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Abstract— This paper is concerned with P·SPR·D control
of affine nonlinear system and robot manipulators which are
passive systems. P·SPR·D control consists of proportional(P)
action + strict positive real(SPR) action + derivative(D) action.
Such control can asymptotically stabilize the affine nonlinear
system being of multi input and multi output. Stability analysis
of the P·SPR·D control is made, based on the passivity theory
and LaSalle’s invariance principle. The L2-gain disturbance at-
tenuation problem is also investigated. Further a set-point servo
problem (set-point tracking control) for the robot manipulator
is also solved by the P·SPR·D control. The effectiveness of the
proposed method is demonstrated by the simulation results for
a two-link manipulator.

I. INTRODUCTION

This paper investigates a PID-like control scheme for

affine nonlinear system and robot manipulators. In regard to

stabilizing control of affine nonlinear system there exist many

studies as passivity theory[4, 5, 10, 11], exact linearization[6],
back stepping method[7, 11], passivity based design of cas-

caded system[12], nonlinear H∞ control[10] etc. But PID

control has not been used so much except for the Lagrangian

systems like robot manipulators.

We study stability analysis of P·SPR·D control imitating

PID control for the affine nonlinear systems, based on

the passivity theory and LaSalle’s invariance principle[8].

(SPR is a short for strict positive real.) When the P·SPR·
D controller is applied to a plant possessing the Kalman-

Yakubovich-Popov (K-Y-P) property[4,5,11], we can prove

that the closed-loop system becomes asymptotically stable

by the P·SPR·D control, applying the passivity theory and

LaSalle’s theorem. The P·SPR·D control for Lagrangean

system is seen in Ref.[13]. Passivity of PID controllers is

investigated in Ref.[9] to some extent.

Section 2 makes a study of regulation problem for the

affine nonlinear system in general. Section 3 is devoted

to a set-point servo problem of robot manipulator system.

In regard to robot manipulators, there exist many papers

including Arimoto et al.[1,2] which applied PID control. So

the feature of our paper is to apply the P·SPR·D control

instead of the PID control. SPR stabilization of mechanical

systems is discussed in the book[9] also. Section 4 inves-

tigates L2 disturbance attenuation problem (γ-dissipativity)

under the existince of disturbances. The L2 disturbance

attenuation by PID control, in case of robot manipulators,

was analyzed in Ref.[3] as H∞ design problem. Applying

the P·SPR·D control, however, it is easy to solve the problem.
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Simulation results is presented in Section 5 to demonstrate

the effectiveness of the P·SPR·D control.

II. P·SPR·D CONTROL OF AFFINE NONLINEAR SYSTEM

Let us consider an affine nonlinear system

ẋ = f(x) + G(x)u (1)

y = h(x) (2)

where x ∈ Rn, u ∈ Rm, y ∈ Rm are the state vector, the

control input and the measurable output. We assume that

system (1),(2) is stabilizable.

Consider PID control for the regulation problem

u = −KPy − KI

∫ t

0

ydt − KDẏ (3)

where KP ∈ Rm×m, KI ∈ Rm×m, KD ∈ Rm×m are

gain matrices corresponding to proportional, integral and

derivative actions, respectively.

Introducing here a new state equation (an integlator)

ξ̇ = −y (4)

the PID control (3) is expressed as

u = −KP y + KIξ − KDẏ (5)

Below we propose P·SPR·D control for asymptotical sta-

bilization of affine nonlinear system, applying the passivity

theory and LaSalle’s invariance principle[8].

First the following is well known[6,11].

[Theorem 1] Assume that system (1),(2) is passive and

zero state detectable1 . Then the output feedback control

u = −KP y

asymptotically stabilizes an equilibrium point xe = 0, where

KP ∈ Rm×m is a positive definite matrix.

Now consider the cascaded system of subsystem Σp and

subsystem Σc :

Σc : ξ̇ = Dξ − y, D < 0 (6)

Σp : ẋ = f(x) + G(x)u (7)

y = h(x) (8)

where Σp represents the controlled object (1),(2). We con-

sider here the strict positive real (SPR) system (6) instead of

the integrator (4). Then the following theorem holds.

1Nonlinear system (1),(2) is zero state detectable , if x(t) → 0 as t → ∞

when u(t) = 0, y(t) = 0 ∀t ≥ 0
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[Theorem 2] Suppose that the cascaded system (6)∼(8)

of subsystem Σp and subsystem Σc satisfies :

Assumption (a) Subsystem Σp is passive.

Assumption (b) Subsystem Σc is asymptotically stable

as y = 0, that is, there exists a positive definite function

U(ξ) =
1

2
ξT KSξ > 0 such that

U̇(ξ) = ξT KSDξ < 0 (9)

Then if the system Σp is zero state detectable with respect

to the output y, the P·SPR·D control

u = −KP y + KSξ − KDẏ (10)

asymptotically stabilizes the closed-loop system of cascaded

system of Σp and Σc at the equilibrium point (xe, ξe) =
(0,0), provided that KP , KS are positive definite matrices

and KD is semi-positive definite one.

(Proof) From Assumption (a), letting the semi-positive

definite storage function of Σp as W (x) ≥ 0, W (0) = 0,

the so-called K-Y-P property

Wx(x)f (x) ≤ 0 (11)

Wx(x)G(x) = yT (12)

holds[4,5,10]. For the overall system consider a Lyapunov

function candidate (semi-positive definite function)

V (x, ξ) = W (x) + U(ξ) +
1

2
yT KDy

= W (x) +
1

2
ξT KSξ +

1

2
yT KDy ≥ 0 (13)

and take a time derivative of V (x, ξ) along (6),(7),(10) and

use (9),(11),(12) to get

V̇ (x, ξ)

= Wx(x)ẋ + ξT KS ξ̇ + yT KDẏ

= Wx(x){f(x) + G(x)u} + ξ
T KS(Dξ − y) + yT KDẏ

= Wx(x)f(x) + Wx(x)G(x)(−KP y + KSξ − KDẏ)

+ ξT KS (Dξ − y) + yT KDẏ

= Wx(x)f(x) + yT (−KP y + KSξ − KDẏ)

+ ξT KSDξ − ξT KSy + yT KDẏ

≤ −yT KP y + ξT KSDξ ≤ 0 (14)

Here V̇ (x, ξ) is semi-negative definite. Accordingly, Lya-

punov’s stability theorem cannot be applied, as V (x, ξ) is

semi-positive definite and V̇ (x, ξ) is semi-negative definite.

So we apply LaSalle’s invariance principle[8] to prove that

the overall system is asymptotically stable at the equilibrium

(x, ξ) = (0,0) .

Now let Ωc = {(x, ξ)|V (x, ξ) ≤ c} and suppose that Ωc

is bounded and V̇ (x, ξ) ≤ 0 in Ωc (c is a positive number

such that V̇ (x, ξ) ≤ 0). Here define ΩE as a set of all points

of Ωc satisfying V̇ (x, ξ) = 0 and put

ΩE =
{

(x, ξ) | V̇ (x, ξ) = 0, (x, ξ) ∈ Ωc

}

Since KP > 0, KSD < 0 from the condition of the

theorem, V̇ (x, ξ) = 0 holds from (14) only when ξ =
0, y = 0, that is,

ΩE = {(x, ξ) | ξ = 0, y = 0, (x, ξ) ∈ Ωc}

But, when ξ = 0, y = 0, one has u = 0 from (10). Thus it

follows that

ΩE = {(x, ξ) | ξ = 0, ẋ = f(x), y = 0, (x, ξ) ∈ Ωc} (15)

The subsystem Σp is zero state detectable from the condition

of the theorem. Therefore, ẋ = f(x), y = h(x) = 0

implies that x(t) → 0 as t → ∞ in ΩE by the definition

of zero state detectability. Consequently, (x, ξ) satisfying

V̇ (x, ξ) = 0 consists of only a point (x, ξ) = (0,0).
Namely, letting ΩM be the largest invariance set in ΩE , ΩM

consists of only the equilibrium point (xe, ξe) = (0,0).
Thus, by LaSalle’s invariance principle, all trajectories in

Ωc converge to ΩM as t → ∞, that is, converge to the

equilibrium (xe, ξe) = (0,0). Q.E.D

We call the PID type control (10) with (6) P·SPR·D
control.

As is well known from Theorem 1, if the system is passive

and zero state detectable, one can stabilize it by u = −KP y.

Hence the reason why we use the P·SPR·D control (10) is

to improve control performance. It is noticed that there is

a lot of freedom in regard to the best choice of parameter

matrices KP , KS , KD.

By the way, static state feedback control law may be

obtained by the passivity based design[11,12] of the cascaded

system also. Generally speaking, however, the control law

using a storage function is complex. Besides, an advantage

of the P·SPR·D control is of output feedback of simple

structure.

III. P·SPR·D CONTROL OF ROBOT MANIPULATORS

In this section we consider an application to a set-point

problem of robot manipulators. An equation of motion of

the manipulator with n degree of freedom can be obtained

by the Euler-Lagrange formulation . Let q be the position of

each link of manipulator, τ the input torque,
1

2
q̇T M(q)q̇ the

kinetic energy, U(q) the potential energy. The system then

can be represented as

M(q)q̈ +
1

2
Ṁ(q)q̇ + S(q, q̇)q̇ + g(q) = τ (16)

where M(q) denotes the inertia matrix which is positive

definite and bounded, g(q)
△
= Uq(q)T is the gradient of the

gravity potential energy and S(q, q̇) denotes

S(q, q̇)q̇ =
1

2

{

Ṁ(q)q̇ −

[

∂

∂q
qT M(q)q̇

]T
}

which is a skew-symmetric matrix. Letting x1 = q ∈
Rn, x2 = q̇ ∈ Rn, x = (x1, x2)

T , and denoting the
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output by y = x2 ∈ Rn, and the control input by τ ∈ Rn,

the state space representation of (16) becomes as follows.

ẋ1 = x2 (17a)

ẋ2 = −M(x1)
−1

{

1

2
Ṁ(x1)x2 + S(x1, x2)x2 + g(x1)

}

+ M(x1)
−1τ

△
= f2(x1, x2) + G2(x1)τ (17b)

y = x2 (18)

Now taking a storage function equal to the kinetic energy

+ the potential energy

W (x) =
1

2
xT

2 M(x1)x2 + U(x1) − U(x∗

1) (19)

we calculate its time derivative with use of skew-

symmetricity of S(x1, x2) to obtain

Ẇ (x) =
∂

∂x1

{

1

2
xT

2 M(x1)x2

}

ẋ1

+
∂

∂x2

{

1

2
xT

2 M(x1)x2

}

ẋ2 +
∂U(x1)

∂x1
ẋ1

=
1

2
xT

2 Ṁ(x1)x2 + xT
2 {−

1

2
Ṁ(x1)x2 − S(x1, x2)x2

−g(x1) + τ} + g(x1)
T x2 ≤ yT τ (20)

Therefore, the robot manipulator is passive with respect

to the input τ and the output y = x2. Thus, the so-called

K-Y-P property holds :

Wx1
(x)x2 + Wx2

(x)f2(x1, x2) ≤ 0 (21a)

Wx2
(x)G2(x1) = yT (21b)

Next let us consider a set-point servo problem (a set-point

tracking control) with the desired set-point (x∗
1,0). For that

we consider the following system which consists of the robot

manipulator (17),(18) and the strict positive real element

(23).

ẋ1 = x2 (22a)

ẋ2 = −M(x1)
−1

{

1

2
Ṁ(x1)x2 + S(x1, x2)x2 + g(x1)

}

+ M(x1)
−1τ

△
= f2(x1, x2) + G2(x1)τ (22b)

ξ̇ = Dξ + (x∗

1 − x1) − x2, D < 0 (23)

y = x2 (24)

And set up a feedback compensator (P·SPR·D control with

respect to x1) :

τ = KP (x∗

1 − x1) + KSξ − KDx2 + g(x∗

1) (25)

where KP , KS, KD are all positive definite diagonal

matrices. Here g(x∗
1), gravity force compensation at the

desired value x∗
1, corresponds to the so-called manual reset

quantity of PID controller.

[Theorem 3] The closed-loop system (22)∼(25) of the

robot manipulator with the P·SPR·D control is asymptotically

stable at the equilibrium (x∗
1,0,0), provided that positive

definite diagonal matrices KP , KS , KD and negative defi-

nite D are appropriately chosen.

(Proof) At the equilibrium of system (22),(23),(25) hold

the following relations.

0 = x2e

0 = −g(x1e) + τ e

0 = Dξe + (x∗

1 − x1e)

Thus it follows that (x1e = x∗
1, x2e = 0, ξe = 0) is an

equilibrium point, provided that τ e = g(x∗
1).

Now let us consider a Lyapunov function candidate

V (x, ξ) = W (x) + g(x∗

1)
T (x∗

1 − x1)

+
1

2

[

(x∗
1 − x1)

T ξT
]

[

KP − K K

K
T

KS − K

]

[

(x∗
1 − x1)

ξ

]

(26)

where KP −K > 0, KS−K > 0 and

[

KP − K K

K
T

KS − K

]

is a positive definite matrix. The first term in the right-

hand side of (26) is a semi-positive definite function. Since

the second term plus the third one is a quadrtic function

of

[

(x∗
1 − x1)
ξ

]

whose quadratic term is with the positive

definite matrix, it has the minimum. Accordingly, V (x, ξ) is

a function bounded below.

Next calculate its time derivative along (22),(23),(25) with

use of the K-Y-P property (21) to get

V̇ (x, ξ)

= Wx1
(x)x2 + Wx2

(x)f2(x1, x2)

+Wx2
(x)G2(x1)τ − g(x∗

1)
T x2

+
[

(x∗
1 − x1)

T ξ
T
]

[

KP − K K

K
T

KS − K

]

[

−ẋ1

ξ̇

]

≤ yT τ − g(x∗

1)
T x2 +

[

(x∗
1 − x1)

T ξT
]

[

KP − K K

K
T

KS − K

]

×

[

−x2

Dξ + (x∗
1 − x1) − x2

]

= xT
2 (KP (x∗

1 − x1) + KSξ − KDx2 + g(x∗

1)) − g(x∗

1)
T x2

+
[

(x∗
1 − x1)

T ξ
T
]

×




−(KP − K)x2 + KDξ + K(x∗
1 − x1) − Kx2

−K
T
x2 + (KS − K)Dξ + (KS − K)(x∗

1 − x1)
−(KS − K)x2





= xT
2 (KP (x∗

1 − x1) + KSξ − KDx2)

+
[

(x∗
1 − x1)

T ξT
]

[

K KD

(KS − K) (KS − K)D

][

(x∗
1 − x1)
ξ

]

−(x∗

1 − x1)
T KP x2 − ξT KSx2

= −xT
2 KDx2 +

[

(x∗
1 − x1)

T ξT
]

[

K KD

(KS − K) (KS − K)D

]

×

[

(x∗
1 − x1)

ξ

]

(27)
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Here we try to make
[

K KD

(KS − K) (KS − K)D

]

be negative definite. For that purpose, set K < 0, KS−K =
(KD)T and D < −I such that we have KS = (I +D)K >

0. Then the above matrix becomes
[

K KD

(KD)T KD2

]

Since the (1,1) element and the (2,2) element are K <

0, KD2 < 0, respectively, we can choose K < 0 and D < 0
such that the above matrix becomes negative definite.

Consequently, V̇ (x, ξ) becomes semi-negative definite,

and it follows that the P·SPR·D control is stable in the sense

of Lyapunov, but it is unknown if asymptotically stable. So

we apply LaSalle’s invariance principle.

Let Ωc = {(x, ξ) | V (x, ξ) ≤ c} and suppose Ωc is

bounded and V̇ (x, ξ) ≤ 0 in Ωc (c is a positive number such

that V̇ (x, ξ) ≤ 0). Here define ΩE as a set of all points of

Ωc satisfying V̇ (x, ξ) = 0 and put

ΩE = {(x, ξ) | V̇ (x, ξ) = 0, (x, ξ) ∈ Ωc} (28)

From (27) (x, ξ) satisfying V̇ (x, ξ) = 0 is given as x2 =
0, x∗

1 − x1 = 0, ξ = 0. So we have

ΩE = {(x, ξ)|x1 = x∗

1, x2 = 0, ξ = 0, (x, ξ) ∈ Ωc} (29)

Accordingly, we know from (22),(23),(25) that (x, ξ) in

ΩE consists of only the equilibrium point (x1e, x2e, ξe) =
(x∗

1,0,0) with τ e = g(x∗
1). Thus the largest invariance set

ΩM in ΩE consists of the equilibrium point (x1e, x2e, ξe) =
(x∗

1,0,0). Therefore, by LaSalle’s invariance principle all

trajectories in Ωc converges to ΩM as t → ∞. Thus

(x∗
1,0,0) is aymptotically stable. Q.E.D

[Remark 1] Since the robot manipulator is not zero state

detectable, one cannot apply Theorem 2 to attain asymptoti-

cal stabilization to the origin. In order to stabilize the origin

(x1, x2) = (0,0), one must apply Theorem 3 letting x∗
1 = 0.

Local asymptotical stability of PID control for robot ma-

nipulators was first proved by Arimoto[1, 2]. For comparison

with P·SPR·D control, its proof based on the K-Y-P property

is given in Appendix.

IV. L2 GAIN DISTURBANCE ATTENUATION PROBLEM

In this section we study L2 disturbance attenuation prob-

lem under the existence of disturbance w. Consider the

following cascaded system.

Σc : ξ̇ = Dξ − y (30)

Σp : ẋ = f (x) + G(x)u + J(x)w (31)

y = h(x) (32)

where w ∈ Rl is the disturbance vector.

L2 disturbance attenuation problem is defined to obtain

the P·SPR·D control such that the closed-loop system sat-

isfies the following condition under the given disturbance

attenuation level γ > 0.

P1. When w = 0, the closed-loop system is asymptoti-

cally stable at the equilibrium (x, ξ) = (0,0).
p2. When x(0) = 0, the following inequality holds for

arbitrarily given T > 0.
∫ T

0

‖y(t)‖2dt ≤ γ2

∫ T

0

‖w(t)‖2dt

It is noticed that P2 is equivallent to having L2 gain below

γ when x(0) = 0, that is, ‖y‖2 ≤ γ2‖w‖2. It implies that

for all w ∈ L2[0, T ] and for the supply rate s(y, w) =
1
2{γ

2wT w − yT y}, the following γ-dissipation inequality

holds[10].

V̇ (x, ξ) ≤
1

2
{γ2wT w − yT y} (33)

The following theorem solves the L2 diturbance attenua-

tion problem.

[Theorem 4] Suppose the cascaded system (30),(31),(32)

satisfies Assumptions (a) and (b) in Theorem 2. Further

W (x) and J(x) satisfy the matching condition

Wx(x)J(x) = yT M(x)T (34)

where M(x) ∈ Rl×m denotes the function matrix and

M(x)T M(x) = Im. In addition assume KP ≥ 1
2 (1− 1

γ2 )Im.

Then by the P·SPR·D control (10) the closed-loop system

satisfies P2, that is, it possesses L2 gain less than γ (i.e.,

γ-dissipation inequality holds.)

Furthermore, if subsystem Σp is zero state detectable with

respect to the output y, then by the P·SPR·D control (10)

the closed-loop system satisfies P1 so that (x, ξ) = (0,0) is

asymptotically stable.

(Proof) To prove that the γ-dissipation inequality holds,

make the following calculation for a storage function

(13)(semi-positive definite function).

V̇ (x, ξ) +
1

2
{yT y − γ2wT w}

= Ẇ (x) + U̇(ξ) + yT KDẏ +
1

2
{yT y − γ2wT w}

= Wx(x){f(x) + G(x)u + J(x)w}

+ξT KS(Dξ − y) + yT KDẏ +
1

2
{yT y − γ2wT w}

= Wx(x)f (x) + Wx(x)G(x)(−KP y + KSξ − KDẏ)

+Wx(x)J(x)w + ξ
T KSDξ − ξ

T KT
S y + yT KDẏ

+
1

2
{yT y − γ2wT w}

Here using Assumptions (a), (b) and the matching condition

(34),

≤ yT {−KP y + KSξ − KDẏ} + yT M(x)T w − ξT KSy

+yT KDẏ +
1

2
{yT y − γ2wT w}

= −yT KP y + yT M(x)T w −
1

2

{

1

γ
yT M(x)T − γwT

}

{

1

γ
M(x)y − γw

}

+
1

2
yT y +

1

2

1

γ2
yT M(x)T M(x)y

−
1

2
wT M(x)y −

1

2
yT M(x)T w
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q1

q2

τ1

τ2

m1g, I1

m2g, I2

L2

L1

Fig.1. 2-Link Manipulator

= −yT {KP −
1

2
(1 +

1

γ2
)Im}y −

1

2

{

1

γ
M(x)y − γw

}T

{

1

γ
M(x)y − γw

}

(35)

Here using KP ≥ 1
2 (1 + 1

γ2 )Im

≤ −
1

2

{

1

γ
M(x)y − γw

}T {

1

γ
M(x)y − γw

}

≤ 0 (36)

Consequently, γ-dissipation inequality (33) holds, and so it

follows that we have L2 gain below γ.

When w = 0, P1 has been already concluded by Theorem

2. Q.E.D

V. SIMULATION

Let us apply the P·SPR·D control of robot manipulator

studied in Section 3 to a 2-link manipulator depicted in

Fig.1. Here generalized coordinates q1, q2 are relative joint

angles, and x11
△
= q1 denotes perpendicular angle (angle

from vertical line) of link 1 and x12
△
= q2 relative angle of

link 2 from link 1, τ1 and τ2 denote torque of each link

acting clockwise. L1, L2, m1, m2, I1, I2 denote the length,

the mass and the inertia moment of each link, respectively.

A numerical example of 2-link manipulator is given as

follows.








ẋ11

ẋ12

ẋ21

ẋ22









=









x21

x22

f21(x1, x2) + G211(x1)τ1 + G212(x1)τ2

f22(x1, x2) + G221(x1)τ1 + G222(x1)τ2









where

f21(x1, x2)
△
=

−1

det M

[

1.05{(−6x21x22 − 3x2
22) sin x12

+5x21 − 117.6 sinx11 − 14.7 sin(x11 + x12)}

−(1 + 3 cosx12)(3x2
21 sin x12 + 5x22 − 14.7 sin(x11 + x12))

]

f22(x1, x2)
△
=

−1

det M

[

(−1 − 3 cosx12){(−6x21x22 − 3x2
22) sin x12

+5x21 − 117.6 sinx11 − 14.7 sin(x11 + x12)}

+(21.2 + 6 cosx12)(3x2
21 sin x12 + 5x22

−14.7 sin(x11 + x12))
]
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Fig.2. P·SPR·D Control
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Fig.3. Ordinary PID Control
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Fig.4. Ordinary PID+m0 Control

G211(x1)
△
=

1.05

det M
, G212(x1)

△
=

1

det M
(1 − 3cosx12),

G221
△
=

1

det M
(−1 − 3cosx12),

G222
△
=

1

det M
(21.2 + 6cosx12)

where detM = 21.26 + 0.3 cosx12 − 9(cosx12)
2.

Further, g(x1) is also given as

[

g1(x1)
g2(x1)

]

=

[

−117.6 sinx11 − 14.7 sin(x11 + x12)
−14.7 sin(x11 + x12)

]

Applying Theorem 3, let us solve a set-point servo prob-

lem with x∗
1 = (1.5, 1)T . We set the SPR element

as (23) and take an initial state as (x1(0), x2(0)) =
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(0,0). The simulation results is shown in Fig.2, when

D =

[

−2 0
0 −2

]

, KS =

[

40 0
0 40

]

, KP =
[

180 0
0 180

]

, KD =

[

60 0
0 60

]

. It is observed that the

convergence speed is very quick.

Furthermore, as mentioned in Remark 1, the regulation

problem (asymptotical stabilization to the origin) could be

solved with very good performance by setting x∗
1 = 0.

(Figure is omitted for page limitation.)

Meanwhile, the P·SPR·D control with D=0, i.e.,

ξ̇ = x∗

1 − x1

τ = KP (x∗

1 − x1) + KSξ − KDx2

becomes ordinary PID control. It is observed that though the

convergence was attained by the ordinary PID control (see

Fig.3), its performance is inferior to Fig.2. Of course the con-

trol performance changes dependent on KP , KS , KD, D.

However, it was seen that the P·SPR·D control attained al-

ways much better performance than the ordinary PID control.

Furthermore, Fig.4 shows the simulation results for a control

law in which the so-called manual reset quantity m0 =
g(x∗

1) is added to the ordinary PID control. Comparing these

three cases, we can say that the P·SPR·D control is the best in

regard to both response speed and overshoot. This indicates

that the P· SPR· D control possesses a possivility of a new

and effective control scheme.

Note that nothing has been mentioned on the controller

parameter adjustment. Of course the control performance de-

pends on the parameter values. The values of KP , KS, KD

used in the simulation is the almost optimum values which

was obtained by trial and error for the usual PID controller

under the condition of diagonal matrices, and the same values

are used also for the P· SPR· D control. Although there is a

room of argument and improvement as a robot control, the

parameter adjustment is left as a future topic.

VI. CONCLUSION

Based on the passivity theory and LaSalle’s invariance

principle, we investigaed on the regulation problem by the P

· SPR· D control and the L2 disturbance attenuation problem

for the affine nonlinear system. Further we studied the

setpoint servo problem for the robot manipulator.

The P· SPR· D control is a new general control scheme

and the use of SPR element as a part of the controller

possesses an advantage from a passivity based design point of

view. Although a number of adjustable parameters increases

compared to PID, it implies also to increase a freedom for

the design. The optimum parameter adjustment is left as a

future topic.

Implementation of the P· SPR· D control is not difficult

with a digital processor.
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VII. APPENDIX A ORDINARY PID CONTROL

Consider the robot manipulator (17),(18). the robot ma-

nipulator is passive with respect to input τ and output y,

and hence K-Y-P property (21) holds.

Let us consider a set-point servo problem with the desired

set-point (x∗
1,0). We connect an ordinary PID controller

ẇ = (x∗

1 − x1) (37)

τ = KP (x∗

1 − x1) + KIw − KDx2 (38)

where KP , KI , KD are the positive-definite diagonal ma-

trices.

Below we prove the asymptotical stability, applying

LaSalle’s invariance principle.

Since an equilibrium of the closed-loop system

(17),(37),(38) satisfies

0 = x2e

0 = −g(x1e) + KP (x∗

1 − x1e) + KIwe

0 = (x∗

1 − x1e) (39)

(x1e = x∗
1, x2e = 0, we = w = K−1

I g(x∗
1)) becomes the

equilibrium point.

Now consider a Lyapunov function candidate

V (x, w) = W (x) + g(x∗

1)
T (x∗

1 − x1)

+
1

2
(x∗

1 − x1)
T KP (x∗

1 − x1)

+(x∗

1 − x1)
T KI(w − w) +

1

2
α(w − w)T KI(w − w)

−α(x∗

1 − x1)
T M(x1)x2 (40)

where W (x) =
1

2
xT

2 M(x1)x2 + U(x1) − U(x∗

1), α > 0

We can prove that V (x, w) is a function bounded below in

the neighborhood of (x∗,0, w).
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Take its time derivative along (17),(18),(37),(38), using the

K-Y-P property (21), to obtain

V̇ (x, w)

= Wx1
(x)x2 + Wx2

(x){f2(x1, x2) + G2(x1)τ}

−g(x∗

1)
T x2 + (x∗

1 − x1)
T KP (−x2)

−xT
2 KI(w − w) + (x∗

1 − x1)
T KIẇ

+α(w − w)T KIẇ + αxT
2 M(x1)x2 − α(x∗

1 − x1)
T Ṁ(x1)x2

−α(x∗

1 − x1)
T M(x1)ẋ2

≤ yT τ − g(x∗

1)
T x2 − (x∗

1 − x1)
T KP x2 − xT

2 KI(w − w)

+(x∗

1 − x1)
T KI(x

∗

1 − x1) + α(w − w)T KI(x
∗

1 − x1)

+αxT
2 M(x1)x2 − α(x∗

1 − x1)
T Ṁ(x1)x2

−α(x∗

1 − x1)
T M(x1){f2(x1, x2) + G2(x1)τ}

= xT
2 (KP (x∗

1 − x1) + KIw − KDx2) − g(x∗

1)
T x2

−(x∗

1 − x1)
T KP x2 − xT

2 KI(w − w)

+(x∗

1 − x1)
T KI(x

∗

1 − x1) + α(w − w)T KI(x
∗

1 − x1)

+αxT
2 M(x1)x2 − α(x∗

1 − x1)
T Ṁ(x1)x2

−α(x∗

1 − x1)
T {

1

2
Ṁ(x1)x2 + S(x1, x2)x2 + g(x1)}

−α(x∗

1 − x1)
T (KP (x∗

1 − x1) + KIw − KDx2)

= −xT
2 (KD − αM(x1))x2

−(x∗

1 − x1)
T (αKP − KI)(x

∗

1 − x1)

−αg(x∗

1)
T (x∗

1 − x1) − α(x∗

1 − x1)
T Ṁ(x1)x2

+α(x∗

1 − x1)
T {

1

2
Ṁ(x1)x2 + S(x1, x2)x2 + g(x1)}

+α(x∗

1 − x1)
T KDx2

= −xT
2 (KD − αM(x1))x2

−(x∗

1 − x1)
T (αKP − KI)(x

∗

1 − x1)

+α(g(x1) − g(x∗

1))
T (x∗

1 − x1)

+α(x∗

1 − x1)
T Q(x1, x2; KD)x2

where Q(x1, x2; KD)
△
= − 1

2Ṁ(x1) +S(x1, x2) +KD

Here assume for β > 1

(x∗

1 − x1)
T KP (x∗

1 − x1) ≥ β(g(x1) − g(x∗

1))
T (x∗

1 − x1),

then we have

V̇ (x, w)

≤ −xT
2 (KD − αM(x1))x2

−(x∗

1 − x1)
T (αKP − KI)(x

∗

1 − x1)

+
α

β
(x∗

1 − x1)
T KP (x∗

1 − x1)

+α(x∗

1 − x1)
T Q(x1, x2; KD)x2

= −xT
2 (KD − αM(x1))x2

−

[

(x∗
1 − x1)

x2

]T[

A1 A2

A3 A4

] [

x∗
1 − x1

x2

]

≤ 0 (41)

where A1 = (α −
α

β
)KP − KI , A2 = −

1

2
αQ(x1, x2; KD)

A3 = −
1

2
αQ(x1, x2; KD)T , A4 = KD − αM(x1)

By supposing that x2 exists in the neighborhood of x2 = 0,

spectral radius of Q(x1, x2; KD) can be considered whithin

a certain value. When x2 exists within that bounds, by taking

α suffisiently small and KI > 0 appropriatly small for the

given β, we can make the matrix
[

(α − α
β
)KP − KI − 1

2αQ(x1, x2; KD)

− 1
2αQ(x1, x2; KD)T KD − αM(x1)

]

and KD−αM(x1) be positive definite by choosing KP > 0
and KD > 0 large enough. In other words, if KP > 0 and

KD > 0 are large enough and KI > 0 is small, there exists

α such that the above matrix and KD − αM(x1) become

positive definite for the given β.

Let Ωc = {(x, w) | V (x, w) ≤ c} and suppose Ωc is

bounded and V̇ (x, w) ≤ 0 in Ωc (c is a positive number

such that V̇ (x, w) ≤ 0). Here define ΩE as a set of all

points of Ωc satisfying V̇ (x, w) = 0 and put

ΩE = {(x, w) | V̇ (x, w) = 0, (x, w) ∈ Ωc} (42)

From (41),(17),(18) and (38) (x, w) satisfying V̇ (x, w) =
0 is given as x∗

1 − x1 = 0, x2 = 0, w = w, namely,

a point (x1, x2, w) = (x∗
1,0, w). Accordingly, we know

from (17),(37),(38) that (x, w) in ΩE consists of only

the equilibrium point (x1e, x2e, we) = (x∗
1,0, w) when

τ = KIw = g(x∗
1). Thus, the largest invariance set ΩM

in ΩE consists of only the equilibrium point (x∗
1,0, w).

Therefore, by LaSalle’s invariance principle all trajectories

in Ωc converges to ΩM , i.e. to (x∗
1,0, w) as t → ∞. Thus

x = (x∗
1,0) is aymptotically stable. Q.E.D
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