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Abstract— This paper gives a novel approach to time-delay
systems consisting of a linear time-invariant (LTI) system and a
pure delay. The fast-lifting technique, introduced recently in the
context of the study of sampled-data systems, is applied to the
monodromy operator of a time-delay system to define the fast-
lifted monodromy operator, and a stability condition is given
in terms of the spectral radius of the latter operator. Then, by
investigating the properties of this operator, an operator class
described by two finite-dimensional matrices is introduced as
candidates for a solution to the associated operator Lyapunov
inequality. It is then established that the analysis restricted to
such a class gives an asymptotically exact and nonconservative
method for stability analysis if the integer N for fast-lifting is
taken sufficiently large.

I. Introduction

A. Background on and New Approach to Time-

Delay Systems

Time-delay systems (TDS) are very commonly encoun-

tered in engineering and sciences, e.g., in engineering sys-

tems with transportation and communication delays, as well

as in biology, physiology and economics. There hence exists

a quite long and deep history of study on this subject, and just

a small list of books, monographs and survey papers includes

[1]–[10], in which a lot of examples of TDS’s are also given.

Common approaches to such systems include treatment as

differential equations on abstract infinite-dimensional linear

spaces (e.g., [3]), functional differential equations ([1],[2],

[6]) and differential equations over rings of operators (e.g.,

[11]). This paper, however, is stimulated by the recent study

in [12] that has employed the lifting technique [13]–[16]

developed and widely used in the area of sampled-data

systems. The idea therein is to view the behavior of the

TDS Σ shown in Fig. 1 consisting of the finite-dimensional

linear time-invariant (FDLTI) system F and the delay H
with the interval h on the intervals [kh, (k + 1)h) where

k is an integer (i.e., apply the lifting at the interval h),

and consider the transition between consecutive intervals.

Such a new approach naturally has close relationship to

each of the above three approaches, but compared with

the first one, this new approach could be said to be some

sort of its discretized counterpart and seems to be much

simpler in the sense that we do not have to deal with

unbounded differential operators but have only to deal with

bounded integral operators. Furthermore, the underlying idea

is quite simple but seems promising, and the present paper,

together with [17], aims at extending this new approach in

various aspects and developing a novel approach to TDS’s

as described below.

B. Extended Treatment Developed in the

Present Paper

First of all, the study in [12], together with a relevant paper

[18], was mainly interested in relating the characteristic roots

of a TDS with the spectrum of what we call the monodromy

operator in this paper and approximately computing that

spectrum numerically. Thus, that approach gave an approx-

imate method for stability analysis of TDS’s. The present

paper, together with our paper [17], on the other hand, aims

at providing a method for stability analysis that is ensured

to be “asymptotically exact (i.e., necessary and sufficient)”

and is readily applicable to discrete-time controller design

for TDS’s. To this end, we employ what we call fast-

lifting, which is recently introduced for less conservative

robust stability analysis of sampled-data systems [19],[20].

This technique is associated with a positive integer N , and,

roughly speaking, corresponds to viewing the system behav-

ior at every interval h/N shorter than h. With the fast-lifting

technique, we introduce what we call fast-lifted monodromy

operator TN of Σ and relate its spectrum with exponential

stability of Σ . We then discuss stability of Σ via an operator

Lyapunov inequality about the fast-lifted monodromy oper-

ator TN , based on the relationship between the spectrum

of TN and the solution of the Lyapunov inequality. This

operator Lyapunov inequality, together with some important

property of the solution, plays a key role in our study. The

role of the integer N for fast-lifting, from theoretical point

of view discussed in this paper, is to help constructing a

“piecewise-constant like” solution to the operator Lyapunov

inequality, and to ensure the asymptotic exactness of the

-

u
F

y

¾H

Fig. 1. Feedback system Σ with delay H .
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fast-lifting approach to TDS’s. More precisely, the present

paper establishes that if N is sufficiently large, an operator

with a restricted but tractable form adequately constructed

via fast-lifting at the parameter N does solve the operator

Lyapunov inequality whenever Σ is stable. Hence, fast-lifting

plays a key role in asymptotically exact stability analysis

at least in the theoretical aspect. Moreover, from numerical

point of view to be discussed in [17], increasing the integer

N for fast-lifting plays a significant role also in reducing

the errors associated with what is called quasi-finite-rank

approximation of the fast-lifted monodromy operator TN .

This facilitates numerical computations for the solution of

the operator Lyapunov inequality and thus asymptotically

exact stability analysis becomes possible also numerically.

This is the first study ensuring such a significant property

in stability analysis of TDS’s, to the best knowledge of the

author.

C. Promising Properties of Our Approach

Interestingly enough, the numerical computation for the

solution of the operator Lyapunov inequality mentioned

above reduces to solving a discrete-time LMI (a variant of the

discrete-time Lyapunov inequality), due to the discrete-time

characteristics of the lifting and fast-lifting technique em-

ployed. It turns out that the approach developed in our study

can readily be applied also to stability analysis of TDS’s

with discrete-time controllers, and moreover, to discrete-

time controller design for TDS’s. This is a very important

advantage of our approach because almost all LMI conditions

for stability of TDS’s are in continuous-time (see, e.g., [4]–

[6] and the references therein) and thus are not compatible

with discrete-time controller design, in spite of general pref-

erence for discrete-time controllers and nontrivial problems

of discretizing continuous-time controllers for TDS’s while

retaining closed-loop stability and performance. In the above

connection, it is worth stressing that our study provides

a framework in which an FDLTI system F with a direct

feedthrough matrix D can also be accommodated in Σ . Even

though the study of [12] is restricted to retarded TDS’s and

thus corresponds to the case with D = 0, our study can

allow nonzero D, and hence the delay interval h can be

fractioned into subintervals of equal length and then they can

be concatenated with each other with the aid of D to recover

the original interval. With such a treatment, the sampling

period of the discrete-time controller can be any integer

fraction of the delay interval h. For the same reason, our

study covers neutral time-delay systems with commensurate

delays, too.

The contents of this paper are as follows. In Section II, we

introduce the fast-lifted monodromy operator of Σ , which

plays a fundamental role in this study. Section III studies

some fundamental properties of the fast-lifted monodromy

operator TN , applies them to the stability analysis of Σ , and

derives a stability condition based on the spectral radius of

TN . Section IV relates this stability condition to an operator

Lyapunov inequality and establishes that, whenever Σ is

stable and provided that N is large enough, a solution to

this inequality exists within some restricted and tractable

class of operators that can be handled “in a finite-dimensional

treatment.” Section V remarks that the approach can readily

be extended to robust stability analysis with respect to the

uncertainties in the FDLTI part of Σ . Section VI summarizes

the arguments of the paper and gives some remarks about the

relationship to some relevant studies as well as the further

studies in the companion paper [17]. All the proofs are

omitted due to limited space.

The following notation is used in this paper. σ(·), σp(·)
and σe(·) denote the spectrum, point spectrum and essential

spectrum of an operator, respectively, while λ(·) denotes the

set of eigenvalues of a matrix. We simply say that an operator

(·) is invertible if it has a bounded inverse. The spectral

radius of an operator or a matrix is denoted by ρ(·), while

ρe(·) = supγ∈σe(·) |γ| denotes the essential spectral radius

of an operator. R and N denote the sets of real numbers and

positive integers, respectively. Km is a shorthand notation

for the Hilbert space (L2([0, h); R))m with an underlying

h > 0, and Fn denotes the n-dimensional Euclidean space

R
n.

II. Fast-Lifted Monodromy Operator of

Time-Delay Systems

We consider the feedback system in Fig. 1, denoted by

Σ , consisting of the finite-dimensional linear time-invariant

(FDLTI) system F and the pure delay H . We then intro-

duce what we call the monodromy operator and fast-lifted

monodromy operator associated with the system Σ , and

suggest that such operators, together with their straightfor-

ward extensions, can play a fundamental role in dealing with

analysis and design problems of time-delay systems subject

to continuous-time or sampled-data control.

Regarding the system Σ in Fig. 1, we assume that F has

the state-space representation

dx

dt
= Ax + Bu, y = Cx + Du (1)

with A ∈ R
n×n, B ∈ R

n×µ, C ∈ R
µ×n and D ∈ R

µ×µ,

and the input-output relation of the pure delay H is given

by

u(t) = y(t − h), h > 0 (2)

Since we can handle D 6= 0 in the system F , the arguments

of this paper will be readily applicable to systems with

commensurate delays.

A. Monodromy Operator

We assume that the initial conditions of the TDS Σ are

given by x(0) = x0 and y(θ − h) = û0(θ), 0 ≤ θ < h
with some û0 ∈ Kµ. This in particular implies that u(θ) =
û0(θ) (0 ≤ θ < h), and thus we can denote, in a non-

inconsistent fashion, the lifted representation [13]–[16] of u
by {ûk}∞k=0, where ûk(θ) = u(kh+θ). Let us denote x(kh)
simply by xk. By (1), we have
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x(kh+θ) = exp(Aθ)xk+

∫ θ

0

exp(A(θ−τ))Bûk(τ)dτ (3)

ûk+1(θ) = y(kh + θ) = Cx(kh + θ) + Du(kh + θ)

= C exp(Aθ)xk +

∫ θ

0

C exp(A(θ − τ))Bûk(τ)dτ

+Dûk(θ) (4)

Hence, Σ can be represented by
[

xk+1

ûk+1

]
=

[
Ad B

C D

] [
xk

ûk

]
(5)

where the matrix Ad ∈ R
n×n and the operators B : Kµ →

Fn, C : Fn → Kµ and D : Kµ → Kµ are defined as follows.

Ad = exp(Ah) (6)

Bf =

∫ h

0

exp(A(h − τ))Bf(τ)dτ (7)

(Cv)(θ) = C exp(Aθ)v (8)

(Df)(θ) =

∫ θ

0

C exp(A(θ − τ))Bf(τ)dτ + Df(θ) (9)

With a slight abuse of notation, the operator of multiplication

by the matrix D is also represented by the same symbol

D; the distinction whether D represents an operator or its

underlying matrix will be clear from the context. Then,

D0 := D − D is a compact operator.

A similar representation to (5) has been given in [12] by

taking the lifted representation x̂k of the state of F , in lieu

of ûk. This implies that in our treatment, the second entry

ûk in the state of (5) is regarded as independent of x(t)
(even though x̂k is obviously not), and this will provide us

with a chance for extending the treatment readily to the case

with, e.g., a digital controller that obviously has independent

discrete-time state variables. That is, our treatment is well

suited to immediate generalization to the setting of TDS’s

under sampled-data control. We believe that this is a very

important feature of the present approach and it will be

straightforward to see that the results provided in this paper

can readily be extended to sampled-data controller design

problems. However, we will leave all such further topics to

future independent papers and we here confine ourselves to

manifesting the fundamental effectiveness and advantages of

the present approach. In view of (5), we call the operator

T =

[
Ad B

C D

]
: M → M (10)

in (5) the monodromy operator of the system Σ , where

M := Fn ⊕ Kµ; recall that Fn and Kµ are shorthand

notations for R
n and (L2([0, h); R))µ, respectively, and the

symbol ⊕ denotes the direct sum of Hilbert spaces, which

generates a new Hilbert space [21].

B. Fast-Lifted Monodromy Operator

The monodromy operator introduced above plays a very

important role, but from the viewpoint of numerical com-

putation, it is not always easy to deal with. Hence we

here prepare for some sort of discretization, even though

no approximation is actually introduced yet at this stage.

That is, we take a positive integer N and consider the fast-

lifting LN : Km → (K′
m)N [19],[20], where K′

m denotes

the Hilbert space Km with h replaced by h′ := h/N . By

definition, if we apply LN to ûk, we have

(LN ûk)(θ′) = ǔk(θ′) =




ûk(θ′)
ûk(h′ + θ′)

...

ûk((N − 1)h′ + θ′)


 ,

0 ≤ θ′ < h′ (11)

Note that LN is invertible and thus nothing will be approx-

imated or lost by applying LN . Under the notation I(·) =
diag[I, (·)] for an operator (·), i.e., I(LN ) = diag[I, LN ],
where I on the right hand side denotes the identity matrix

on Fn, let us define

TN = I(LN )T I(LN )−1 =:

[
Ad BN

CN DN

]
:

M′
N → M′

N (12)

where M′
N is a shorthand notation for Fn ⊕ (K′

µ)N . Then,

it is easy to see that (5) can be rewritten as
[

xk+1

ǔk+1

]
= TN

[
xk

ǔk

]
(13)

and hence TN given by (12) is called the fast-lifted mon-

odromy operator of the system Σ .

Let us introduce A′
d, B′, C′, D′ and D′

0 defined as Ad, B,

C, D and D0, respectively, with the horizon [0, h) replaced

by [0, h′). Then, regarding the representation (12), we readily

have (see, e.g., [20])

BN =
[

(A′
d)

N−1B′ · · · A′
dB′ B′

]
(14)

CN =




C′

C′A′
d

...

C′(A′
d)

N−1


 (15)

DN =




D′ 0 · · · 0

C′B′ D′ . . .
...

...
. . .

. . . 0
C′(A′

d)
N−2B′ · · · C′B′ D′




(16)

D′ = D′
0 + D : K′

µ → K′
µ (17)

III. Stability Analysis with Fast-Lifted

Monodromy Operator

This section studies some important properties of the fast-

lifted monodromy operator, and applies them to stability

analysis of the system Σ . The spectral discussions here might

be more or less related to those found in, e.g., [7], but our

arguments are simpler in the sense that we do not have to deal

with unbounded operators. More importantly, our arguments
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proceed in a discrete-time fashion in spite of the continuous-

time nature of the system Σ , and this feature will allow

us to employ, in later sections, similar ideas to what has

led us to novel techniques in the robust stability analysis

of sampled-data systems [19],[22]. With such ideas, we will

eventually have a discretization method for stability analysis

([17]) such that (i) for each discretization parameter N , it

gives a sufficient condition for stability, and (ii) as N tends

to infinity, the sufficient condition converges to a necessary

and sufficient condition.

A. Fundamental Properties of Fast-Lifted Mon-

odromy Operator

We give some fundamental properties of the fast-lifted

monodromy operator in this subsection. More specifically,

we introduce the class of operators that we denote by BF,

to which the fast-lifted monodromy operator TN belongs,

and study the properties of that class. We begin with the

following result.

Lemma 1 Consider the linear bounded operator F on

M′
N = Fn ⊕ (K′

µ)N such that

F =

[
F00 F01

F10 F11

]
=

[
F00 F01

F10 F110 + F11

]

= F0 + F1, F1 =

[
0 0
0 F11

]
(18)

where F110 (and thus F0) is a compact operator, and F11

is the operator of multiplication on (K′
µ)N defined by the

constant matrix F11 ∈ R
µN×µN . Then, we have

(i) σe(F) = σe(F1) = σe(F11) = σ(F11) = σp(F11) =
λ(F11)

(ii) σ(F1) = σp(F1) = λ(F11)∪{0} = λ(F1), where F1 is

viewed as a matrix in R
(n+µN)×(n+µN) when λ(F1) is

referred to.

We henceforth denote the class of linear bounded operators

on M′
N by B(N), and the class of the operators F of the form

(18) by B(N)
F ⊂ B(N); we can indeed show that B(N)

F is a

proper subset of B(N). When the underlying N is obvious

or is of no particular concern, we simply denote B(N)
F by BF

and B(N) by B. We also have the following results regarding

the properties of BF.

Lemma 2 Suppose F ∈ BF. If γ ∈ σ(F), γ 6= 0 and

γ 6∈ λ(F11), then γ ∈ σp(F).

Remark 1 We can also show that every γ ∈ σ(F) such

that γ 6= 0 and γ 6∈ λ(F11) is an isolated point of σ(F) and

an eigenvalue of F with finite multiplicity.

Lemma 3 The class BF has the following properties.

(i) BF is a linear space over R and constitutes a ring

with respect to operator addition and composition. More

specifically, BF is a Banach algebra [23] with identity

under the norm

‖F‖ = sup
v∈M′

N
\{0}

‖Fv‖M′

N

‖v‖M′

N

(19)

(ii) F∗ ∈ BF whenever F ∈ BF.

(iii) If F ∈ BF and 0 6∈ σ(F), then F−1 ∈ BF.

B. Spectral Radius of Fast-Lifted Monodromy

Operator and Stability

Based on the above lemmas, we can show the following

theorem; some related arguments for the case D = 0 (i.e.,

the retarded case) and r0 = 1 can be found in [12].

Theorem 1 Let F ∈ BF. Then, there exists M > 0 and

0 < r < 1 such that ‖Fk‖ ≤ Mrk, ∀k ∈ N if and only if

ρ(F) < 1. More generally, given r0 > 0, there exists M > 0
and 0 < r < r0 such that ‖Fk‖ ≤ Mrk, ∀k ∈ N if and only

if ρ(F) < r0.

We can easily see that the fast-lifted monodromy operator

TN given by (12) belongs to the class BF, and thus we can

use Theorem 1 for the stability analysis of the TDS Σ . More

precisely, we are readily led to the following theorem.

Theorem 2 Let N be an arbitrary fixed positive integer.

The system Σ is exponentially stable if and only if the associ-

ated fast-lifted monodromy operator TN satisfies ρ(TN ) < 1.

In the above theorem, exponential stability of Σ is defined

as follows.

Definition 1 The TDS Σ is said to be exponentially stable

if there exist M > 0 and α > 0 such that∥∥∥∥
[

x(t)
u(t + ·)

]∥∥∥∥
M

≤ M exp(−αt)

∥∥∥∥
[

x(0)
u(0 + ·)

]∥∥∥∥
M

∀t ≥ 0, ∀x(0), ∀u(0 + ·) (20)

where u(τ + ·) denotes u(t), τ ≤ t < τ + h.

Remark 2 A somewhat similar result to Theorem 2 can

be found also in, e.g., [7], but the operator involved in the

condition therein (which is the infinitesimal generator of Σ ,

and thus is unbounded) is different from ours due to the

difference in the treatment and thus the underlying function

space. Noting that TN is precisely T when N = 1, we can

easily see that the well-known necessary condition ρ(D) < 1
for stability of Σ follows readily from the above theorem,

Lemma 1, and the fact that σe(·) ⊂ σ(·).
In conjunction with the above theorem, the following

result is an immediate consequence of (12), which will be

used in the following discussions.

Lemma 4 For any N ∈ N, we have σ(TN ) = σ(T) and

thus ρ(TN ) = ρ(T). In particular, σ(TνN ) = σ(TN ) and

ρ(TνN ) = ρ(TN ) for any ν ∈ N.

As far as Theorem 2 and Lemma 4 are concerned, it might

look N = 1 suffices and there is no meaning for taking

N ≥ 2. For the sake of numerical computations, however,

we will introduce quasi-finite-rank approximation of TN , or

finite-rank approximation of D′
0 in (17), together with some

scaling approach (the details will be discussed in [17]). In

that context, taking N ≥ 2 will be very important in reducing

approximation errors and thus arriving at a less conservative
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(actually asymptotically exact) result. Fundamental theoreti-

cal arguments supporting such a direction with the use of N
will be developed in the following section.

IV. Operator Lyapunov Inequalities and

Scaling Treatment for Stability Analysis

This section relates the stability condition given in The-

orem 2 to a discrete-time operator Lyapunov inequality and

establishes that a solution to such an inequality exists within

some prescribed class of operators. Roughly speaking, we

show via some scaling treatment that if N is sufficiently

large, such a class can be described by two finite-dimensional

matrices. The fast-lifted monodromy operator, however, is

cumbersome due to its “mixed nature” with respect to Fn

and (K′
µ)N that constitute M′

N . Hence a key technique of

“embedding the vector space Fn to a function space” is also

developed.

A. Lyapunov Inequalities and Their Solutions

Here we give some preliminary results that relate the

stability analysis of Σ to operator Lyapunov inequalities. We

begin with some pertinent definitions.

Definition 2 For N ∈ N, the class B
(N)
F of operators on

M is defined as B
(N)
F := {I(LN )−1F I(LN ) |F ∈ B(N)

F }.

The class of linear bounded operators on M is denoted by

B.

Note that when N is different, the underlying space M′
N

for B(N)
F is different, while the underlying space for B

(N)
F is

M for all N . We obviously have B
(N)
F ⊂ B for all N ∈ N.

Furthermore, since the lifted representation of an operator of

multiplication by a matrix has block diagonal structure, it is

easy to see that B
(N)
F ⊂ B

(νN)
F ⊂ B for all N ∈ N and

ν ∈ N, where the inclusion relations are strict.

Definition 3 Let Z be a Hilbert space with inner product

〈·, ·〉 and let G be a linear self-adjoint bounded operator on

Z . We say that G is positive definite (resp. positive semi-

definite) and denote G > 0 (resp. G ≥ 0) if 〈Gv, v〉 >
0 (resp. ≥ 0) whenever v 6= 0. We say that G is strictly

positive definite and denote G ≻ 0 if there exists a scalar

δ > 0 such that G − δI ≥ 0. Furthermore, we say that G

is negative definite (resp. negative semi-definite, or strictly

negative definite) and denote G < 0 (resp. G ≤ 0, or G ≺ 0)

if −G is positive definite (resp. positive semi-definite, or

strictly positive definite).

As in the standard convention, G1 ≻ G2 (or G2 ≺ G1) is a

shorthand notation for G1 −G2 ≻ 0. The following result is

also standard.

Lemma 5 G ≻ 0 if and only if σ(G) is contained in a

closed interval on the positive real axis. In particular, G ≻ 0
only if σe(G) is contained in a closed interval on the positive

real axis.

We are in a position to state the following key results.

Proposition 1 Let G be a linear bounded operator on a

Hilbert space Z . Then, ρ(G) < 1 if and only if there exists

an operator X ≻ 0 on Z such that

G∗XG − X ≺ 0 (21)

Furthermore, if Z = M′
N , G ∈ BF and ρ(G) < 1, then

there exists X ∈ BF satisfying X ≻ 0 and (21).

Corollary 1 Let G be a linear bounded operator on the

Hilbert space M. Then, ρ(G) < 1 if and only if there exists

an operator X ≻ 0 on M such that (21) holds. Furthermore,

if G ∈ B
(N)
F and ρ(G) < 1 for some N ∈ N, then there

exists X ∈ B
(N)
F satisfying X ≻ 0 and (21).

Proposition 1 given above corresponds to a discrete-time

operator Lyapunov inequality, and the first assertion can be

found, e.g., in [24],[25]. The second assertion, which follows

immediately from the proof in [25] together with Lemma 3,

is very important in our subsequent arguments. Corollary 1

follows readily from Proposition 1 and the definition of

B
(N)
F .

B. Modified Fast-Lifted Monodromy Operator

The fast-lifted monodromy operator TN plays a central

role in the following discussions, but is rather cumbersome

due to the “mixed nature” of its underlying space M′
N =

Fn ⊕ (K′
µ)N . It would be easier if we could instead work

on an operator defined on a “pure function space” that is

free of the finite-dimensional vector space Fn. Here, we

introduce such an operator T̃N called the modified fast-lifted

monodromy operator. In fact, it is defined as the operator

T̃N = JHTN JS on the space M̃′
N := F̃ ′

n ⊕ (K′
µ)N with

appropriately defined operators JH and JS and space F̃ ′
n.

The definitions of these operators and space are as follows.

For m ∈ N, we introduce the (“sampling and hold”)

operators JS0 : K′
m → Fm and JH0 : Fm → K′

m defined by

JS0f =
1√
h′

∫ h′

0

f(θ′)dθ′,

(JH0v)(θ′) =
1√
h′

v, 0 ≤ θ′ < h′ (22)

Note that JS0 and JH0 have similar structure to B′ and

C′, respectively, which will turn out to be crucial in the

numerical computations (to be discussed in [17]). Here

we define F̃ ′
m ⊂ K′

m as the space of constant functions

{v01 | v0 ∈ Fm} with 1(θ′) = 1 (0 ≤ θ′ < h′). It follows

readily that F̃ ′
m is a Hilbert space with the inner product

on K′
m restricted to constant functions. Furthermore, we can

consider the restriction of JS0 to F̃ ′
m, which we also denote

by the same symbol JS0. Similarly, we can view JH0 also

as a mapping from Fm to F̃ ′
m, which is again denoted by

the same symbol JH0. With respect to the inner product on

F̃ ′
m mentioned above and that on Fm, we have JH0 = J∗S0,

and also JS0JH0 = I on Fm and JH0JS0 = I on F̃ ′
m. It

should be noted, however, that JH0JS0 6= I on K′
m. Hence,

it is extremely important to pay attention on which Hilbert

space we are working on, and for this reason some of our

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC07.3

5296



arguments will be carried out in such a way that might look

verbose if one would forget about this crucial issue.

We further introduce JS = diag[JS0, I] : M̃′
N → M′

N

and JH = diag[JH0, I] = J∗S : M′
N → M̃′

N (where

M̃′
N = F̃ ′

n ⊕ (K′
µ)N , and JS0 and JH0 act on F̃ ′

n and

Fn, respectively, while I acts on (K′
µ)N ). Then, we have

JSJH = I on M′
N and JHJS = I on M̃′

N . We further

introduce the operator class B̃F := {JHFJS |F ∈ BF} and

the modified fast-lifted monodromy operator

T̃N = JHTN JS ∈ B̃F (23)

defined on M̃′
N . Then, it is obvious that ρ(TN ) =

ρ(JSJHTN ) = ρ(T̃N ). We next relate the stability condition

ρ(TN ) < 1 or ρ(T̃N ) < 1 to a discrete-time operator

Lyapunov inequality in the following subsection so that we

can develop a novel scaling approach to the stability analysis

of Σ .

C. Scaling Idea to Stability Analysis and a

Class of Solutions to Lyapunov Inequalities

For our later purposes, it is more convenient to convert the

analysis with Lyapunov inequalities to the scaling treatment

of operators. Indeed, from Proposition 1 and Corollary 1, we

can claim that when N is large enough, checking ρ(T) < 1,

or equivalently, checking ρ(T̃N ) < 1 virtually amounts to

finding an invertible operator S̃ ∈ S̃N such that

‖S̃T̃N S̃
−1‖ < 1 (24)

where S̃N is some appropriately defined class of operators

S̃ on M̃′
N . To see this, note that the inequality (24) is

equivalent to
(

S̃T̃N S̃
−1

)∗

S̃T̃N S̃
−1 ≺ I and thus if the

class S̃N is such that S̃
∗
S̃ ≻ 0 whenever S̃ ∈ S̃N , then the

condition (24) is equivalent to the existence of P̃ (= S̃
∗
S̃) ≻

0 such that

T̃
∗

N P̃T̃N ≺ P̃ (25)

This Lyapunov inequality then shows stability of Σ imme-

diately from Proposition 1. The above arguments, however,

only imply that (24) is sufficient for stability of Σ ; what

is really important in establishing the claim raised at the

beginning of this subsection is to show that restricting to

P̃ = S̃
∗
S̃ does not lead to conservativeness in the stability

analysis, provided that the class S̃N is defined appropriately

and N ∈ N is taken large enough. In this sense, it is

very important how to define the class S̃N , or the class

P̃N = {S̃
∗
S̃ | S̃ ∈ S̃N}. We thus proceed to the definition

of P̃N so that the above claim can indeed be established.

We first note the following result† regarding the Lyapunov

inequality (25), which essentially follows from (23) and the

fact that JSJH = I on M′
N and JHJS = I on M̃′

N .

†Note that P̃ is an operator on M̃′
N

(rather than on M′
N

). That is, the

domain of JS in Lemma 6 is taken to be M̃′
N

.

Lemma 6 If T̃
∗

N P̃T̃N ≺ P̃ for P̃ ≻ 0, then T∗
N PTN ≺ P

for P = J∗
H P̃JH ≻ 0. Conversely, if T∗

N PTN ≺ P for P ≻ 0,

then T̃
∗

N P̃T̃N ≺ P̃ for P̃ = J∗SPJS ≻ 0.
Hence, by the arguments around (25), we see that finding

S̃ ∈ S̃N satisfying (24) is equivalent to finding P ≻ 0 of the

form P = J∗H P̃JH , P̃ ∈ P̃N such that T∗
N PTN ≺ P. Here,

let us consider

P̃

=




JH0P00JS0 JH0P01JS0 · · · JH0P0N JS0

JH0P01JS0 JH0P11JS0 + Π · · · JH0P1N JS0

...
...

. . .
...

JH0P0N JS0 JH0PN1JS0 · · · JH0PNN JS0 + Π




= diag[JH0, JH0, · · · , JH0]P diag[JH0, JH0, · · · , JH0]
∗

+diag[0,Π , · · · ,Π ] ∈ B̃F (26)

where P := (Pij)
N
i,j=0 ∈ R

(n+µN)×(n+µN) and Π ∈ R
µ×µ

are matrices such that

P + diag[0,Π , · · · ,Π ] > 0, Π > 0 (27)

Note that P corresponds to the “compact part” of P̃ depend-

ing on N while Π to the “noncompact part.” Here, we can

show the following result on P̃.

Proposition 2 The operator P̃ given by (26) satisfies P̃ ≻ 0
if and only if (27) holds.

Since the property P̃ ≻ 0 ensured in the above result is

consistent with our prior assumption P̃ = S̃
∗
S̃ ≻ 0, we define

the class P̃N as the set of operators P̃ given by (26) and (27).

The class S̃N is then defined as the set of operators S̃ on

M̃′
N such that S̃

∗
S̃ ∈ P̃N . Now, when P̃ ∈ P̃N , we easily

see that P = J∗
H P̃JH is represented as

P = diag[I, JH0, · · · , JH0]P diag[I, JH0, · · · , JH0]
∗

+diag[0,Π , · · · ,Π ] ∈ BF (28)

Hence, if we recall the arguments just after Lemma 6, it

follows from (12) that finding S̃ ∈ S̃N satisfying (24) is

further equivalent to finding P given by (27) and (28) such

that T∗
N PTN ≺ P, which in turn is equivalent to finding Q =

I(LN )−1P I(LN ) ≻ 0 with P given by (27) and (28) such

that T∗QT ≺ Q. Note that Q = I(LN )−1P I(LN ) introduced

here is an operator on M. More specifically, Q ∈ B
(1)
F ⊂

B
(N)
F due to the form of the second term on the right hand

side of (28).

We are now almost ready to establish the claim raised at

the beginning of this subsection. What remains is to show

that given any strictly positive definite operator X ∈ B
(1)
F ,

the above special form of Q ∈ B
(1)
F constructed from P

and Π satisfying (27) can approximate X to any degree of

accuracy by letting N → ∞. We can indeed establish the

following result.

Proposition 3 Suppose that an arbitrary X ∈ B
(1)
F is

given. For any ε > 0 there exists N0 ∈ N such that for all

N ≥ N0, there exists Q = I(LN )−1PI(LN ) with P given

by (28) such that ‖X−Q‖ < ε. In particular, if X is strictly

positive definite, there exists such Q that is strictly positive

definite.
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Since T ∈ B(1)
F = B

(1)
F , it follows that, regarding the

existence of a solution to T∗XT ≺ X, restricting X ≻ 0

to belong to B
(1)
F does not lead to loss of generality by

Corollary 1. Hence, the claim raised in the beginning of this

subsection has been established by the above proposition.

Having established the crucial claim, we see that we can

have an asymptotically exact (i.e., nonconservative) stability

analysis method with the scaling approach by S̃ ∈ S̃N on T̃N

by letting N → ∞, as far as a theoretical side is concerned.

Even though this scaling approach is essentially the same

as solving an operator Lyapunov inequality, it leads to an

advantage especially with respect to a numerical procedure

for stability analysis. As will be studied in [17], we will

develop, through quasi-finite-rank approximation of the fast-

lifted monodromy operator TN , a method that leads to an

“approximate solution” to an operator Lyapunov inequality,

and then give a method, through some error analysis, to

check if it indeed solves the Lyapunov inequality. In such

a context, scalar inequalities such as (24) turn out to be

easier to deal with, and with such a technique, the numerical

search for an appropriate S̃ (or equivalently, P̃ = S̃
∗
S̃ ≻ 0)

can be carried out in an asymptotically exact fashion; we

will further discuss the role of N in [17] in connection with

quasi-finite-rank approximation, where the parameter N will

play an important role also in reducing the approximation

error to any degree.

V. Extension to Robust Stability Problem

We have established in the preceding section that stability

analysis of Σ amounts to finding an appropriate operator

P̃ satisfying (25), (26) and (27). Even though it is very

important to give a numerical procedure for this purpose,

it takes a large space to provide the details about such a

procedure. Hence we opt to confine the present paper to

theoretical developments about the fast-lifting approach to

the time-delay system Σ , and the discussions necessary for

developing numerical procedures will be deferred to the

paper [17]. In this section, we remark that the fast-lifting

approach is not limited to (nominal) stability analysis but

also applicable to robust stability analysis with respect to

the uncertainties in the FDLTI part of Σ .

We begin with the following result, which corresponds to

some sort of the small-gain theorem.

Proposition 4 Suppose that A ∈ BF. Then, 0 6∈ σ(I−AU)
for all U ∈ BF such that ‖U‖ ≤ 1 if and only if ‖A‖ < 1.

Similarly, 0 6∈ σ(I −AU) for all U ∈ BF such that ‖U‖ < 1
if and only if ‖A‖ ≤ 1.

To avoid introducing new notations that are necessary for

rigorous statements but require a large space, we henceforth

confine ourselves to the case N = 1, even though the idea

can readily be extended to the general case.

We first introduce the notation BF(µ), which is specific as

to the underlying µ (i.e., the number of the inputs and outputs

of F ), to denote the class BF given by (18). The class of

operators F11 in the bottom-right block of F ∈ BF(µ) (i.e.,

-

u

G

y

¾H

-

w z

¾∆

Fig. 2. Uncertain feedback system Σ∆ with delay H .

an operator on Kµ given as the sum of a compact operator

and a multiplication operator) is denoted by BF1(µ). The set

of U ∈ BF(µ) with ‖U‖ < 1 (resp. ‖U‖ ≤ 1) is denoted by

UF(µ) (resp. UF(µ)), and the set of U ∈ BF1(µ) with ‖U‖ <
1 (resp. ‖U‖ ≤ 1) is denoted by UF1(µ) (resp. UF1(µ).
Suppose that A ∈ BF(µ1 + µ2) is represented as

A =




A00 A01 A02

A10 A11 A12

A20 A21 A22


 : Fn ⊕ (Kµ1

⊕Kµ2
) ∋




p0

p1

p2




7→




q0

q1

q2


 ∈ Fn ⊕ (Kµ1

⊕Kµ2
) (29)

Then, we denote by A ⋆ U2 the mapping from [p∗0, p∗1]
∗ to

[q∗0 , q∗1 ]∗ when p2 and q2 are related by p2 = U2q2 with

U2 ∈ BF1(µ2). Under these notations, we are immediately

led to the following “main loop theorem.”

Proposition 5 A ⋆ U2 is well-defined and belongs to

BF(µ1) and ‖A ⋆ U2‖ ≤ 1 for all U2 ∈ UF1(µ2) if and

only if 0 6∈ σ(I − A22U2) and 0 6∈ σ(I − (A ⋆ U2)U1)
for all U1 ∈ UF(µ1) and U2 ∈ UF1(µ2). Similarly, A ⋆ U2

is well-defined and belongs to BF(µ1) and ‖A ⋆ U2‖ < 1
for all U2 ∈ UF1(µ2) if and only if 0 6∈ σ(I − A22U2)
and 0 6∈ σ(I − (A ⋆ U2)U1) for all U1 ∈ UF(µ1) and

U2 ∈ UF1(µ2). In particular, if ‖A‖ ≤ 1, then ‖A ⋆ U2‖ ≤ 1
for all U2 ∈ UF1(µ2), and if ‖A‖ < 1, then ‖A ⋆ U2‖ < 1
for all U2 ∈ UF1(µ2).

Based on the above proposition, we can deal with the

robust stability problem of the system Σ∆ shown in Fig. 2

with u(t), y(t) ∈ R
µ1 , w(t), z(t) ∈ R

µ2 , where G is an

FDLTI system and ∆ denotes the uncertainty represented by

an FDLTI system. The details, however, are omitted due to

limited space.

VI. Concluding Remarks

Stimulated by the study in [12], we have developed a new

approach to time-delay systems. The operator that played the

key role in the study of [12], which we call the monodromy

operator in this paper, was transformed by applying the

fast-lifting technique to define the fast-lifted monodromy

operator. Stability of the system Σ was then related to the

spectrum of the fast-lifted monodromy operator, and then
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to the solution to an operator Lyapunov inequality. A class

of candidates to the solutions to the Lyapunov inequality

was then introduced, which is represented by two finite-

dimensional matrices P and Π and thus is easy to deal

with. It was further shown that a solution does exist within

this class whenever Σ is stable, provided that the integer

N for fast-lifting is taken sufficiently large. A basic idea for

generalization of this approach to the robust stability problem

with respect to the uncertainties in the FDLTI part F was

also given. Based on this fundamental but novel theoretical

development, we will establish in [17] a numerical method

for stability analysis of Σ by deriving a discrete-time LMI

condition for stability. A very important contribution therein

is that our approach can lead to an asymptotically exact (i.e.,

non-conservative) method also from the numerical point of

view as the approximation parameter N is made sufficiently

large. This is the first study ensuring such a significant

property, to the best knowledge of the author.

The stability analysis method developed in this paper has

some similarity to the discretized Lyapunov functional (DLF)

method [26],[27], and it may be possible to clarify their

mutual relationship. Unlike in that method, however, our

result is more general in that it is not limited to retarded

systems with a single delay length but is also applicable to

neutral systems with commensurate delays without essential

difficulties. Another difference in these two methods is that

the DLF method uses piecewise linear approximation while

our approach corresponds, roughly speaking, to some sort of

piecewise constant approximation, but a more obvious and

sharp difference is that the DLF method is based on the

Lyapunov-Krasovskii functional and thus is in continuous-

time, while ours are based on a new (bounded) operator-

theoretic approach that works in discrete-time. It does not

seem so hard to allow piecewise linear approximation also

in our approach, but it is left to future studies at this moment.

Due to the discrete-time characteristics of our approach,

the (asymptotically exact) LMI condition for stability that

we derive in the companion paper [17] is a discrete-time

one, which, after some straightforward extension, is suited

not only for analysis of TDS’s with continuous-time or

discrete-time controllers but also for design of discrete-

time controllers for continuous-time TDS’s. This is a very

important advantage of our approach because almost all

LMI conditions for stability of TDS’s are in continuous-

time (variants of the continuous-time Lyapunov inequality).

It is quite reasonable to design discrete-time controllers

nowadays, and continuous-time controllers quite often have

to be discretized for the purpose of implementation. It is

often the case that continuous-time controllers for TDS’s

are infinite-dimensional, and their discretization could lead

to loss of closed-loop stability. Regarding these issues, our

approach provides a clear and significant advantage that

it can give a method for direct design of discrete-time

controllers with guaranteed closed-loop stability in a delay-

dependent fashion, provided that the sampling period is taken

as an integer fraction of the delay h or commensurate delays.
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