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Abstract— The problem of sensor activation in a controlled
discrete event system is considered. Sensors are assumed to
be costly and can be turned on/off during the operation of
the system. The agent activates sensors as needed in order to
observe the trajectories of the system and correctly implement
the given feedback control law. Different policies of sensor
activation can be used by the agent. A policy is said to be
minimal if any strictly less activation prevents the correct
implementation of the control law. A systematic formulation
of the sensor activation problem is obtained and a solution
procedure is proposed. An algorithm that computes minimal
sensor activation policies is presented. The algorithm is of
polynomial complexity in both the number of states and the
number of events in the system.

Index Terms— Discrete event systems, sensor activation, su-

pervisory control, observability

I. INTRODUCTION

IN a control system, the control or diagnosis decisions of

an agent often depend on its observation of the system’s

trajectory. (We use the word “agent” to represent the generic

entity responsible for control and/or diagnosis tasks in the

control system.) However, online observation of the system

is usually limited and can be costly for one or more of the fol-

lowing reasons: life span and availability of sensors, limited

power of batteries, available computation and communication

resources, or security. To reduce sensor-related costs, the

agent may not want to activate the sensors continuously.

Therefore, the problem of minimization of sensor activation

is of great interest in the design of cost-efficient control and

diagnostic systems. Our usage of the word “activation” in this

paper includes all functionalities associated with the sensing

devices, including communication with these devices. The

problem of optimal sensor activation has been studied in the

context of discrete event systems (DES) recently, where the

common objective is to minimize the activation of sensors

during the operation of the system [1]–[5]. There is also

closely related work concerned with minimizing commu-

nications of event occurrences in decentralized-information

systems, for purposes of control or diagnosis [6]–[9].

In the initial works on sensor selection in DES, the

optimization objective is to minimize the set of events to

be observed by the agent [10]–[13]. In its general form,

this problem is known to be NP-complete (see, e.g., [13]).

Research on effective approximation methods to solve such
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problems remains active; see, e.g., [14]. In these problem

settings, it is assumed that, for each event, the agent either

always or never activates the sensor.

This paper is concerned with the problem where the

agent may want to activate the sensor only some of the

time, depending on the trajectory of the system. This flex-

ibility becomes important when the system is operated in

an environment where the available sensing resources are

limited or costly. For example, in a wireless sensor network,

transmitting data or making measurements may involve using

limited battery power or limited bandwidth. Also, the life

span of a sensor often depends on the frequency of the

measurements it takes. In other instances, security concerns

may motivate the need to minimize communications with

sensing devices. The intricate part of the sensor activation

problem is that the decision of activating or not a sensor

at a given point in the evolution of the system depends not

only on the current trajectory of the system, but also on the

agent’s observation of that trajectory, which in turn depends

on how sensors have been activated so far. The work in

[1]–[3] considers the sensor activation problem (primarily

for the purpose of event diagnosis) from an optimal control

viewpoint and it captures the requirements associated with

the definition of sensor activation policies by defining a

suitable information state. For acyclic systems, i.e., for finite

languages, an appropriate filtration of σ -fields of information

states is identified, and an optimal policy is then found by

dynamic programming. For cyclic systems, i.e., for infinite

regular languages, the set of string-based information states

is reduced to the set of diagnoser states. The formulation

to the sensor activation problem in [4], [5] is different and

based on safety 2-player games and weighted automata; the

goal is to ensure diagnosability.

This paper is specifically concerned with the problem

of minimizing sensor activation to preserve the property

of observability in a controlled DES. Observability is the

necessary and sufficient condition dealing with sensing lim-

itations for supervisor existence in partially-observed super-

visory control problems (controllability addresses actuation

limitations). We are interested in the generalized notion of

observability in the context of observable event occurrences

(or transitions) in [15], which extends the basic notion of

observability (in the context of observable events) in [16].

The discussion in [17] shows that the problem of guar-

anteeing both notions of observability can be transformed

into a problem of state disambiguation. We borrow some

notions from the communication problems described in [8],

[9] for the sensor activation problem of this paper. The notion

of feasibility ensures the consistency between the agent’s
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observation of the trajectories of the system and its decisions

on sensor activation. The notion of implementability restricts

the solution space to the state space of the system for the sake

of computational efficiency. The notion of minimality is a

logical one: a sensor activation policy is minimal if removing

one or more activations of event occurrences in the dynamic

evolution of the system renders a correct solution incorrect.

Our approach is different from the work in [1]–[5] in

many respects: (i) our notion of optimality is logical as

opposed to numerical; (ii) our solution framework covers

finite and infinite regular languages in the same manner

(in contrast to the work in [3]); (iii) with the requirement

of implementability, our solution space is restricted to the

subsets of the set of transitions of the system. This last point

means that optimal solutions to our problem can be computed

in polynomial time in the state space of the system. This is in

contrast to the more general numerical optimization problem

in [3], where a dynamic program must be solved over a

state space doubly-exponential with respect to the maximum

length of system strings (acyclic case) or exponential with

respect to the state space of the system (cyclic case). In

[4], [5], the authors use a safety 2-player game-theoretic

argument that involves the construction of the so-called

“most-permissive observer,” a step of exponential complexity

in the state space of the system and doubly-exponential in

the number of observable events.

An example in [8] shows that knowing more occurrences

of events can cause some distinguishable strings to become

indistinguishable. This result is sometimes called the “lack

of monotonicity problem” in decentralized-information sys-

tems with communication. We demonstrate in this paper

that the lack of monotonicity problem does not arise for

feasible sensor activation policies. In other words, within

the class of feasible sensor activation policies, more frequent

sensor activations do not cause distinguishable strings to

become indistinguishable. This key result allows us to derive

polynomial-time algorithms in the state space of the system

and in the number of events for calculating minimal sensor

activation policies without any structural assumptions on the

system.

This paper is organized as follows. Section II presents

a systematic description of our problem. Then, we show

the existence of a maximum feasible subpolicy for a given

policy in Section III. In Section IV, Algorithm MIN-SEN-

ACT, together with its subroutine Algorithm MAX-FEA-

SUB, are presented for solving the sensor activation problem.

An illustrative example and a complexity analysis follow.

Section V provides concluding remarks. Proofs have been

omitted due to space limitations; they are available from the

authors.

II. DESCRIPTION OF PROBLEM

A. System Model

We assume basic knowledge of DES and common nota-

tion. We model an untimed DES as a deterministic finite-state

automaton

G = (X ,E, f ,Γ,x0) (1)

where X is the finite set of states, E is the finite set of

events, f : X×E→ X is the partial transition function where

f (x,e) = y means that there is a transition labelled by event

e from state x to state y, Γ is the active event function where

Γ(x) is the set of all events e for which f (x,e) is defined

(called the active event set of G at x), and x0 is the initial

state. f is extended to X×E∗ in the usual way. We use L (G)
to denote the language generated by G. We define the set of

transitions of G as

TR(G) := {(x,e) ∈ X×E : e ∈ Γ(x)}. (2)

The set of events that are observable by the agent is denoted

by Eo, and the set of events that can never observed by the

agent is denoted by Euo. An event is observable if there exists

a sensor associated with the event that can be activated.

B. Sensor Activation Model

We first present a general language-based model of sensor

activation. We then restrict this model to one that is based on

the state space of G. Sensors are activated by the agent; in

the context of this paper, the agent will be the supervisory

controller for G. When to activate sensors is described by

the following sensor activation mapping

ω : L (G)→ 2Eo
. (3)

In other words, for a trajectory s ∈L (G), ω(s) is a subset

of observable events corresponding to the sensors that are

activated by the agent after s.

Given a sensor activation mapping ω , we use induction to

define the corresponding information mapping θ
ω : L (G)→

E∗o as follows. For the empty string ε , θ
ω(ε) = ε , and for

all se ∈L (G),

θ
ω(se) =

{

θ
ω(s)e if e ∈ ω(s)

θ
ω(s) otherwise.

(4)

After the occurrence of s, the next event e is seen or observed

by the agent when it occurs after s if and only if the agent

activates the sensor for e after the occurrence of s.

The set of confusable string pairs, denoted by Tcon f (ω),
is defined as

Tcon f (ω) = {(s,t) ∈L (G)×L (G) : θ
ω(s) = θ

ω(t)}. (5)

Note that for all s ∈L (G), we have (s,s) ∈ Tcon f (ω).
It is important to note that not all arbitrary sensor activa-

tion policies ω will be “feasible” based on the information

available to the agent. To guarantee feasibility, it is required

that any two strings of events that are indistinguishable to

the agent must be followed by the same activation decision

for every event. Namely, an activation policy ω must be

“compatible” with the information mapping θ
ω that is built

from it. Formally, ω is said to be feasible if

(∀ e ∈ E)(∀ se,s′e ∈L (G)) θ
ω(s) = θ

ω(s′)
⇒ [e ∈ ω(s)⇔ e ∈ ω(s′)].

(6)
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In principle, to check feasibility, we first calculate θ
ω from

ω , and then check if equation (6) holds.

For the purpose of computational efficiency, we introduce

a so-called “implementability” condition that restricts the

class of sensor activation policies to the state space structure

of G. This condition is reminiscent of the implementability

condition in [6], [8], [9]. Formally, ω is said to be imple-

mentable with respect to G if

(∀ e ∈ E) (∀ s,s′ ∈L (G)) f (x0,s) = f (x0,s
′)

⇒ [e ∈ ω(s) ⇔ e ∈ ω(s′)].
(7)

In words, implementability requires that any two strings of

events that lead to the same state in G must be followed

by the same activation decision for every event. Clearly, the

solution space for the problem of sensor activation can be

refined by refining the state space of automaton G, at the

cost of increased computations; we assume hereafter that the

designer has chosen the desired structure of G on the basis

of available computing power.

When the implementability condition is satisfied, we can

associate the activation of sensors with the transition in G:

the event associated with each transition in TR(G) is either

sensed (activated) by the agent or not. The set of transitions

whose event labels are sensed by the agent is denoted by

Ω⊆ T R(G), (8)

where (x,e) ∈Ω means that

(∀ s ∈L (G)) f (x0,s) = x ⇒ e ∈ ω(s). (9)

We call Ω a sensor activation policy. We shall refer hereafter

to the elements of Ω as the activated transitions; note that

the state name is never observed, only the event label of the

activated transition. Ω is defined only if the implementability

condition is satisfied. When this is the case, there is a one-

to-one correspondence between ω and Ω. In particular, ω

can be obtained from Ω as follows.

ω(s) = {e ∈ Eo : ( f (x0,s),e) ∈Ω}. (10)

We denote by θ
Ω the function θ

ω of equation (4) where ω

comes from a given Ω according to equation (10). We say

that Ω is feasible if the corresponding ω is feasible. It is not

difficult to see that Ω is feasible if and only if

(∀ e ∈ E)(∀ se,s′e ∈L (G))θ Ω(s) = θ
Ω(s′)

⇒ [( f (x0,s),e) ∈Ω⇔ ( f (x0,s
′),e) ∈Ω].

(11)

In prior works on the sensor selection problem [10]–[13],

a sensor is either activated all the time, or not at all. That

corresponds to the sensor activation policy

Ω
on = {(x,e) ∈ T R(G) : x ∈ X ,e ∈ E ′o},

where E ′o ⊆ Eo is the set of sensors that are (always)

activated. It is easy to verify that such a sensor activation

policy is necessarily feasible.

The set of confusable state pairs, denoted by Tcon f (Ω), is

defined as

Tcon f (Ω) = {(x,y) ∈ X×X : (∃ s,s′ ∈L (G))
x = f (x0,s)∧ y = f (x0,s

′)∧θ
Ω(s) = θ

Ω(s′)}.
(12)

Note that for all x ∈ X , (x,x) ∈ Tcon f (Ω).

C. Objective for the Agent

In addition to the feasibility requirement specified by

equation (11), we may further require that the agent be able

to distinguish certain pairs of states of G for its own control

purposes. Formally, we specify a relation Tspec ⊆ X × X ,

which is called the specification condition. We require that

no state pair (x,y) ∈ Tspec be indistinguishable from the

viewpoint of the agent, that is,

(∀s,s′ ∈L (G)) θ
Ω(s) = θ

Ω(s′)
⇒ ( f (x0,s), f (x0,s

′)) 6∈ Tspec.
(13)

The agents must activate a proper set of transitions to

obtain sufficient information so that the above requirement

is satisfied.

Tspec is user-defined and problem-dependent. For example,

in supervisory control, we may want to find a minimal sensor

activation policy so that the observability property holds.

This property is defined in [15] in the context of observable

event occurrences; it is an extension of the original definition

in [16] for natural projections on Eo. Obtaining Tspec from

the observability requirement is discussed in Section 5.1

in [17]; details are omitted here. Given Tspec obtained from

the observability requirement and given a sensor activation

policy Ω, the language L (G) is observable if and only if

equation (13) holds, or, equivalently, Tcon f (Ω)∩Tspec = /0.

The following example shows how to construct Tspec. (For

conciseness, when listing elements of sets of states Tspec and

Tcon f hereafter, we only list pair (x,y); by definition, pair

(y,x) is also in the set even if not explicitly listed.)

Example 1: Consider the system modeled by the automa-

ton A shown in Fig. 1. Suppose the desired behavior is

represent by subautomaton G, which is obtained by removing

state 3. Let the set of controllable event be Ec = {e}. Event

e is defined at states 0, 1, and 4 of A, but it is not defined

at state 1 of G. Therefore, to ensure observability of the

language generated by G with respect to that generated by

A, we need to disambiguate states 1 and 4, and also states 1

and 0. In other words, Tspec = {(1,4),(1,0)}.

0

2 4

1 3

e

e

a

a

5
e

Fig. 1. Observability and state disambiguation in Example 1

We are now ready to formally state the problem to be

solved.

D. Problem Statement

Given a system G = (X ,E, f ,Γ,x0), a specification Tspec,

and a set of observable events Eo ⊆ E . Assume that if the

agent activates all sensors all the time, that is, under Ω
all =

{(x,e) : x ∈ X ,e ∈ Eo}, the specification Tspec is satisfied:

(∀s,s′ ∈L (G))θ all(s) = θ
all(s′)

⇒ ( f (x0,s), f (x0,s
′)) 6∈ Tspec.

(14)
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We would like to solve the following problem. Find a sensor

activation policy Ω
∗ ⊆ TR(G) such that:

C1. Ω
∗ is feasible.

C2. The specification Tspec is satisfied:

(∀s,s′ ∈L (G))θ ∗(s) = θ
∗(s′)

⇒ ( f (x0,s), f (x0,s
′)) 6∈ Tspec.

(15)

where θ
∗ is the information map obtained from Ω

∗.

C3. Ω
∗ is minimal, i.e., there is no other Ω

′ ⊂Ω
∗ that

satisfies (C1) and (C2).

This optimization problem is different from the ones consid-

ered in [1]–[5]. The above notion of minimality is particu-

larly well-suited for problems where communications from

the sensors to the agent are costly. Moreover, this formulation

admits nice properties as will be seen in Section III.

E. About Lack of Monotonicity

In a more general problem setting involving several

communication agents, observing the event labels of more

transitions does not mean that the agent can distinguish more

pairs of states; see, e.g., Example 2 in [8]. Fortunately, for

the sensor activation problem discussed in this paper, the

agent activates sensors based on its own observation of the

system. Because of the feasibility requirement of the sensor

activation problem, activating more often the sensors does

help the agent to distinguish more pairs of strings. We will

formally prove this in Theorem 1 in Section III-B.

III. ANALYSIS OF PROPERTIES

We first present some definitions and then formally inves-

tigate properties of the sensor activation problem.

A. Notation and Definitions

The prefix-closure of a string s∈L (G), denoted by PC(s),
is defined as PC(s) = {u ∈ E∗ : (∃ v ∈ E∗) uv = s}. We say

that ω
′ ⊆ ω

′′ if (∀ s ∈L (G)) ω
′(s) ⊆ ω

′′(s). We say that

ω
′ ⊂ ω

′′ if ω
′ ⊆ ω

′′ and (∃ s ∈L (G)) ω
′(s) ⊂ ω

′′(s).
For a given sensor activation policy Ω, we define the

“unobserved reach” of state x ∈ X under Ω, denoted by

UR(x,Ω) ⊆ X , to be the set of states that can be reached

from x via “unobserved” transitions, namely, unactivated

transitions or transitions labeled by unobservable events.

B. Properties of Sensor Activation Problem

The relation between the feasibility of Ω and the set of

confusable state pairs Tcon f (Ω) is given by the following

lemma, whose proof follows directly from the definitions of

Tcon f and feasibility.

Lemma 1: Ω is feasible if for any e∈ E and (x,e),(y,e) ∈
T R(G),

(x,y) ∈ Tcon f (Ω)⇒ ((x,e) ∈Ω⇔ (y,e) ∈Ω). (16)

Lemma 2 states that if two strings have the same infor-

mation mapping, then for each prefix of one string, there

exists at least one prefix of the other string having the same

information mapping. The proof follows from a recursive

application of the definition of the function θ .

Lemma 2: Let s,t ∈L (G). Then θ (s) = θ (t) if and only

if

[(∀ u ∈ PC(s)) (∃ v ∈ PC(t)) θ (u) = θ (v)]
∧[(∀ v ∈ PC(t)) (∃ u ∈ PC(s)) θ (v) = θ (u)].

(17)

The following important theorem establishes the mono-

tonicity of feasible sensor activation policies.

Theorem 1: Consider a prefix-closed language L and two

sensor activation policies ω
′ and ω

′′ for it. If ω
′ and ω

′′ are

both feasible, i.e., they both satisfy equation (6), then

ω
′ ⊇ ω

′′⇒ Tcon f (ω
′)⊆Tcon f (ω

′′). (18)

The following corollary is a state-based version of Theo-

rem 1.

Corollary 1: Given system G and two sensor activation

policies Ω
′ and Ω

′′ for it. If Ω
′ and Ω

′′ are both feasible,

i.e., they both satisfy equation (11), then

Ω
′ ⊇Ω

′′⇒ Tcon f (Ω
′)⊆ Tcon f (Ω

′′). (19)

The following theorem says that the union of two feasible

policies is also feasible.

Theorem 2: Consider language L (G) and two feasible

sensor activation policies ω
′ and ω

′′ for it. Then, ω = ω
′∪ω

′′

is also feasible.

For any given sensor activation policy, the following theo-

rem states that, among all of its feasible sub-policies, there is

a unique maximum feasible sub-policy. This result plays an

important role in the development of the algorithmic solution

of the sensor activation problem presented in Section IV.

Theorem 3: For a given system G and a sensor acti-

vation policy Ω for G, there exists a maximum feasible

sensor activation policy Ω
↑F such that Ω

↑F ⊆ Ω, i.e., for

all feasible Ω
′ with Ω

′ ⊆ Ω, we have Ω
′ ⊆ Ω

↑F . Let Ωi,

i = 1, . . . ,m be all feasible sensor activation polices such

that Ωi ⊆ Ω. Then, we have Ω
↑F = ∪m

i=1Ωi. Furthermore,

its corresponding set of confusable state pairs is given by

Tcon f (Ω
↑F) = ∩m

i=1Tcon f (Ωi).

IV. ALGORITHMS FOR MINIMIZATION OF SENSOR

ACTIVATION

In this section, we present the main algorithm, called Algo-

rithm MIN-SEN-ACT, for finding a minimal sensor activation

policy Ω
∗. In the algorithm, we use a subroutine, called

Algorithm MAX-FEA-SUB, to find the maximum feasible

sensor activation policy Ω
↑F of a given sensor activation

policy Ω. An illustrative example is also presented.

A. Algorithms

Algorithm MIN-SEN-ACT:

INPUT: A system G, a set of observable events Eo, and a

specification Tspec.

Step 0: Initialization. Set Ω = {(x,e) ∈ T R(G) : e ∈ Eo} and

D = /0.

Step 1: Pick a transition (x,e) ∈ Ω but (x,e) 6∈ D. Let

Ω
T ←Ω\ {(x,e)}.

Step 2: Call Algorithm MAX-FEA-SUB to calculate the max-

imum feasible sensor activation policy Ω
↑F of all feasible

sub-policies of Ω
T and its corresponding set of confusable
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state pairs Tcon f (Ω
↑F) as (Ω↑F ,Tcon f (Ω

↑F)) = MAX-FEA-

SUB(ΩT ).
Step 3: Test Tcon f (Ω

↑F)∩Tspec = /0. If it is true, set Ω←Ω
↑F

and Tcon f (Ω)← Tcon f (Ω
↑F). Otherwise, set D←D∪{(x,e)}.

Step 4: If Ω 6= D, go to Step 1. Otherwise set Ω
∗ ← Ω,

Tcon f (Ω
∗)← Tcon f (Ω), and stop.

OUTPUT: Minimal sensor activation policy Ω
∗ and its set of

confusable state pairs Tcon f (Ω
∗). �

Theorem 4: The output Ω
∗ of Algorithm MIN-SEN-ACT

is a solution to the sensor activation problem formulated in

Section II-D.

Given a sensor activation policy Ω, the maximum feasible

sensor activation policy Ω
↑F can be found by the following

algorithm.

Algorithm MAX-FEA-SUB:

INPUT: Sensor activation policy Ω, G, and Eo.

Step 0: Initially, set Ω←Ω and T ← {(x,x) ∈ X ×X}.
Step 1: Recursively, set T ← T ∪{(x,y) ∈ X×X : (∃ (w,z) ∈
T ) x ∈UR(w,Ω)∧ y ∈UR(z,Ω)}.
Step 2: Recursively, set T ← T ∪ {(x,y) ∈ X × X :

(∃ (w,e′),(z,e′) ∈ T R(G))(w,z) ∈ T ∧ f (w,e′) = x∧ f (z,e′) =
y}.
Step 3: Iterate Steps 1 and 2 until there are no further changes

to T .

Step 4: Recursively, set Ω ← Ω \ {(y,e) ∈ Ω : (∃ (x,e) ∈
T R(G)\Ω )(x,y) ∈ T}.
Step 5: Repeat Steps 1 to 4 until there are no further changes

to Ω. Then, set Ω
↑F ←Ω and Tcon f (Ω

↑F)← T .

OUTPUT: Ω
↑F and the corresponding set of confusable state

pairs Tspec(Ω
↑F). �

Theorem 5: The output Ω
↑F of Algorithm MAX-FEA-

SUB satisfies Theorem 3, i.e., it is the maximum feasi-

ble sensor activation policy of Ω. Furthermore, the output

Tcon f (Ω
↑F) is the set of confusable state pairs under Ω

↑F .

B. Illustrative Example

In this Section, we illustrate how Algorithm MIN-SEN-

ACT and Algorithm MAX-FEA-SUB proceed. To specify

Ω and D for each iteration, we use square brackets to

denote that a transition has been removed and parentheses

to show that a transition cannot be removed. The subscripts

outside square brackets and parentheses are used to mark the

order in which the transitions are examined. Suppose we are

examining the nth transition; then the current D is the set of

all transitions within parentheses that have a subscript less

than n, and the current Ω is all transitions in TR(G) but not

within square brackets that have a subscript less than n.

Example 2: The system is modeled by automaton A

shown in Fig. 2. Let Eo = {a1,a2,e1,e2} and Ec = {e1,e2}.
Suppose the purpose of control is to prevent deadlock at

state 5. Therefore, we need to disable event e1 at state 4 and

the automaton G describing the desired behavior is given by

deleting state 5 together with transition (4,e1) from A. Since

e1 is also defined at states 0 and 1 where it should not be

disabled, we have that Tspec = {(4,1),(4,0)}.
By Step 0 of Algorithm MIN-SEN-ACT, set Ω = T R(G)

and D = /0. Go to Step 1; suppose we try to remove (0,a1)

2

3 4

1

0

[e
1
]4,[e2

]3

5

(a
2
)2

(a
1
)8

(e
2
)10

(a
1
)1

[e
1
]7

[a
2
]6

[a
2
]6

(a
1
)9

e
1

[e
2
]5

Fig. 2. Minimal solution computed in Example 2

in the first iteration. Set Ω
T ← Ω \ {(0,a1)}. Go to Step 2

and proceed with Algorithm MAX-FEA-SUB as follows. By

Step 0, set Ω← Ω
T and T = {(x,x) ∈ X ×X}. By Step 1,

set T ← T ∪{(0,1)}. By Step 2, since (0,1) ∈ T , f (0,a2) =
2, f (1,a2) = 3, set T ← T ∪ {(2,3)}. Since f (0,e1) =
0, f (1,e1) = 2, set T ← T ∪ {(2,0)}. Since (2,0) ∈ T ,

f (2,a1) = 4, f (0,a1) = 1, set T ← T ∪{(4,1)}. Completing

Algorithm MAX-FEA-SUB, we have (4,1) ∈ Tcon f (Ω
↑F).

Therefore, Tcon f (Ω
↑F) ∩ Tspec ⊇ {(4,1)} 6= /0 in Step 3 of

Algorithm MIN-SEN-ACT. Set D ← D ∪ {(0,a1)}. Go to

Step 4, since Ω 6= D, go back to Step 1.

In the second iteration, we try to remove (0,a2). By

Step 2, set Ω
T ← Ω \ {(0,a2)} and proceed to Algorithm

MAX-FEA-SUB. By Step 1, we have (2,0) ∈ T . By Step

2, since f (2,a1) = 4 and f (0,a1) = 1, we have (4,1) ∈ T .

Therefore, when performing Step 3 of Algorithm MAX-

FEA-SUB, we have Tcon f (Ω
↑F)∩ Tspec ⊇ {(4,1)} 6= /0. Set

D← D∪{(0,a2)}. Go to Step 4; since Ω 6= D, go back to

Step 1.

In the third iteration, we try to remove (0,e1). It is

easy to verify that Ω
↑F = Ω \ {(0,e1)} with corresponding

Tcon f (Ω
↑F) = {(x,x) ∈ X ×X}. For the same reason as for

(0,e1), we can remove (0,e2) and (1,e2) in the fourth and

fifth iterations.

In the sixth iteration, we try to remove (1,a2). Set Ω
T ←

Ω\{(1,a2)}. Go to Step 2 and proceed to Algorithm MAX-

FEA-SUB as follows. By Step 0, set Ω ← Ω
T and T =

{(x,x) ∈ X ×X}. By Step 1, we have T ← T ∪{(3,1)}. In

Step 2, T does not change. Go to Step 4. Since (1,3) ∈ T ,

(1,a2) 6∈Ω, and (3,a2) ∈ T R(G), set Ω←Ω\{(3,a2)}. Go

back to Steps 1 and 2; but there is no further change of

T . Thus, set Ω
↑F ← Ω, Tcon f (Ω

↑F)← T, and go to Step

3 of Algorithm MIN-SEN-ACT. Since (3,1) 6∈ Tspec, we

have Tcon f (Ω
↑ f )∩Tspec = /0. Set Ω← Ω

↑F and Tcon f (Ω)←
Tcon f (Ω

↑F). Since D 6= Ω, go back to Step 1.

In the seventh iteration, we try to remove (1,e1). Going

through the algorithms, it can be verified that (1,e1) can be

removed. Thus, we have Ω←Ω\ {(1,e1)}.
In the eighth and ninth iterations, we try to remove (2,a1)

and (3,a1) respectively. In both cases, by Step 1 of Algorithm

MAX-FEA-SUB, we have state 4 in the unobserved reach of

state 1, i.e., we have Tcon f (Ω
↑F)∩Tspec ⊇ {(4,1)} 6= /0. Thus,

we have D← D∪{(2,a1),(3,a1)}.
In the tenth (and final) iteration, we try to remove (4,e2),
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but it causes state 0 to be in the unobserved reach of state 4.

By Step 1 of Algorithm MAX-FEA-SUB, we have (4,0)∈ T .

Thus, we have Tcon f (Ω
↑F)∩Tspec ⊇ {(4,0)} 6= /0. Set D←

D∪{(4,e2)}. Go to Step 4; we have D = Ω and Tcon f (Ω
∗) =

{(0,0),(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(2,3)}.
Note that the final result depends on the order in which the

transitions are examined in Algorithm MIN-SEN-ACT. This

can be seen from Fig. 3, which gives an alternative minimal

solution for this problem. �
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Fig. 3. Another minimal solution for Example 2

C. Complexity of Algorithm MIN-SEN-ACT

As a consequence of the iterative procedure in Algorithm

MIN-SEN-ACT and of Algorithm MAX-FEA-SUB for the

implementation of Step 2, we have the following result.

Theorem 6: The complexity of solving the problem for-

mulated in Section II-D by using the algorithms in this

section is upper bounded by ‖X×E‖(‖X×X‖+‖X×E‖).

V. CONCLUSION

We have considered a different approach to the dynamic

sensor activation problem than what has been studied so

far in the literature. We have adopted a logical notion of

optimality (set inclusion) and have restricted the solution

space for the sake of computational efficiency. In this context,

we have proved that the sensor activation problem possesses

a monotonicity property; we have also proved the existence

of the maximum feasible sub-policy of a given policy. Using

these results, we have developed Algorithm MIN-SEN-ACT

for the optimization of dynamic sensor activation in the con-

text of controlled DES. It uses Algorithm MAX-FEA-SUB as

a subroutine. These two algorithms are of polynomial-time

complexity with respect to the cardinality of both the state

space and the event set of the system.

While MAX-FEA-SUB returns a unique solution, the max-

imum feasible sub-policy of the input policy, the solution

returned by MIN-SEN-ACT will depend on the order in

which the transitions are considered for removal. This is a

consequence of the existence of several minimal solutions

for the criterion of optimality.

In principle, one could repeat MIN-SEN-ACT with dif-

ferent orders for the transitions in Step 1; note that in this

case, calculations made by MAX-FEA-SUB could be saved

and reused. Selection of an appropriate order for considering

transitions for removal and comparison of different minimal

solutions are application-specific. An interesting avenue for

future research is to embed MIN-SEN-ACT as a part of a

larger quantitative optimization problem. The computational

efficiency of MIN-SEN-ACT makes such an approach attrac-

tive.
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