is suggested in this paper to

minimize the following cost function J(αi) at every sampled

time

J(αi)=γ
[

||αi||
2
Φi

+||Hi(0, 0)αi−βi(0, 0)||2Ψi

]

+(1−γ)×
L

∑

k=1

(

∣

∣

∣

∣

∣

∣

∣

∣

∂ei(εi, εi+1)

∂εi,k

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ei(εi, εi+1)

∂εi+1,k

∣

∣

∣

∣

∣

∣

∣

∣

2
)∣

∣

∣

∣

∣ εi = 0
εi+1 = 0

(8)

and calculate an estimate of xi+1 using the formula of

Equation (3). Here, γ is a non-negative scalar constant taking
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value in the interval (0, 1]. Clearly, in this cost function, a

penalty has been added on the magnitude of the sensitivity

of the matching error Hi(εi, εi+1)αi − βi(εi, εi+1) with

respect to modelling errors (εi,k, εi+1,k)|Lk=0 at the plant

nominal parameter values. With a little abuse of notation,

this matching error is also called estimation error in this

paper.

The design parameter γ in the above cost function takes

a balance between the importance of nominal estimation

performances and that of estimation performance degradation

due to modelling errors. The bigger this parameter is, the

more important the nominal estimation performances. In the

extreme case, that is, when γ = 1 and/or
∂Ai(εi)
∂εi,k

≡ 0,
∂Bi(εi)

∂εi,k
≡ 0 and

∂Ci+1(εi+1)
∂εi+1,k

≡ 0, the above cost function

is proportional to that of Equation (5) at ε i = εi+1 = 0
and both of them lead to the same optimal α i. This implies

that when there are no modelling errors and/or when the

robustness of the estimator is not very important, the obtained

estimator through minimizing the above cost function J(α i)
collapses to the well known Kalman filter.

Define matrices Si and Ti respectively as

Si =











Si,1(0, 0)
Si,2(0, 0)

...

Si,L(0, 0)











, Ti =











Ti,1(0, 0)
Ti,2(0, 0)

...

Ti,L(0, 0)











in which for every k = 1, 2, · · · , L,

Si,k(εi, εi+1) =

[

∂Ci+1(εi+1)
∂εi+1,k

Ai(εi)

Ci+1(εi+1)
∂Ai(εi)

∂εi,k

]

Ti,k(εi, εi+1) =

[

∂Ci+1(εi+1)
∂εi+1,k

Bi(εi)

Ci+1(εi+1)
∂Bi(εi)

∂εi,k

]

Then, it can be directly proved that

L
∑

k=1

(

∣

∣

∣

∣

∣

∣

∣

∣

∂ei(εi, εi+1)

∂εi,k

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ei(εi, εi+1)

∂εi+1,k

∣

∣

∣

∣

∣

∣

∣

∣

2
)∣

∣

∣

∣

∣ εi = 0
εi+1 = 0

= ([Si Ti]αi + Six̂i|i)
T ([Si Ti]αi + Six̂i|i) (9)

Substituting this relation into the cost function J(αi),
direct algebraic operations show that

∂J(αi)

∂αi

∣

∣

∣

∣ εi = 0
εi+1 = 0

= 2γ

{(

Φi + HT
i (0)ΨiHi(0))+

1−γ

γ
[Si Ti]

T [Si Ti]

)

αi−

HT
i (0)Ψiβi(0) +

1 − γ

γ
[Si Ti]

T Six̂i|i

}

(10)

From the definition of matrices Φi and Ψi, it is obvious

that Φi is positive definite, while HT
i (0)ΨiHi(0) is at least

positive semi-definite. This means that when 0 < γ ≤ 1, the

cost function J(αi) is a strictly convex function and therefore

has a unique minimum. Therefore, J(α i) achieves its global

optimal value at
∂J(αi)

∂αi
= 0. That is, the optimal αi, denote

it by αiopt, is uniquely determined by
(

Φi + HT
i (0)ΨiHi(0))+

1−γ

γ
[Si Ti]

T [Si Ti]

)

αiopt

= HT
i (0)Ψiβi(0) −

1 − γ

γ
[Si Ti]

T Six̂i|i (11)

On the basis of this optimum characterization and the

following relation,
[

G11 G12

G21 G22

]

=

[

I 0
G21G

−1
11 I

]

×

[

G11 0
0 G22 − G21G

−1
11 G12

][

I G−1
11 G12

0 I

]

(12)

algebraic operations show that the optimal estimate of the

plant state xi can be computed using the following recursive

procedure, which is very similar to that of the time and

measurement-update form of the Kalman filter.

• Initialization. Designate P0|0 and x̂0|0 respectively as

P0|0 = (Π−1
0 + CT

0 (0)R−1
0 C0(0))−1 and x̂0|0 =

P0|0C
T
0 (0)R−1

0 y0.

• Parameter modification. Define matrices Âi(0), B̂i(0),
P̂i|i and Q̂i respectively as follows

Âi(0)=

[

Ai(0) −
1−γ

γ
B̂i(0)Q̂iT

T
i Si

][

I −
1−γ

γ
P̂i|iS

T
i Si

]

B̂i(0) = Bi(0) −
1−γ

γ
Ai(0)P̂i|iS

T
i Si

P̂i|i =

(

P−1
i|i +

1−γ

γ
ST

i Si

)−1

Q̂i =

(

Q−1
i +

1−γ

γ
T T

i

[

I +
1−γ

γ
SiPi|iS

T
i

]

Ti

)−1

• Plant state estimate updating. Calculate x̂i+1|i+1 and

Pi+1|i+1 respectively as follows.

x̂i+1|i+1 = Âi(0)x̂i|i + Pi+1|i+1C
T
i+1(0)R−1

i+1 ×

(yi+1 − Ci+1(0)Âi(0)x̂i|i)

Pi+1|i = Ai(0)P̂i|iA
T
i (0) + B̂i(0)Q̂iB̂

T
i (0)

Re,i+1 = Ri+1 + Ci+1(0)Pi+1|iC
T
i+1(0)

Pi+1|i+1 = Pi+1|i − Pi+1|iC
T
i+1(0)R−1

e,i+1Ci+1(0)Pi+1|i

The derivations are direct but tedious, and are omitted here

due to space considerations. On the other hand, the estimate

for the plant initial state x0 is obtained through minimizing

the following cost function

xT
0 Π−1

0 x0 + (y0 − C0(0)x0)
T R−1

0 (y0 − C0(0)x0) (13)

In addition to the above time and measurement-update

form, it is also not difficult to derive a prediction form and

an information form for the above robust state estimator.

All of them take almost completely the same computation

procedure as the corresponding Kalman filter. The only

difference between the Kalman filter and the above robust

state estimator is that, rather than directly using the nominal

plant parameters and the minimal covariance matrix of the
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estimation error for the nominal model, in the recursive

computation of the robust estimator, both plant parameters

and estimation error covariance matrix are modified in every

estimation step in order to take into account of estimation

performance degradations due to modelling errors. The mag-

nitude of modifications is mainly determined by the strength

of the modelling error influences and the relative weighting

factor γ which reflects a designer’s balance between nomi-

nal estimation performances and performances deteriorations

due to model inaccuracies.

Unlike the modifications of [14], there is no necessity to

perform any on-line optimization in the above estimation

procedure. Moreover, the restrictions are fairly weak on the

influences of modelling errors on plant parameters. This

is also different from that of [14], in which it is required

that matrix Ci(εi) is not affected by modelling errors, and

matrices Ai(εi) and Bi(εi) depend linearly on a norm

bounded uncertainty matrix.

The above results can be easily modified to the case in

which modelling errors are time invariant. In this situation,

the only required modification is to replace S i,k(εi, εi+1) and

Ti,k(εi, εi+1) in the above estimation algorithm respectively

by Si,k(ε) and Ti,k(ε) which are defined as follows

Si,k(ε) =
∂Ci+1(ε)

∂ε·k
Ai(ε) + Ci+1(ε)

∂Ai(ε)

∂ε·k

Ti,k(ε) =
∂Ci+1(ε)

∂ε·k
Bi(ε) + Ci+1(ε)

∂Bi(ε)

∂ε·k

Here, ε represents modelling errors of the plant state-space

model and ε·k its k-th element.

IV. NUMERICAL SIMULATIONS

In this section, we compare the performances of the

derived robust state estimator with those of the Kalman filter

and the robust state estimator of [14]. In these simulations,

it is assumed that modelling errors are time-invariant, and

every uncertainty parameter belongs to the interval [−1, 1].
103 time-domain input-output pairs are generated for plant

state estimation, in which all the plant initial states are set to

zero, while disturbances ui and vi are produced according

to normal distributions.

To compute the ensemble-average estimation error vari-

ance at every sampled instant, 5 × 102 simulations are

performed for each set of numerical experiment settings.

The size of the ensemble-average is approximated by the

averaged value of the square of the Euclidean distance

between the actual plant state and its estimate.

To investigate the influences of the design parameter γ on

filter performances, 40 equally distributed samples are taken

from the interval [5.0000×10−3, 1.0000] in every numerical

study. However, to make curves easy to be recognized, only

part of the simulation results are included in the following

figures. Specifically, the size of estimation error variances

is provided for some typical values of the design parameter

γ. Moreover, to reflect the fact that there are quite a few γs

that make the suggested robust state estimator perform better

than that of [14], the size of estimation error variances is

also given for all the sampled γs at some typical instants.

On the other hand, Kalman filters with both the nominal

and the actual plant parameter values are realized in each

collection of numerical simulations. The main purpose of

this inclusion is to clarify performance deteriorations due

to modelling errors. Furthermore, the design parameter λ is

selected as 1.5λl for the filter of [14] which is recommended

by the author.

A. Example 1

This example is adopted from [14], in which it is assumed

that

Ai(ε) =

[

0.9802 0.0196
0.0000 0.9802

]

+

[

0.0198
0.0000

]

× ε ×

[0.0000 5.0000]

Bi(ε) =

[

1.0000
1.0000

]

, x0 =

[

0.0000
0.0000

]

Ci(ε) = [1.0000 − 1.0000], Ri = 1.0000

Qi =

[

1.9608 0.0195
0.0195 1.9605

]

, Π0 =

[

1.0000
1.0000

]

In the first set of simulations, the modelling error ε is

fixed to be −0.8508. Figure 1 † shows the variations of

estimation error variances with respect to time samples and

the filter design parameter γ. An interesting observation

from this figure is that when γ belongs to the interval

[0.4000, 0.9800], the robust state estimator of this paper

outperforms both the filter suggested in [14] and the Kalman

filter with nominal parameter values. Figure 1b also shows

that at the sampled instants i = 5 × 102 and i = 103, if γ

takes the optimal value, which is approximately 0.8500, then,

there is only about 1dB difference between the performances

of the Kalman filter with actual parameter values and the

robust state estimator derived in this paper. In this case,

more than 2.5000dB performance improvement is obtained

compared with the filter of [14], and more than 4.0000dB

performance improvement is obtained compared with the

Kalman filter based on nominal parameter values.

In another set of simulations, the modelling error ε is

produced randomly and independently in each simulation

according to a normal distribution with truncations. The

mean and the standard variance of the normal distribution

are set respectively to 0.0000 and 0.3333. In case that a

generated ε has a magnitude greater than 1, it will be got rid

of and another ε will be produced until a ε with magnitude

not greater than 1 is obtained. The corresponding simulation

results are given in Figure 2. Once again, it is observed that

there exists a large interval of γ which leads to a robust

estimator with better performances than the existent filters.

B. Example 2

This example is modified from the previous one. Here, we

assume that there are two uncertainties, ε1 and ε2, in a plant

†The same line styles and markers are used in this and the following 3
figures to represent the curves obtained from the same numerical simulation
settings.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB02.6

2566



10
0

10
1

10
2

10
3

6

8

10

12

14

16

18

20

22

24

Sampled Instant (i)

E
st

im
a

ti
o

n
 E

rr
o

r 
V

a
ri

a
n

ce
 (

d
B

)

(a) Estimation Error Variance with a Fixed γ.

−−�−−: Kalman filter with actual parameters; −−�−−: Kalman filter with

nominal parameters; −−⋆−−: Filter of [14]; · · ·� · · · : New filter with

γ = 3.0513 × 10−2; · · ·� · · · : New filter with γ = 2.8564 × 10−1;

· · ·•· · · : New filter with γ = 5.1526×10
−1 ; · · ·▽· · · : New filter with

γ = 7.9590 × 10−1; · · · ⋆ · · · : New filter with γ = 9.4897 × 10−1.

0 0.2 0.4 0.6 0.8 1
15

16

17

18

19

20

21

22

23

Design Parameter (γ)

E
st

im
a

ti
o

n
 E

rr
o

r 
V

a
ri

a
n

ce
 (

d
B

)

(b) Estimation Error Variance at a Fixed Instant.
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Fig. 1. Estimation Performances with a Fixed Modelling Error (Ex.1).

state-space model. Specifically, it is assumed that

Ai(ε)=

[

0.9802 0.0196
0.0000 0.9802

]

+

[

0.0198 0.0200
0.0000 0.0396

]

×

[

ε1

ε2

] [

0.4375 5.0000
0.0000 0.1094

]

Bi(ε)=

[

1.0000
1.0000

]

+

[

0.0198 0.0200
0.0000 0.0396

]

×

[

ε1

ε2

] [

1.7500 0.2188
0.4375 0.8750

]

All the other experimental settings keep unchanged. The

simulation results are provided by Figure 3 when ε1 and

ε2 are respectively fixed to be −0.8508 and −0.9432. From

this figure, it is observed that there are still many γs that

lead to a robust state estimator with better performances

than both the filter suggested in [14] and the Kalman

filter with nominal parameter values, and there is also a γ

which leads to a robust estimator with closer performances

than any other γ to those of the Kalman filter with the

actual parameter values. Specifically, at the sampled instants

i = 5 × 102 and i = 103, the desirable interval for γ
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(a) Estimation Error Variance with a Fixed γ.
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(b) Estimation Error Variance at a Fixed Instant.

Fig. 2. Estimation Performances with Random Modelling Errors (Ex.1).

is approximately [0.2500, 0.9800]. If γ takes the optimal

value, which is approximately 0.8300, the difference between

the performances of the Kalman filter with actual parameter

values and the robust state estimator derived in this paper is

not greater than 1.0000dB. In this case, more than 2.5000dB

performance improvement is obtained compared with both

the filter of [14] and the Kalman filter based on nominal

parameter values.

When both ε1 and ε2 are randomly and independently

generated using the same method of Example 1 and a normal

distribution of mean 0.0000 and standard variance 0.3333,

the corresponding simulation results are shown in Figure 4.

These results are consistent with those of Example 1.

From Figures 1-4, it is obvious that in plant state estimator

designs, significant robustness improvements can be achieved

through introducing an appropriate penalty on the sensitivity

of estimation errors to modelling uncertainties. The optimal

design parameter γ may lead to a robust estimator with

performances close to those of the Kalman filter based on

actual plant parameter values. Moreover, performances of the

robust state estimator are continuous functions of this design

parameter, and there are quite a lot of choices for it that

make the corresponding estimator outperform the available

recursive state estimators. These properties are attractive in

actual filter design as there is still not a method to find the

optimal filter design parameter. Furthermore, the stronger the

modelling errors are on estimation performances, the smaller

the desirable γ, which is consistent with physical intuitions.

Simulations have also been performed for which modelling

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB02.6

2567



10
0

10
1

10
2

10
3

6

8

10

12

14

16

18

20

Sampled Instant (i)

E
st

im
a

ti
o

n
 E

rr
o

r 
V

a
ri

a
n

ce
 (

d
B

)

(a) Estimation Error Variance with a Fixed γ.
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(b) Estimation Error Variance at a Fixed Instant.

Fig. 3. Estimation Performances with a Fixed Modelling Error (Ex.2).

uncertainties are generated randomly according to the uni-

form distribution over [−1, 1] which are suggested in [14].

The results are consistent with those of the aforementioned

normal distribution with truncations.

V. CONCLUDING REMARKS

In this paper, a robust state estimator has been derived on

the basis of penalizing the sensitivity of estimation errors

with respect to plant model uncertainties. The obtained

estimator takes completely the same form as that of the

well known Kalman filter and can be easily implemented

in a recursive manner. Moreover, its computational burden

is also comparable to that of the Kalman filter. Attractive

properties of this filter include that there are only very weak

restrictions on the ways in which uncertainties affect plant

parameters, and model uncertainties can take an arbitrary

structure. Numerical simulations show that quite a lot of

design parameters exist that lead to a robust estimator

outperforming those based on worst case estimation error

minimization. Moreover, estimation performances depend

continuously on this design parameter. These properties make

it relatively easy to find a penalizing factor that provides a

robust state estimator with better performances.
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