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Abstract— This paper is devoted to the stability and per-
formance analysis for reset control systems. The output of
the system must track a nonzero reference in presence of
external L2 bounded disturbances. Constructive LMI-based
conditions are proposed by using quadratic and piecewise
quadratic Lyapunov functions.
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I. INTRODUCTION

Over the last decade, in the quest for providing more

flexible tools for achieving the stabilization and performance

tasks, research efforts have focused on developing control

algorithms, using controllers that involve switching or on-line

adaptation. This may complicate the analysis of the stability,

but may overcome performance limitations of more classical

controllers, i.e., regular linear or nonlinear controllers (see,

e.g., [11], [14], [4]).

In this paper, the class of hybrid systems under con-

sideration is the one which includes reset control systems,

combining continuous dynamics (represented by differential

equations) with finite dynamics (instantaneous jumps of

variables) [4]. The concept of reset systems was previously

introduced in [3] with the so-called Clegg integrator and next

generalized to a first order system in [8]. Several works have

proposed explicit models for control systems involving Clegg

integrator or FORE (First Order Reset Element) to achieve

stability and performance using Lyapunov based conditions

[1], [7], [16], [5].

In more recent publications, stability and performance of

systems which include reset controllers (Clegg integrator

or FORE) have been studied. In [14], [10] a more general

model is proposed. Authors introduced piecewise quadratic

Lyapunov functions to solve the problem of stability and to

upperbound the input-output L2 gain. In [15], a generaliza-

tion of the FORE allows to guarantee asymptotic tracking

of constant references. More recently the H2 problem was

also considered [13]. Better performances conduct to largest

control values and these results are extended in [9] to handle

saturation at the controller output. But to the best of our

knowledge, there does not exist any work studying stability

issue of a nonlinear system resulting from a general reset

controller tracking a nonzero reference. Hence, we propose

in this paper to analyze stability and tracking performance

of a SISO system associated to a reset controller in presence

of external perturbation.
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In this context, by exploiting properties of suitable Lya-

punov functions, LMI-based conditions are proposed to guar-

antee asymptotic stability and minimize an upperbound of a

tracking criterion. For different class of references, we prove

the asymptotic stability and that the output of the closed-loop

converges to a reference (a priori known) or equivalently that

error tends to zero.

Notations. The identity matrix of order n is denoted In.

The null m×n matrix is denoted 0m×n. When no confusion

is possible, identity and null matrices are simply denoted I

and 0, respectively. For two symmetric matrices, A and B,

A > B means that A−B is positive definite. A′ denotes the

transpose of A.

II. PROBLEM STATEMENT

The plants considered throughout the paper are described

by the following SISO system:

ẋp = Apxp + Bpu,

y = Cpxp,
(1)

where xp ∈ R
np is the state vector, y ∈ R is the measured

output of the plant and u ∈ R its input. In (1), Ap, Bp, Cp

are constant matrices of appropriate dimensions.

Associate to system (1), we consider a reset system con-

troller. Based on the use of the framework introduced in [4],

we consider the following model of reset controller:

ẋr(t, i) = Arxr(t, i) + Bre(t)
yr(t, i) = Crxr(t, i) + Dre(t)

}

if e(t)yr(t, i) ≥ 0,

∀t ∈ [ti, ti+1]
xr(ti+1, i + 1) = 0 if e(ti+1)yr(ti+1, i) ≤ 0,

(2)

where xr(t, i) ∈ R
nr is the state of the controller at time t

with i resets occured until time t. Note that x(ti+1, i) and

x(ti+1, i + 1) are the value of vector x before and after a

jump, respectively. The variable yr ∈ R is the controller

output and e denotes its input. In (2), Ar, Br, Cr, Dr are

constant matrices of appropriate dimensions.

Throughout the paper, we will often use the notation x for

x(t, i) and x+ for x(ti+1, i + 1).
Remark 1: Many choices are possible to define the flow

and jump sets. Here, they are based on the sign of the con-

troller input and output. The objective is to limit overshoot

(and then settling time) by imposing that the slowest signal

changes of sign as the same time as the fastest signal. For

example, by considering a ”phase delay” controller, the input

e changes of sign before the output yr. The proposed reset

condition leads to an acceleration of change of sign of yr.

The interconnection between system (1) and (2) is as

follows:

u = yr, e = r − y, (3)
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where r ∈ R is a reference to track and e ∈ R is the

tracking error (see Figure 1). We also consider an external

perturbation d such as the disturbance vector d : [0,∞) 7→
R

q is assumed to be limited in energy, i.e., d ∈ Lq
2 and for

some scalar δ, 0 < 1
δ

< ∞, one gets:

‖ d ‖2
2=

∫ ∞

0

d(τ)′d(τ)dτ ≤
1

δ
. (4)
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Fig. 1. Closed-loop system

Remark 2: The system (2) may be a reset control system

specially designed such that the closed-loop (1)-(2)-(3) is

stable and satisfies some constraints (time rising, overshoot

...), for example see the FORE in [6], [14]. Moreover,

system (2) may be a classical continuous dynamic controller

to which a reset equation is added in order to improve

performances.

Let us define the augmented state vector

x = [x′

p x′

r]
′ ∈ R

n, (5)

with n = np + nr, and the closed-loop system (1)-(2)-(3)

under consideration reads:

ẋ = AF x + Br + Bdd, if x ∈ F ,

x+ = AJx, if x ∈ J ,
(6)

and the output is defined by y = Cx, with

AF =

[

Ap − BpDrCp BpCr

−BrCp Ar

]

, AJ =

[

Inp
0

0 0

]

,

B =

[

BpBr

Br

]

, Bd =

[

Bp

0

]

, C =
[

Cp 0
]

. (7)

The flow and jump sets, F and J are respectively de-

scribed by:

F := {x ∈ R
n ;x

′

Mx ≥ 0},

J := {x ∈ R
n ;x

′

Mx ≤ 0},
(8)

where M is a reset matrix of appropriate dimensions.

To avoid Zeno solutions (see [4]), we adopt the following

assumption (see [10]).

Assumption 1: For system (6), the reset matrix is such that

x ∈ J =⇒ x+ ∈ F . (9)

Note that, for reset systems (2), Dr ≥ 0 is a sufficient

condition to satisfy Assumption 1. Indeed, by noting that

e+ = e and y+
r = Dre, the sign of quantity e+y+

r , and then

sign of x′Mx, depend on Dr.

The problem we intend to solve is summarized as follows.

Problem 1: Given a reset matrix M , find a Lyapunov

function such as

• if d = 0, system (6) is asymptotically stable;

• if d 6= 0, the tracking error e defined in (3) converges

asymptotically to zero, for all admissible disturbances

d satisfying (4).

To address Problem 1, let us consider the following lemma.

Lemma 1: Given a vector e, its time-derivative ė and a

finite positive scalar η such that

||e||22 + ||ė||22 ≤ η, (10)

then lim
t→∞

e(t) = 0.

Proof: The following property holds:

∣

∣

1
2 (e′(t)e(t) − e′(0)e(0))

∣

∣ =
∣

∣

∣

∫ t

0
e(t)ė(t)dt

∣

∣

∣

≤
∫ t

0
|e(t)ė(t)| dt

≤
√

∫ t

0
|e(t)|2dt

√

∫ t

0
|ė(t)|2dt,

with t → ∞, one gets with (10)
∣

∣

∣

∣

1

2
(e′(t)e(t) − e′(0)e(0))

∣

∣

∣

∣

≤ ||e||2||ė||2. (11)

Hence,
∫ t

0
e(t)ė(t)dt is also finite and lim

t→∞
e(t) does exist.

Moreover using (10) again, we get lim
t→∞

e(t) = 0.

Remark 3: The determination of the matrix M is a key

tool for modeling and analyzing reset control systems. For

the reset system (6) with a non-null reference r, it is obvious

that the reset matrix M depends on the reference.

In the sequel, Problem 1 is addressed by considering two

kinds of references: constant and decreasing references.

III. CONSTANT REFERENCE

In this section, we assume that the reference is constant

r = r0. The closed-loop system becomes, in absence of

perturbation:

ẋ = AF x + Br0, if x ∈ F
x+ = AJx, if x ∈ J

(12)

To analyze the stability of system (12), let us consider the

following change of variables:

x̃ =
[

x̃′
p x̃′

r

]′
= x − xe, (13)

where xe is the equilibrium state. Due to Assumption 1, we

have xe ∈ F . Indeed, xe ∈ J implies x+
e = AJxe = xe ∈ F

and the vector xe satisfies:

xe = −A−1
F Br0, (14)

Cxe = r0 (15)

provided that AF is non-singular. If AF is singular, xe if

exists, has to satisfy AF xe+Br0 = 0 instead of (14). Hence,

xe corresponds to the equilibrium, in the case d = 0. Note

that relation (15) means that ye = r0, that is, ee = 0. Then,

performing the change of variables (13), (14) and (15), the

closed-loop reset system reads:

˙̃x = AF x̃ + Bdd, if x̃ ∈ F
x̃+ = AJ x̃, if x̃ ∈ J
y = Cx̃ + r0

(16)
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with the error written as:

e = −Cx̃ = −Cpx̃p. (17)

The flow and jump sets F and J may be determined from

the sign of the product eyr with

yr = Crxr + Dre = Crx̃r − DrCpx̃p. (18)

Therefore, the matrix M̃ allowing to define F and J
similarly to (8) with respect to x̃, is rewritten using (17)

and (18) by M̃ = Q′MQ with M =

[

0 −I

−I 0

]

and

Q =

[

Cp 0
DrCp Cr

]

. The following proposition provides

constructive conditions to solve Problem 1 by exploiting the

properties of quadratic Lyapunov functions.

Theorem 1: If there exist symmetric positive definite ma-

trix P ∈ R
n×n and positive scalars τ , τF , τJ and γ

satisfying:












A′

F P + PAF − τA′

F AF + τF M̃ τA′

F

⋆ −τI

⋆ ⋆

⋆ ⋆

⋆ ⋆

(P − τA′

F )Bd C ′ 0
τBd 0 C ′

−τB′

dBd − γI 0 0
⋆ −γI 0
⋆ ⋆ −γI













≤ 0, (19)

A′

JPAJ − P − τJM̃ ≤ 0, (20)

then

• when d = 0, the reset control system (16) is globally

asymptotically stable;

• when d 6= 0, relation (10) holds with

η = γx̃′

0Px̃0 + γ2||d||22, (21)

for all disturbances d satisfying (4) and thus, with

Lemma 1, lim
t→∞

e(t) = 0.

Proof: Let us consider the quadratic Lyapunov function

V (x̃) = x̃′Px̃, P = P ′ > 0. (22)

By derivating (22) along continuous trajectories of system

(16), we obtain V̇ = x̃′(A′

F P + PAF )x̃ + 2d′B′

dPx̃. Let us

define the quantity L as

L = V̇ (x̃) +
1

γ
(e′e + ė′ė) − γd′d, (23)

where e is defined in (17) and ė = −C ˙̃x. Along continuous

trajectories of system (16), we want to satisfy L < 0, if x̃ ∈
F , or equivalently L ≤ 0, if x̃′M̃x̃ ≥ 0. This condition can

be rewritten as follows by using the S-procedure [2]:

L + τF x̃′M̃x̃ ≤ 0 (24)

with τF a positive scalar. Moreover, the variables x̃, ˙̃x, and

d satisfy the following equality N
[

x̃′ ˙̃x′ d′
]′

= 0 with

N =
[

AF −I Bd

]

. By applying the Finsler’s lemma

[2], inequality (24) is equivalent to

L + τF x̃′M̃x̃ ≤ τN ′N, (25)

with τ a positive scalar and L a function of x̃ and d.

The satisfaction of relation (19) implies that (25) is satisfied.

Regarding the discrete part, the satisfaction of relation (20)

guarantees that the candidate quadratic Lyapunov function

(22) is non-increasing along resets:

∆V (x̃) ≤ 0 if x̃′M̃x̃ ≤ 0. (26)

Hence, in the case d = 0, the satisfaction of relations

(19) and (20) ensures the global asymptotic stability of reset

system (16) or equivalently the asymptotic convergence of

the error e to 0.

For d 6= 0, the satisfaction of relation (19) and (20)

implies, in particularly, that L ≤ 0 and ∆V (x̃) ≤ 0. Let

us introduce the following notation. The value of Lyapunov

function (22) and of its time-derivative at x̃(ti, i) will be

noted V (ti, i) and V̇ (t, i), respectively. By integrating rela-

tion (23) along the continuous trajectories of the system, it

follows:

T
∑

i=0

∫ ti+1

ti

V̇ (t, i)dt + γ−1

(
∫ ∞

0

e′edt +

∫ ∞

0

ė′ėdt

)

−γ
∫ ∞

0
d′ddt ≤ 0 . (27)

Moreover, note that one gets

T
∑

i=0

∫ ti+1

ti

V̇ (t, i)dt = V (tT+1, T + 1) − V (t0, 0)

−

T
∑

i=0

[V (ti+1, i + 1) − V (ti + 1, i)] . (28)

From the satisfaction of (26)-(27) and from (28) one gets:

V (tT+1, T +1)−V (t0, 0)+γ−1
(

||e||22 + ||ė||22
)

−γ||d||22 ≤ 0

or equivalently, with V (tT+1, T + 1) > 0, it follows

||e||22 + ||ė||22 ≤ γV (t0, 0) + γ2||d||22,

and by noting x(T0, 0) = x0, relation (21) is obtained and

the proof of Theorem 1 is complete.

In the case where matrix AF is not Hurwitz (specially if

the reset controller is not exponentially stable) or to reduce

conservatism, piecewise quadratic Lyapunov functions can

be considered as in [14]. Let us emphasize that even in this

case, we suppose that AF is non-singular.

Let us consider (without loss of generality) that the system

(16) is in observability canonical form. Choose any N ≥ 2
and define θi, i = 0, . . . , N such that 0 = θ0 < θ1 < . . . <

θN = π
2 (for example, in our case we select θi = iπ

2N
).

Define the angle vectors Θi ∈ R
n as

Θi =
[

01×(n−2) sin(θi) cos(θi)
]′

, i = 0, . . . , N.
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and their orthogonal matrices Θi⊥ (Θ
′

i⊥Θi = 0) as:

Θi⊥ =

[

In−2 0 0
0n−2 cos(θi) − sin(θi)

]′

, i = 0, . . . , N.

Define also the sector matrices Si = S
′

i ∈ R
n×n:

S0 = Q′ (Θ0Θ
′

N + ΘNΘ′

0) Q,

Si = −Q′
(

ΘiΘ
′

i−1 + Θi−1Θ
′

i

)

Q, i = 1, . . . , N,

and the angular sectors:

Πi = {x ∈ R
n; x′Six ≥ 0} , i = 0, . . . , N. (29)

Theorem 2: If there exist symmetric positive definite ma-

trices Pi ∈ R
n×n, i = 0, . . . , N and positive numbers τ , τi,

ρi, i = 0, . . . , N , and γ satisfying:












A′

F Pi + PiA
′

F − τAF AF + τiSi τA′

F

⋆ −τI

⋆ ⋆

⋆ ⋆

⋆ ⋆

(Pi − τA′

F )Bd C ′ 0
τBd 0 C ′

−τB′

dBd − γI 0 0
⋆ −γI 0
⋆ ⋆ −γI













≤ 0,

i = 1, . . . , N, (30)

A′

JP0AJ − P0 + τ0S0 ≤ 0, (31)

Θ′

i⊥Q′−1(Pi − Pi+1)Q
−1Θi⊥ = 0, i = 1, . . . , N − 1(32)

Θ′

0⊥Q′−1(P1 − P0)Q
′−1Θ0⊥ = 0, (33)

Θ′

N⊥Q′−1(PN − P0)Q
′−1ΘN⊥ = 0, (34)

Pi − ρiSi > 0, i = 0, . . . , N (35)

then

• when d = 0, the reset control system (16) is globally

asymptotically stable;

• when d 6= 0, relation (10) holds with

η = γx̃′

0Pix̃0 + γ2||d||22, if x̃0 ∈ Πi, (36)

for all disturbances d satisfying (4) and thus, with

Lemma 1, lim
t→∞

e(t) = 0.

Proof: The two first equations are obtained from

Theorem 1 by patching together N + 1 quadratic functions

(V (x̃) = x̃′Pix̃, i = 1, . . . , N for the flow set and

V (x̃) = x̃′P0x̃ for the jump set). Note that with the adopted

convention, the jump set J could be written as J := {x̃ ∈
R

n; x̃′S0x̃ ≥ 0} and by patching together angular sectors

Πi, i = 1, . . . , N , we can define similarly the flow set F .

Conditions (32)-(34) ensure that the patched Lyapunov

function is continuous on the patching surface. For example,

the patching surface at the boundary of flow sets Π1 and Π2

is defined as the hyperplane {x̃ ∈ R
n; Θ′

1⊥x̃ = 0}.

The patched Lyapunov function V (x̃) = x̃′Pix̃, i =
0, . . . , N must be positive, i.e. x̃′Pix̃ > 0 if x̃ ∈ Πi. By

applying the S-procedure again, we obtain relation (35).

Moreover, in the case d 6= 0, the satisfaction of relation

(30), for i = 1, . . . , N , implies:

||e||22 + ||ė||22 ≤ γV (x̃(0)) + γ2||d||22,

where V (x̃0) = x̃′
0Pix̃0 if x̃0 ∈ Πi, with x̃(t0, 0) = x̃0.

Remark 4: Equalities (32)-(34) can be treated as inequal-

ities (see [14]).

Remark 5: The proposed refinement is not unique. If no

solutions can be found for Theorem 2 for a given partition,

it is natural to refine the partition (by increasing N or by

considering another distribution for angles θi, for example)

and to try again. Hence, the proposed approach increases

the flexibility of the candidate Lyapunov function V (x̃) =
x̃′Pix̃, i = 0, . . . , N, if x ∈ Πi and conducts to solutions

where the standard quadratic LMI conditions failed.

IV. DECREASING REFERENCE

In this section we consider system (6) with a decreasing

reference r = r0e
−εt. Hence, by defining the augmented

state vector x = [x′
p x′

r r′]′ = [x′ r′]′ ∈ R
n+1, the system

(6) reads:

ẋ = AF x + Bdd, if x ∈ F ,

x+ = AJx, if x ∈ J ,
(37)

and the output is defined by y = Cx and the error as e =
r − y = Zx with

AF =





Ap − BpDrCp BpCr BpDr

−BrCp Ar Br

0 0 −ε



 , C =





C ′
p

0
0





′

,

AJ =





Inp
0 0

0 0 0
0 0 1



 , Z ′ =





−C ′
p

0
1



 . (38)

Due to the reference r, the flow and jump sets F and J
have to be rewritten for (x, r) ∈ R

n × R:

F := {x′M1x + 2x′M2r + r′M3r ≥ 0},
J := {x′M1x + 2x′M2r + r′M3r ≤ 0},

(39)

with

M1 = Q′M1Q, M2 = 1
2

[

−2C ′
p

C ′
r

]

, M3 = Dr, (40)

with M1 =

[

0 −I

−I 0

]

and Q =

[

Cp 0
DrCp Cr

]

. Let us

define matrix M

M =

[

M1 M2

M ′
2 M3

]

. (41)

Theorem 1 can be used to solve Problem 1 for system (37)

by considering P ∈ R
(n+1)×(n+1) and M instead of matrix

M̃ . If the use of a piecewise quadratic function is needed,

principal difficulties reside in the definition of angular sectors

Πi in view of (29). From matrix M defined in (41) and

M1,M2,M3 defined in (40), we let M1 =

[

M1 0
0 0

]

, and

M2 =

[

0 M2

M ′
2 M3

]

. Due to the structure of AF and AJ

given in (38), we proposed a relaxation method which will
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only cover the matrix M1. Thus, the approach proposed in

section III can be extended.

Let us consider (without loss of generality) that the system

(16) is in observability canonical form. Choose any N ≥ 2
and define θi, i = 0, . . . , N such that 0 = θ0 < θ1 < . . . <

θN = π
2 (for example, in our case we select θi = iπ

2N
).

Define the angle vectors Θi ∈ R
n+1 as

Θi =
[

01×(n−2) sin(θi) cos(θi) 0
]′

, i = 0, . . . , N.

and their orthogonal matrices Θi⊥ (Θ
′

i⊥Θi = 0) as:

Θi⊥ =

[

In−2 0 0 0
0n−2 cos(θi) − sin(θi) 0

]′

, i = 0, . . . , N.

Define also the sector matrices Si = S
′

i ∈ R
n+1×n+1:

S0 = Q′

(

Θ0Θ
′

N + ΘNΘ
′

0

)

Q

Si = −Q′

(

ΘiΘ
′

i−1 + Θi−1Θ
′

i

)

Q, i = 1, . . . , N,

and the angular sectors:

Πi =
{

x ∈ R
n+1; x′

(

Si + M2

)

x ≥ 0
}

, i = 1, . . . , N,

Π0 =
{

x ∈ R
n+1; x′

(

S0 − M2

)

x ≥ 0
}

.

Theorem 3: If there exist symmetric positive definite ma-

trices Pi ∈ R
(n+1)×(n+1), i = 0, . . . , N and positive

numbers τ , τi, i = 0, . . . , N , and γ satisfying:








A′

F Pi + PiAF − τA′

F AF + τi

(

Si + M2

)

τA′

F

⋆ −τI

⋆ ⋆

⋆ ⋆

(Pi − τA′

F )Bd Z ′ 0
τBd 0 Z ′

−τB′

dBd − γI 0 0
⋆ −γI 0
⋆ ⋆ −γI













≤ 0,

i = 1, . . . , N, (42)

A′

JP0AJ − P0 + τ0

(

S0 − M2

)

≤ 0, (43)

Θ
′

i⊥Q−1′

(Pi − Pi+1)Q
−1Θi⊥ = 0 i = 1, . . . , N − 1,(44)

Θ
′

0⊥Q−1′

(P1 − P0)Q
−1Θ0⊥ = 0, (45)

Θ
′

N⊥Q−1′

(PN − P0)Q
−1ΘN⊥ = 0, (46)

Pi − ρi

(

Si + M2

)

> 0, i = 1, . . . N, (47)

P0 − ρ0

(

S0 − M2

)

> 0, (48)

then

• when d = 0, the reset control system (37) is globally

asymptotically stable;

• when d 6= 0, relation (10) holds with

η = γx′

0Pix0 + γ2||d||22, if x0 ∈ Πi. (49)

for all disturbances d satisfying (4) and, thus with

Lemma 1, we have lim
t→∞

e(t) = 0.

Proof: The proof of Theorem 3 follows the lines of

Theorem 1. With proposed angular sectors, the jump set J

reads J := {x ∈ R
n+1, x′(S0 − M2)x ≥ 0} and F is the

union of sets defined as Fi := {x ∈ R
n+1, x′(Si +M2)x ≥

0}, i = 1, . . . , N .

Remark 6: Previous results could adapted if system (2) is

defined with different flow and jump sets.

V. SIMULATION RESULTS

In this section, illustrations of previous results are pro-

posed. We implement Theorems 2 and 3 in order to minimize

the variable γ. Indeed, consider for example Theorem 3, if

solutions exist, one gets

||e||22 + ||ė||22 ≤ γx′

0Pix0 + γ2||d||22, if x0 ∈ Πi. (50)

Then the gain γ could be seen as a performance index:

smaller will be γ, smaller will be the energy of ||e||22 + ||ė||22
and better will be the closed-loop performances.

A. Constant reference

To illustrate Theorem 2, we consider the example of a

second order system controlled by a FORE presented in

[10]. We have Ap =

[

0 0
1 −0.2

]

, Bp =

[

1
1

]

, Cp =
[

0
1

]′

and the controller FORE is characterized by Ar =

λr, Br = 1, Cr = 1. Figure 2 illustrates that the gain γ of

−5 −4 −3 −2 −1 0 1 2 3 4 5
2

3

4

5

6

7

8

g
a

in
 γ

λ
r

Fig. 2. Gain γ as a function of the pole of the FORE λr

the system decreases when the pole λr increases and due

to the reset action, we can consider positive pole for the

controller (which leads to unstable linear-based closed-loop).

This theoretical behavior is confirmed by time responses

presented in Figure 3, where several responses to a unit step

reference are reported. We also considered, at t = 25s a

constant perturbation during 2s with an amplitude of 0.3.

As expected, the closed-loop system has better performances

when λr is increasing (better overshoot, time rising and less

sensitive to the perturbation). This is depicted in Figure 3.

B. Slowly decreasing reference

To illustrate Theorem 3, we choose, as in [12], a reference

slowly decreasing r = e−0.01t.

Consider the mechanical mode of a DC motor modeled

by the following transfer function:

F (s) =
km

s(1 + tms)
. (51)
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Fig. 3. Step response with perturbation between t = 25s and t = 27s
with an amplitude of 0.3

The following controller has been designed to ameliorate the

margin phase of (51):

Ar = −0.5, Br = 0.1675, Cr = 1, Dr = 0.1675. (52)

By applying Theorem 3, we obtain the following results (see

Table I, where N is the number of subregions). We also

without reset N = 2 N = 10 N = 20 N = 30

γ 16.1447 16.1437 14.23 13.46 13.3

TABLE I

GAIN γ EVALUATION

consider an implementation error. Indeed, we suppose that

Br in (52) is replaced by Br = −0.1675. With a classical

linear-based controller, the closed-loop becomes unstable. By

exploiting reset advantages, the closed-loop remains stable

and with Theorem 3 one gets γ = 20.60. Figure 4 reports

these remarks: performances are better by considering a reset

controller. If this controller is uncorrectly implemented, the

system output still converges to the reference but is more

sensitive to external perturbation.

0 5 10 15 20 25 30
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1

1.5
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4.5

 

 
continuous case

reset case

reset and B
r
<0

r=e−0.01t

Fig. 4. Temporal response with decreasing reference and a perturbation at
t = 15s until t = 17s with an amplitude of 0.3

VI. CONCLUSION

Given a general reset controller, we studied the stability

and tracking problem of the closed-loop system in pres-

ence of an external perturbation. For different classes of

references, LMI-based conditions are obtained. Numerical

examples are presented to illustrate the results and to show

improvements that a reset controller could lead to. If a

general model for reset controller is considered, the resetting

condition is still restrictive and the design of reset conditions

should also be investigated. The evaluation of the results

on an experimental setup will also be considered in a next

future.
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