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Abstract— This paper deals with a state feedback synthesis
for polynomial systems in the presence of disturbances with
bounded peak or bounded energy. Positively invariant sets
are composed of level sets of polynomial Lyapunov functions
and are included in the region of the inputs and the state
constraints under the disturbances. A two-step non-iterative
design procedure is available by using matrix sum of squares
(SOS) relaxations and semidefinite programming. At the first
step, the matrix SOS technique is applied. Then to remove one
of the causes of conservativeness of the first step, the polynomial
annihilators are utilized in the second step. Numerical examples
illustrate the presented design procedure.

I. I

Problems of stability and stabilization for systems with

disturbances have been discussed from computational view-

point. In particular, for systems imposed constraints on the

state, analysis under bounded disturbances has important ap-

plications such as process control and vibration control. What

is more, synthesis problems sometimes need constraints on

the control input. Since unbounded disturbances cause huge

control input signals to stabilize the systems, disturbances

must be bounded in such synthesis problems. Analysis and

synthesis for linear systems have been discussed under

bounded peak disturbances or bounded energy disturbances

using the linear matrix inequality (LMI) [1], [2].

As far as nonlinear systems concerned, analysis and syn-

thesis for polynomial nonlinear systems have been discussed

from computational viewpoint. A technique of solving a

finite number of LMIs from state-dependent LMI (SDLMI)

conditions has been discussed to analyze the region of attrac-

tion [3], [4]. The technique using SDLMI remains a con-

servativeness, which is introduced by deriving the SDLMI

from the Lyapunov function derivative inequalities. A linear

annihilator [4] reduces the conservativeness for analysis

problems. Recent techniques using sum of squares (SOS) [5]

and complete square matricial representaion (CSMR) [6], [7]

for positive polynomials have been applied to analysis and

design of polynomial control systems [8], [9], [10], [11],

[12]. The work [8], for example, proposes analysis for peak-

gain and induced L2-gain and state feedback synthesis of

expanding a region of attraction for polynomials systems

with input saturation using SOS conditions. These analysis

and synthesis need iterative algorithms because each of the

problems includes a bilinear or a trilinear SOS condition.

Although these problems are reduced to a bilinear and a

trilinear SDP, the non-convex SDP is difficult to solve in gen-

eral. To cope with the non-convex issue, two strategies have
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been developed. One of them is usage of a local bilinear SDP

solver [9], however, it may still needs iterative algorithms

for trilinear SOS conditions. Another one is scalarizing the

SDLMIs after dilating the matrix inequalities [10], [11],

which enables us to reduce the non-convex SOS problem to

a convex one. Unfortunately, the scalarizing technique needs

a large number of redundant variables for multiplying the

state-dependent matrix polynomials by these variables to be

scalar polynomials. The CSMR technique is also applied to

output feedback synthesis for polynomial systems [12] with

given Lyapunov functions.

To be the scalarizing strategy for the non-convex issue

more simply and directly, we have recommended another

computational approaches for polynomial systems [13], [14],

[15] with polynomial Lyapunov functions by using matrix

SOS of positive semidefinite matrix polynomials [16], [17],

[18]. One of the advantages of adopting this approach is less

computational effort from needless of scalarizing variables.

Also, it is known that there exist polynomial Lyapunov

functions on bounded regions for a class of stable nonlinear

systems [19]. The work [13] gives a guaranteed cost state

feedback synthesis and proposes a polynomial annihilator

to decrease the conservativeness. Our technique has another

applications to stabilization of polynomial systems with input

saturations by state feedback control [14] and to filter and

observer designs [15]. As far as we know, there has not been

any state feedback synthesis for polynomial systems with the

bounded by SDLMI formulation without iterative scheme.

In this paper, we propose a two-step non-iterative pro-

cedure for state feedback synthesis for polynomial systems

with the bounded disturbances. To realize the procedure,

we introduce the matrix SOS relaxation and the polynomial

annihilator. At the first step, the matrix SOS polynomials

relax the SDLMIs, which result in a conservative invariant

set and a state feedback controller. At the second step,

the polynomial annihilators are utilized based on the first

step result to remove the conservativeness. The invariant

set becomes larger than that of the first step. Then the

corresponding state feedback controller to the second step

can be available. The problems in each step are reduced to

semidefinite programming (SDP). Numerical examples are

shown to illustrate the proposed design procedure.

The paper is organized as follows. Section II describes the

problems we are interested in. Section III presents an invari-

ant set analysis of polynomial systems with disturbances.

Section IV shows a design procedure for state feedback

synthesis under some mild assumptions. Section V illustrates

examples. Lastly, section VI concludes with remarks.
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Notation: The notation used is standard. ‖x‖2 = (xT x)
1
2 ,

‖x‖L2
=
(∫ ∞

0
‖x‖2

2
dt
)

1
2
, He {A} = A + AT , Sn means real

symmetric matrices of the dimension n. R[x]n×m means

matrix polynomials of the size n×m.
∑

[x]n means matrix SOS

polynomials of the dimension n.
∑

[x] means
∑

[x]1. AT (⋆)

means AT A. Similarly, B(⋆)T means BBT .

II. P

Consider the linear-like representation of polynomial sys-

tems [10]:

ẋ = A(x)Z(x) + B1(x)u + B2(x)w (1)

where x ∈ Rn is the state, u ∈ Rmu is the control input,

w ∈ Rmw is the disturbance. A(x), B1(x) and B2(x) are

matrix polynomials of suitable dimension. Z(x) ∈ R[x]nZ is

a vector of polynomials in the state x ∈ Rn and satisfies

the assumption, Z(x) = 0 if and only if x = 0. Note

that, if nZ = n, then it is possible to take Z(x) such that

Z(x) = W(x)x, W(x) ∈ R[x]n×n and det W(x) = 1 [11]. Let

A(x)Z(x) be f (x). For example, if we have an expression

f (x) = Ã(x)x, it is simple to write A(x) = Ã(x)W(x)−1.

Note also that A(x) always exists for given f (x) and is not

unique because all the expressions of f (x) can be written

as (A(x) + NA(x))Z(x), where NA(x) ∈ R[x]n×nZ satisfies

NA(x)Z(x) = 0 for all x ∈ Rn.NA(x) is called as a polynomial

annihilator of Z(x), which will appear in the sequel.

We also consider an auxiliary output:

zc = C1(x)Z(x) + D11(x)u (2)

where zc ∈ Rpzc represents the input and the state constraints,

C1(x) and D11(x) are matrix polynomials of suitable dimen-

sion. The constraints on the output are

|zc
i | ≤ 1 (i = 1, . . . , pzc ). (3)

For F(x) ∈ R[x]mu×nZ , the state feedback law is

u = F(x)Z(x). (4)

The two kinds of disturbance signal are as follows:

WL∞ (β∞) =
{

w ∈ Rmw | ‖w‖2
L∞
< β∞

}

(5)

WL2
(β2) =

{

w ∈ Rmw | ‖w‖2
L2
< β2

}

(6)

Let V(α) be an initial state region depending on a parameter

α(≥ 0) and including the origin. We assume that x(0) ∈ V(α).

Problem 1: Determine a state feedback law (4) stabiliz-

ing the system (1) and (2) with the constraints (3) and the

bounded peak disturbance (5) where x(0) ∈ V(α).

Problem 2: Determine a state feedback law (4) stabiliz-

ing the system (1) and (2) with the constraints (3) and the

bounded energy disturbance (6) where x(0) ∈ V(α).

III. I S A

This section gives invariant set analysis of the closed-

loop system under the disturbances (5) and (6). Consider

the candidate Lyapunov function as

V(x) = Z(x)T Q−1Z(x), Q ≻ 0.

To express the gradient of V(x), we define M(x) ∈ R[x]nZ×n

whose (i, j)-element is given by

Mi j(x) =
∂Zi

∂x j

(x)

for i = 1, . . . , nZ and j = 1, . . . , n. Then the gradient of V(x)

can be obtained by the formula

∂V

∂x
(x) = 2Z(x)T Q−1M(x).

A level set of the Lyapunov function defined by

E(Q−1, ρ) =
{

x ∈ Rn | Z(x)T Q−1Z(x) ≤ ρ
}

is an invariant set where ρ > 0. E(Q−1, 1) is abbreviated as

E(Q−1). Let L(C1(x) + D11(x)F(x)) be the region x ∈ Rn

satisfying the constraints (3), that is,

|(c1( j)(x) + d11( j)(x)F(x))Z(x)| ≤ 1 ( j = 1, . . . , pzc )

where c1( j)(x) and d11( j)(x) are the j-th row vector poly-

nomials of C1(x) and D11(x), respectively. The invariant

set E(Q−1, ρ) should be inside of the region L(C1(x) +

D11(x)F(x)) under the disturbances.

To simplify the problem, we make a mild assumption on

the initial state. Then we give two lemmas about the invariant

sets under the disturbances.

Assumption 1: V(α) = E(Q−1, α).

Lemma 1: Given β∞ and α(≤ ρ), consider the closed-

loop system (1), (2) and (4). If there exists Q(≻ 0) ∈ SnZ

satisfying

V̇(x) < 0 ∀x ∈ ∂E(Q−1, ρ) ∀w ∈ WL∞ (β∞) (7)

E(Q−1, ρ) ⊆ L(C1(x) + D11(x)F(x)) (8)

then the trajectory starting at x(0) ∈ V(α) stays in the

constraints (3) under the disturbance w ∈ WL∞ (β∞).

Proof: From (7) and V(x(t)) < V(x(0)) ≤ α ≤ ρ, the

trajectory starting at x(0) ∈ V(α) stays in E(Q−1, ρ). On the

other hand, E(Q−1, ρ) is inside of L(C1(x)+D11(x)F(x)) from

(8).

Lemma 2: Given β2 and α(< β2), consider the closed-

loop system (1), (2) and (4). If there exists Q(≻ 0) ∈ SnZ

satisfying

V̇(x) < ‖w‖22 ∀x ∈ E(Q−1, α + β2) ∀w ∈ WL2
(β2) (9)

E(Q−1, α + β2) ⊆ L(C1(x) + D11(x)F(x)) (10)

then the trajectory starting at x(0) ∈ V(α) stays in the

constraints (3) under the disturbance w ∈ WL2
(β2).

Proof: From (9) and V(x(t)) < V(x(0))+‖w‖2
L2
< α+β2,

the trajectory starting at x(0) ∈ V(α) stays in E(Q−1, α+β2).

On the other hand, E(Q−1, α + β2) is inside of L(C1(x) +

D11(x)F(x)) from (10).
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IV. S F S

From the lemmas in section III, this section derives

a computational method for polynomial systems with the

disturbances. We discuss a two-step non-iterative procedure

for a state feedback synthesis.

A. The First Step Design

To construct a convex computational method, we accept

two assumptions on the output for the constraints (2).

Assumption 2:

[

C1(x) D11(x)
]

=

[

C̄1(x) 0

0 D̄11(x)

]

.

Assumption 3: L(C̄1(x)) is a compact set.

Assumption 2 means that the constraints on between the state

and the inputs are separable from each other, that is,

L(C1(x) + D11(x)F(x)) = L(C̄1(x)) ∩ L(D̄11(x)F(x)).

Then we have a relation:

L(C̄1(x)) ∩ L(D̄11(x)F(x)) ⊂ L(C̄1(x))

We denote that

L(C̄1(x)) =
{

x ∈ Rn | g j(x) ≥ 0 ( j = 1, . . . , ng)
}

where g j(x) = 1 − Z(x)T cT
1( j)

(x)c1( j)(x)Z(x) and ng is the

number of row of C̄1(x).

Remark 1: We have relaxed the region L(C1(x) +

D11(x)F(x)) into L(C̄1(x)). The relaxation may cause some

conservativeness, however, the relaxation does not mean that

the input constraints (8) and (10) are ignored.

Then we have the following theorems. The proofs are

given in the appendix.

Theorem 1: Consider the closed-loop system (1), (2) and

(4). Given β∞, α(≤ 1) and ε(> 0), the trajectory starting at

x(0) ∈ V(α) stays in the constraints (3) under the disturbance

w ∈ WL∞ (β∞) if there exist Q(≻ 0) ∈ Sn, K(x) ∈ R[x]mu×nZ ,

S 10(x), S 1i(x), S 2i(x) ∈
∑

[x]nZ and S 20(x) ∈
∑

[x]nZ+1 satisfy-

ing

He {M(x)[A(x)Q + B1(x)K(x)]}

+ M(x)B2(x)B2(x)T M(x)T

+ β∞Q +
∑ng

i=1
S 1i(x)gi(x) + εI = −S 10(x) (11)

He

[

1/2 c1( j)(x)Q + d11( j)(x)K(x)

0 Q/2 −
∑ng

i=1
S 2i(x)gi(x)

]

= S 20(x)

( j = 1, . . . , pzc ) (12)

for all x ∈ Rn. In this case, F(x) = K(x)Q−1.

Theorem 2: Consider the closed-loop system (1), (2) and

(4). Given β2, α(< β2) and ε(> 0), the trajectory starting at

x(0) ∈ V(α) stays in the constraints (3) under the disturbance

w ∈ WL2
(β2) if there exist Q(≻ 0) ∈ Sn, K(x) ∈ R[x]mu×nZ ,

S 10(x), S 1i(x), S 2i(x) ∈
∑

[x]nZ and S 20(x) ∈
∑

[x]nZ+1 satisfy-

ing

He {M(x)[A(x)Q + B1(x)K(x)]}

+ M(x)B2(x)B2(x)T M(x)T

+
∑ng

i=1
S 1i(x)gi(x) + εI = −S 10(x) (13)

He

[

1
2(α+β2)

c1( j)(x)Q + d11( j)(x)K(x)

0 Q/2 −
∑ng

i=1
S 2i(x)gi(x)

]

= S 20(x)

( j = 1, . . . , pzc ) (14)

for all x ∈ Rn. In this case, F(x) = K(x)Q−1.

Remark 2: The identical equations in each theorem pro-

duce linear simultaneous equations whose decision variables

have semidefinite constraints, that is, SDP. Thus Theorem 1

and 2 could be answers of Problem 1 and 2,respectively.

One of the causes of conservativeness in the above the-

orems is elimination of Z(x) to derive the SDLMIs from

the Lyapunov derivative inequalities. Note the relationship:

V̇(x) = Z(x)T Q−1H(x)Q−1Z(x) < 0 ⇐ H(x) ≺ 0 and see

the gap between the Lyapunov derivative and the SDLMI.

B. The Second Step Design

To decrease the conservativeness of the first step design,

we give the second step design using using the polynomial

annihilator, which is a polynomial version of the linear

annihilator [4]. The polynomial annihilator, in the situation,

is a free multiplier of matrix polynomials N(x) ∈ R[x]nZ×nZ

associated with the constraint N(x)Q−1Z(x) = 0 for all

x ∈ Rn. We have the following lemma using Finsler’s lemma.

Lemma 3: Let H(x) ∈ S[x]nZ , N(x) ∈ R[x]nZ×nZ , Z(x) ∈

R[x]nZ and Q(≻ 0) ∈ SnZ satisfying N(x)Q−1Z(x) = 0 and

rankN(x) < nZ for all x ∈ Rn. The following two statements

are equivalent:

i) Z(x)T Q−1H(x)Q−1Z(x) < 0 ∀x ∈ Rn \ {0}.

ii) H(x) + He
{

N(x)
}

≺ 0 ∀x ∈ Rn.

Proof: We can take B and B⊥ in Lemma 7 as Ñ(x) ∈

R[x]m×nZ and Q−1Z(x), respectively. Then, Ñ(x)Q−1Z(x) =

0 for all x ∈ Rn. Let N(x) be equal to X(x)Ñ(x). Since

rank Ñ(x) = r < nZ and rankX(x) ≤ nZ , rankN(x) ≤ min
{

rank Ñ(x), rankX(x)
}

< nZ . Hence, i) and ii) are equivalent

by Lemma 7.

To find N(x) for given Q, we may solve a linear pro-

gramming problem, a class of SDP. Note that an annihilator

of Q−1Z(x) can be also an annihilator of (µQ)−1Z(x) where

µ(, 0) is scalar. We have another two theorems applying

Lemma 3 for Lemma 1 and 2. They are correspond to

Theorem 1 and 2, respectively.

Theorem 3: Consider the closed-loop system (1), (2) and

(4). Given Q(≻ 0) ∈ Sn, β∞, α(≤ 1) and ε(> 0), the trajectory

starting at x(0) ∈ V(α) stays in the constraints (3) under the

disturbance w ∈ WL∞ (β∞) if there exist µ(> 0), K(x) ∈

R[x]mu×nZ , N(x), NA(x) ∈ R[x]nZ×nZ , S 10(x), S 1i(x), S 2i(x) ∈
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∑

[x]nZ and S 20(x) ∈
∑

[x]nZ+1 satisfying

He {M(x)[A(x)(µQ) + B1(x)K(x)]}

+ M(x)B2(x)B2(x)T M(x)T + β∞(µQ)

+ He {N(x)} + He {M(x)NA(x)Q}

+
∑ng

i=1
S 1i(x)gi(x) + εI = −S 10(x) (15)

He

[

1/2 c1( j)(x)(µQ) + d11( j)(x)K(x)

0 (µQ)/2 −
∑ng

i=1
S 2i(x)gi(x)

]

= S 20(x)

( j = 1, . . . , pzc ) (16)

N(x)Q−1Z(x) = 0 and NA(x)Z(x) = 0 for all x ∈ Rn. In this

case, F(x) = K(x)(µQ)−1.

Theorem 4: Consider the closed-loop system (1), (2) and

(4). Given Q(≻ 0) ∈ Sn, β2, α(< β2) and ε(> 0), the trajectory

starting at x(0) ∈ V(α) stays in the constraints (3) under

the disturbance w ∈ WL2
(β2) if there exist µ(> 0), K(x) ∈

R[x]mu×nZ , N(x), NA(x) ∈ R[x]nZ×nZ , S 10(x), S 1i(x), S 2i(x) ∈
∑

[x]nZ and S 20(x) ∈
∑

[x]nZ+1 satisfying

He {M(x)[A(x)(µQ) + B1(x)K(x)]}

+ M(x)B2(x)B2(x)T M(x)T

+ He {N(x)} + He {M(x)NA(x)Q}

+
∑ng

i=1
S 1i(x)gi(x) + εI = −S 10(x) (17)

He

[

1
2(α+β2)

c1( j)(x)(µQ) + d11( j)(x)K(x)

0 (µQ)/2 −
∑ng

i=1
S 2i(x)gi(x)

]

= S 20(x)

( j = 1, . . . , pzc ) (18)

N(x)Q−1Z(x) = 0 and NA(x)Z(x) = 0 for all x ∈ Rn. In this

case, F(x) = K(x)(µQ)−1.

C. Design Procedure

The design procedure we propose is the following:

Step 1) Determine Q and F(x) satisfying the

conditions in Theorem 1 (Theorem 2).

Step 2) For fixed Q, determine µ and F(x)

satisfying the conditions in Theorem 3

(Theorem 4).

Once Step 2 is performed in somewhat optimization

scheme, for the fixed Lyapunov variable µQ, there does

not exist a better µ satisfying the conditions in Theorem 3

(Theorem 4). In this meaning, the design procedure does not

need any iteration.

V. N E

In this section, we illustrate the results of the previous

sections. The examples are computed by using Matlab,

YALMIP [20] and SeDuMi [21]. We consider the system

(1) with the matrices

A(x) =

[

x1 1 + x2/5

0 −x2 − x1x2

]

W(x)−1, B1(x) =

[

0

1

]

B2(x) =

[

1

0

]

, C1(x) =

[

1.25 0 0

0 0.4 0

]T

W(x)−1

D11(x) =
[

0 0 0.12
]T
, Z(x) = W(x)x

W(x) =

[

1 0

1 + x2/5 1

]

, W(x)−1 =

[

1 0

−1 − x2/5 1

]

.

Firstly, we will stabilize the system under a bounded peak

disturbance based on Theorem 1 and Theorem 3 along the

design procedure stated at the previous section. In Step 1,

α(≤ ρ = 1) and β∞ are given by 0.9 and 0.1. The degree

of F(x) is fixed at 2. To perform optimization, we take a

reference point at xre f =
[

1 1
]T

and add a constraint

such as η · xre f ∈ E(Q−1, α) to the constraints in Theorem 1

and maximize η. Then we have η = 0.3092.

The invariant set is shown in Fig. 1. In Step 2, we will

redesign for the above Q with maximization of µ by Theorem

3. Then we have µ = 1.3043 and the feedback gain F(x) is

[

−8.12 + 1.08x1 − 0.36x2 − 3.21x1 x2 + 0.77x2
2
+ 0.61x2

1

−4.22 − 0.24x1 + 0.09x2 − 0.30x1 x2 − 0.03x2
2
+ 1.65x2

1

]T

and the Lyapunov function V(x) is

4.40x2
1
+ 1.87x1 x2 + 0.40x2

2
+ 0.37x2

1
x2 + 0.16x1 x2

2
+ 0.02x2

1
x2

2

where all monomials whose coefficients are less than 0.001

are presented in truncated form. The invariant set is shown

in Fig. 2. The set becomes larger than that of the first design.

Next, we will stabilize the system under a bounded energy

disturbance based on Theorem 2 and Theorem 4 along the

design procedure. In Step 1, α and β2 are given by 0.5 and

1. The degree of F(x) and the constraint for optimization are

the same as the above. Under maximization of η in Theorem

2, we have η = 0.2066. The invariant set is shown in Fig. 3. In

Step 2, we will redesign for the above Q with maximization

of µ by Theorem 4. Then we have µ = 1.2021 and F(x) is

[

−6.35 + 0.88x1 − 0.21x2 − 3.01x1 x2 + 0.59x2
2
+ 0.25x2

1

−4.56 − 0.26x1 + 0.09x2 − 0.23x1 x2 + 0.03x2
2
+ 1.57x2

1

]T

and the Lyapunov function V(x) is

5.70x2
1
+ 2.64x1 x2 + 0.61x2

2
+ 0.53x2

1
x2 + 0.24x1 x2

2
+ 0.02x2

1
x2

2
.

The invariant set is shown in Fig. 4. The set also becomes

larger than that of the first design.

VI. C

A state feedback synthesis has been discussed for polyno-

mial systems in the presence of disturbances with bounded

peak or bounded energy from computational viewpoint. The

proposed design procedure is two-step non-iterative. At the

first step, the matrix SOS relaxation is directly applied to

the problems. To remove a conservativeness of the first step,

the polynomial annihilators are utilized in the second step.

Numerical examples have illustrated the proposed design

procedure. The invariant set is in the region of the inputs

and the state constraints. This method has applications to, for

example, mixed bounded peak and energy disturbance rejec-

tion, guaranteed cost control via V̇(x) + ‖ze‖2
2
< 0 instead of

(7) in Lemma 1, and L2 gain control via V̇(x)+‖ze‖2
2
−‖w‖2

2
<

0 instead of (9) in Lemma 2 where ze ∈ Rpze is the control

output for evaluation such as ze = C2(x)Z(x) + D21(x)u.
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Fig. 1. The invariant set of the first design by Theorem 1: The solid
ellipsoid is E(Q−1), and the dashed ellipsoid is V(α), and the dotted
rectangle bounded region is L(C̄1(x)), and the region between the dashed-
dotted curves is L(D̄11(x)F(x)).
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Fig. 2. The invariant set of the second design by Theorem 3: The solid
ellipsoid is E((µQ)−1), and the dashed ellipsoid is V(µα), and the dotted
rectangle bounded region is L(C̄1(x)), and the region between the dashed-
dotted curves is L(D̄11(x)F(x)) by the redesigned F(x).

A

P  T 1

Assume (11) and (12) hold. We first show that (7) in

Lemma 1 is satisfied. The derivative of the candidate Lya-

punov function is

V̇(x) = He
{

Z(x)T Q−1M(x)ẋ
}

= He
{

Z(x)T Q−1M(x)[A(x) + B1(x)F(x)]Z(x)

+Z(x)T Q−1M(x)B2(x)w
}

for all x ∈ Rn and w ∈ WL∞ (β∞). Using Lemma 4, we have

V̇(x) ≤ He
{

Z(x)T Q−1M(x)[A(x) + B1(x)F(x)]Z(x)
}

+(Z(x)T Q−1M(x)B2(x))(⋆)T + wT w

≤ Z(x)T Q−1
[

He {M(x)[A(x)Q + B1(x)K(x)]}

+(M(x)B2(x))(⋆)T
]

Q−1Z(x) + β∞

for all x ∈ Rn. Since (11) means

He {M(x)[A(x)Q + B1(x)K(x)]}

+(M(x)B2(x))(⋆)T + β∞Q ≺ 0 ∀x ∈ L(C̄1(x)),

V̇(x) < β∞(1−Z(x)T Q−1Z(x)) is satisfied for all x ∈ L(C̄1(x)).

Thus V̇(x) < 0 holds for all x ∈ L(C̄1(x)) \ Ē(Q−1, ρ) where
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Fig. 3. The invariant set of the first design by Theorem 2: The solid
ellipsoid is E(Q−1, α+β2), and the dashed ellipsoid is V(α), and the dotted
rectangle bounded region is L(C̄1(x)), and the region between the dashed-
dotted curves is L(D̄11(x)F(x)).
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Fig. 4. The invariant set of the second design by Theorem 4: The solid
ellipsoid is E((µQ)−1, α + β2), and the dashed ellipsoid is V(µα), and the
dotted rectangle bounded region is L(C̄1(x)), and the region between the
dashed-dotted curves is L(D̄11(x)F(x)) by the redesigned F(x).

Ē(Q−1, ρ) is E(Q−1, ρ) \ ∂E(Q−1, ρ), which is a sufficient

condition for (7) by Lemma 5. Secondly, we will show (8)

in Lemma 1 is satisfied. Starting from (12), we have the

following relations:

(12)⇔ Q −
∑ng

i=1
2S 2i(x)gi(x)

� (c1( j)(x)Q + d11( j)(x)K(x))T (⋆) ∀x ∈ Rn

⇒ Q � (c1( j)(x)Q + d11( j)(x)K(x))T (⋆) ∀x ∈ L(C̄1(x))

⇒ Q � (c1( j)(x)Q + d11( j)(x)K(x))T (⋆) ∀x ∈ E(Q−1)

⇔ 1 ≥ λmax

(

Q1/2(c1( j)(x)Q + d11( j)(x)K(x))T (⋆)Q1/2
)

∀x ∈ E(Q−1)

⇔ 1 ≥ max
‖y‖ = 1

x ∈ E(Q−1)

‖(c1( j)(x)Q + d11( j)(x)K(x))Q1/2y‖2

‖y‖2

⇔ 1 ≥ max
‖y‖ ≤ 1

x ∈ E(Q−1)

‖(c1( j)(x)Q + d11( j)(x)K(x))Q1/2y‖2

⇔ 1 ≥ max
‖Q−1/2Z(x)‖ ≤ 1

x ∈ E(Q−1)

‖(c1( j)(x)Q + d11( j)(x)K(x))Z(x)‖2

⇔ 1 ≥ max
x∈E(Q−1)

‖(c1( j)(x)Q + d11( j)(x)K(x))Z(x)‖2

⇔ 1 ≥ |(c1( j)(x)Q + d11( j)(x)K(x))Z(x)| ∀x ∈ E(Q−1)
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The most right hand for all j = 1, . . . , pzc means E(Q−1) ⊆

L(C1(x) + D11(x)F(x)).

P  T 2

Assume (13) and (14) holds. We will show firstly that (9)

in Lemma 2 is satisfied. Using Lemma 4, we have

V̇(x) − wT w

≤ He
{

Z(x)T Q−1M(x)[A(x) + B1(x)F(x)]Z(x)
}

+(Z(x)T Q−1M(x)B2(x))(⋆)T

≤ Z(x)T Q−1
[

He {M(x)[A(x)Q + B1(x)K(x)]}

+(M(x)B2(x))(⋆)T
]

Q−1Z(x)

for all x ∈ Rn and w ∈ WL2
(β2). Since (13) means

He {M(x)[A(x)Q + B1(x)K(x)]}

+(M(x)B2(x))(⋆)T ≺ 0 ∀x ∈ L(C̄1(x)),

V̇(x) − wT w < 0 is satisfied for all x ∈ L(C̄1(x)) and for

all w ∈ WL2
(β2), which is a sufficient condition for (9) by

Lemma 6. The latter part is omitted.

Lemma 4: For any η(x) ∈
∑

[x],

He
{

Z(x)T Q−1M(x)B2(x)w
}

≤ η(x)wT w

+η(x)−1(Z(x)T Q−1M(x)B2(x))(⋆)T

is satisfied for all x ∈ Rn and w ∈ Rmw .

Proof: Let η(x) be η̄(x)2 where η̄(x) ∈ R[x]. From the

relation

(η̄(x)−1Z(x)T Q−1M(x)B2(x) + η̄(x)wT )(⋆)T ≥ 0

we have the assertion.

Lemma 5: If the statement

V̇(x) < 0 ∀x ∈ L(C̄1(x)) \ Ē(Q−1, ρ) ∀w ∈ WL∞ (β∞)

holds, then (7) in Lemma 1 holds where

Ē(Q−1, ρ) = E(Q−1, ρ) \ ∂E(Q−1, ρ).

Proof: Since ∂E(Q−1, ρ) ⊂ L(C̄1(x)) \ Ē(Q−1, ρ), we

have the assertion.

Lemma 6: If the statement

V̇(x) < ‖w‖22 ∀x ∈ L(C̄1(x)) ∀w ∈ WL2
(β2)

holds, then (9) in Lemma 2 holds.

Proof: Since E(Q−1, α + β2) ⊂ L(C̄1(x)), we have the

assertion.

Lemma 7: Let x ∈ Rn, H(x) ∈ S[x]nZ , and B(x) ∈

R[x]m×nZ such that rank(B(x)) = r < nZ for all x ∈ Rn \ {0}.

B(x)⊥ ∈ R[x]nZ×(nZ−r) satisfies B(x)B(x)⊥ = 0 for all x ∈ Rn.

The following are equivalent.

a) (B(x)⊥)T H(x)B(x)⊥ < 0 ∀x ∈ Rn \ {0}.

b) ∃ µ(x) ∈ R[x] : H(x) − µ(x)B(x)TB(x) ≺ 0 ∀x ∈ Rn.

c) ∃ X(x) ∈ R[x]nZ×m : H(x) + He {X(x)B(x)} ≺ 0 ∀x ∈ Rn.
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