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Abstract— This paper deals with continuous-time systems
and addresses the problem of characterizing open-loop switch-
ing strategies, based on dwell time specification, assuring a
pre-specified root mean square gain (RMS). As a natural
consequence of treating general systems of this particular
class in terms of the order and the number of subsystems,
only sufficient conditions are worked out. However, as positive
features, they are expressed through linear matrix inequalities
(LMI) being thus numerically solvable in polynomial time and
allow the treatment of stable switched linear systems which do
not admit a common Lyapunov function. The conservativeness
of the proposed design method is evaluated by comparison with
an easy to calculate lower bound on the minimum dwell time
that assures the specified H∞ level. An example is included for
illustration.

I. INTRODUCTION

Hybrid and switched dynamic systems have received a

great deal of attention in the last decades. The stability

analysis of continuous-time switched linear systems have

been addressed by many authors, [4], [8], [10], [11], [13],

[21] and [23]. General results on this topic are presented in

the book [1] and in the survey paper [19]. More specifically,

in reference [10] the interested reader can find an interesting

discussion on a collection of results on uniform stability

of switched systems. The reader is also requested to see

[6], [15] and [16] for a rather complete review on stability

of continuous-time switched linear systems, where special

attention is given to the case of switching between two

linear systems. For control synthesis see [12], [17] and [20].

In this paper, the stability conditions for continuous-time

linear switched systems provided in [7] are used. In fact,

they make possible the determination of an upper bound

of the minimum dwell time that preserves stability and are

expressed in terms of linear matrix inequalities - LMI plus a

scalar variable, being thus solvable in polynomial time (see

[3]) by the machinery available in the literature to date.

This paper deals with RMS gain and dwell time specifi-

cations for continuous-time switched linear systems of the

following form

ẋ = Aσx + Bσw, x(0) = 0 (1)

y = Cσx + Dσw (2)
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defined for all t ≥ 0 where x(t) ∈ R
n is the state, w(t) ∈

R
m is the exogenous input and σ(t) : t ≥ 0 → {1, · · · , N}

is the switching rule. Calling DT the set of all switching

policies with dwell time greater or equal to T , given a pair of

nonnegative real numbers (T, γ) the main goal is to provide

conditions to assure that

J(σ) := sup
w∈L2

∫ ∞

0

(y′y − γ2w′w)dt ≤ 0, ∀ σ ∈ DT (3)

It is important to recognize that the complete solution to

this problem is extremely difficult to obtain and, to our best

knowledge only few references are available up to now in

the literature where only particular problems of this class

are treated, considering a small number (N = 2) of reduced

order subsystems (n = 1). One of the key references on this

problem is [9] where the problem (3) with T = 0 is solved.

In fact in [9], necessary and sufficient conditions are given to

ensure that J(σ) is nonnegative for arbitrary switching rules

σ(t) ∈ {1, · · · , N} defined for t ≥ 0.

Certainly, the main difficulty to be circumvented stems

from the fact that the global solution to the optimal control

problem

sup
σ∈DT

J(σ) = sup
w∈L2,σ∈DT

∫ ∞

0

(y′y − γ2w′w)dt (4)

although completely characterized through the associated

Hamilton-Jacobi-Bellman equation can not be obtained in

this way since it is virtually impossible to solve due to

the algebraic structure of the set DT for any given dwell

time T ≥ 0, [14], [18]. Hence, for the moment, suboptimal

solutions easier to calculate are acceptable. This is the

main focus of this paper to be developed afterwards. The

conservativeness of the proposed conditions to assure the

validity of (3) will be tested through comparisons with

known results provided by the classical H∞ Theory as well

as the imposition that (3) has to hold for a subset of DT

composed by all periodic policies with period T > 0 which

naturally generates a necessary condition for its validity.

The notation used throughout is standard. Capital letters

denote matrices, small letters denote vectors and small Greek

letters denote scalars. For matrices or vectors (′) indicates

transpose. For symmetric matrices, X > 0 (≥ 0) indicates

that X is positive definite (nonnegative definite). The sets of

real and natural numbers are denoted by R and N respectively

and K = {1, · · · , N}. The squared norm of a trajectory z(t)
defined for all t ≥ 0 equals ‖z(t)‖2

2 =
∫ ∞

0
z(t)′z(t)dt. All

trajectories such that ‖z(t)‖2
2 < ∞ characterize the set L2,

see [5].
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II. PRELIMINARIES

To be used in the sequel, this section is entirely dedicated

to analyze some properties of the finite horizon H∞ problem

stated as follows

V (ξ, τ) = sup
w∈L2

∫ τ

0

(y′y − γ2w′w)dt (5)

subject to

ẋ = Ax + Bw, x(0) = ξ (6)

y = Cx + Dw (7)

where we notice that all matrices of the state space realization

with compatible dimensions, the initial state and the final

time τ are given. Obviously, since the system (6)-(7) is

time invariant the initial time considered at t = 0 can be

moved forward, in which occurrence the optimal solution

does not change provided the final time is also moved

forward accordingly. Under standard assumptions on the

system, namely stability and minimality, this problem can

be solved with no difficulty (see, for instance, [5]) and its

optimal solution provides the cost-to-go function

V (ξ, τ) = ξ′P (0)ξ (8)

where P (t) = P (t)′ ∈ R
n×n, defined for all t ∈ [0, τ ] is

the unique positive definite solution to the differential Riccati

equation

−Ṗ = A′P + PA + C ′C +

+ (PB + C ′D)(γ2I − D′D)−1(PB + C ′D)′(9)

subject to the final condition P (τ) = 0. Thanks to the

assumptions, this equation admits a solution in the time

interval t ∈ [0, τ ] for τ < ∞ whenever γ2I − D′D > 0.

For a thorough treatment on the existence of the solution

of the H∞ differential Riccati equation as a function of

the final time, the interested reader is referred to [2] . As

for τ = +∞, under the same assumptions, the existence

of a positive definite stabilizing solution of the associated

algebraic Riccati equation is in one-to-one correspondence to

the contractivity of the open loop transfer function G(s) =
C(sI − A)−1B + D, i.e. ‖G(s)‖2

∞ < γ2. Moreover, it is

interesting to remark that the optimal input (worst input

trajectory) is given by wτ (t) = L(t)xτ (t) where

L(t) = (γ2I − D′D)−1(P (t)B + C ′D)′ (10)

is the time varying feedback gain and xτ (t) is the corre-

sponding state trajectory. Hence, if ξ = 0 then V (0, τ) = 0
and wτ (t) = 0 for all t ∈ [0, τ ]. In other words, under

zero initial conditions, the null trajectory is the worst input

trajectory.

Lemma 1: For every fixed initial condition ξ ∈ R
n, the

cost-to-go function V (ξ, τ) is nondecreasing in the interval

τ ∈ (0, +∞).

Proof: Consider δ > τ > 0 and the input trajectory

w(t) =

{

wτ (t) t ∈ [0, τ ]
0 t ∈ (τ, δ]

(11)

the cost-to-go function as defined in (5) allows us to write

V (ξ, δ) = sup
w∈L2

∫ δ

0

(y′y − γ2w′w)dt

≥

∫ τ

0

(y′
τyτ − γ2w′

τwτ )dt +

∫ δ

τ

y′ydt

≥ V (ξ, τ) +

∫ δ

τ

y′ydt

≥ V (ξ, τ) (12)

from which the claim follows.

This lemma puts in evidence a property of the cost-to-go

function, based on which the upper bound

V (ξ, τ) ≤ V (ξ,+∞) = ξ′Pξ,∀ τ > 0 (13)

holds where, with a little abuse of notation, P = P ′ ∈ R
n×n

denotes the positive definite stabilizing state steady solution

(Ṗ (t) = 0,∀t ≥ 0) of the corresponding algebraic Riccati

equation derived from (9), that is

0 = A′P + PA + C ′C +

+ (PB + C ′D)(γ2I − D′D)−1(PB + C ′D)′(14)

It is important to remark that, in this case, the worst input

is generated by state feedback with the stationary gain L =
(γ2I −D′D)−1(PB +C ′D)′. All these results will be used

in the sequel to approach the H∞ control of switched linear

systems previously defined. However, for the moment, let

us restate a result of [7] related to the stability of switched

linear systems of the form

ẋ = Aσx (15)

where it is assumed that each matrix of the set

{A1, · · · , AN} is asymptotically stable and

σ ∈ DT = {σ(t) = i ∈ K, ∀t ∈ [tk, tk+1)} (16)

where tk and tk+1 are successive switching times satisfying

tk+1 − tk ≥ T for all k ∈ N and the index i ∈ K selected

at each instant of time tk ≥ 0 is arbitrary.

Lemma 2: Assume that, for some T ≥ 0, there exists

a collection of positive definite matrices {X1, · · · ,XN} of

compatible dimensions such that

A′
iXi + XiAi < 0, ∀ i ∈ K (17)

and

eA′

iT Xje
AiT − Xi < 0, ∀ i 6= j ∈ K (18)

The equilibrium solution x = 0 of the switched linear system

(15) is globally asymptotically stable for all σ ∈ DT .

This lemma, to be used afterwards provides a stability

condition with two important features. First, it can be handled

by any LMI solver whenever T ≥ 0 is fixed. Second, using

a line search procedure, there is no difficulty to calculate

the minimum value of T ≥ 0 preserving feasibility. Clearly,

since the stability condition provided by Lemma 2 is only

sufficient, the minimization of T gives an upper bound to

the true minimum dwell time T∗.
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On the other hand, Lemma 2 encompasses also the case

of quadratically stable systems. Indeed, if feasibility of (17)

and (18) hold for T → 0, then, in the limit, Xi → X , where

X > 0 satisfies A′
iX + XAi < 0, for each i ∈ K. This is a

well known necessary and sufficient condition for quadratic

stability and a sufficient condition for stability under arbitrary

switching signals. It is well known that the existence of a

common Lyapunov function is a very conservative condition

for stability under arbitrary switching.

Now, the question arises of assessing a guaranteed RMS

gain under an arbitrary switching law. This problem can be

easily handled via LMI. Indeed, consider again the switched

linear system

ẋ = Aσx + Bσw , x(0) = 0 (19)

y = Cσx + Dσw (20)

For simplicity we make the assumption that all linear systems

represented by (Ai, Bi, Ci,Di), i ∈ K, besides being stable,

are in minimal form. Let γ > 0 such that

γ2 > max
i∈K

‖Ci(sI − Ai)
−1Bi + Di‖

2
∞ := γ2

c

Theorem 1: Assume that there exists a positive definite

matrix P such that




A′
iP + PAi PBi C ′

i

B′
iP −γ2I D′

i

Ci Di −I



 < 0 , ∀ i ∈ K (21)

then, for each switching signal σ ∈ K, the equilibrium

solution x = 0 of the switched linear system (19)-(20) is

globally asymptotically stable and

sup
w∈L2,w 6=0

∫ ∞

0

(y′y − γ2w′w)dt < 0 (22)

Proof: First of all notice that (21) is equivalent to γ2I−
D′

iDi > 0 and

0 > A′
iP + PAi + C ′

iCi +

+ (PBi + C ′
iDi)(γ

2I − D′
iDi)

−1(PBi + C ′
iDi)

′

for all i ∈ K. In particular

A′
iP + PAi < 0 , ∀ i ∈ K

so that global asymptotic stability under arbitrary switching

is ensured. Also, the state of the system goes to zero for

each σ and each input square integrable disturbance w. This

means that, taking V (x) = x′Px, we have V (x(∞)) = 0.

Now, compute the derivative of V (x) along the trajectories

of (19) and (20). Letting

w∗ = (γ2I − D′
σDσ)−1(PσBσ + C ′

σDσ)′x

from the above matrix inequality it turns out that

V̇ (x) = x′(A′
σP + PAσ)x + 2x′PBσw

< −y′y + γ2w′w −

−(w − w∗)′(γ2I − D′
σDσ)(w − w∗)

< −y′y + γ2w′w

Integrating from 0 to +∞ and recalling that V (x(0)) =
V (x(∞)) = 0 it follows that

∫ ∞

0

(y′y − γ2w′w)dt < 0

for all σ ∈ K and for all w 6= 0 ∈ L2.

Consider now inequality (21). Taking λi, i ∈ K in the

unitary simplex, i.e. λi ≥ 0 and
∑

i∈K
λi = 1, one can

multiply (21) by λi, sum up and use the Schur Complement

to obtain

0 > A′
λP + PAλ + C ′

λCλ +

+ (PBλ + C ′
λDλ)(γ2I − D′

λDλ)−1(PBλ + C ′
λDλ)′

where
[

Aλ Bλ

Cλ Dλ

]

=
∑

i∈K

λi

[

Ai Bi

Ci Di

]

This means that the polytopic system defined by Aλ, Bλ,

Cλ, Dλ has H∞ norm less than γ for each choice of λ

in the unitary simplex. In conclusion, H∞ performances

of switched systems under arbitrary switching laws are

related to those of polytopic systems. This fact extends a

well know result for stability under arbitrary switching, for

which quadratic stability is only a conservative sufficient

condition. For a thorough discussion on nonconservative

solution via polyhedral Lyapunov function, the interested

reader is referred to the recent volume [1].

III. H∞ AND DWELL TIME SPECIFICATIONS

In this section we turn our attention to the switched linear

system

ẋ = Aσx + Bσw , x(0) = ξ (23)

y = Cσx + Dσw (24)

where the initial condition ξ ∈ R
n is arbitrary but fixed.

Again we make the assumption that all linear systems

(Ai, Bi, Ci,Di), i ∈ K are stable and in minimal form.

Moreover, we again assume that γ > 0 is such that γ > γc.

Hence, it is well known, see e.g. [5], that ‖Di‖ < γ and there

exist positive definite and stabilizing solutions Pi, i ∈ K of

the algebraic Riccati equations

0 = A′
iPi + PiAi + C ′

iCi +

+ (PiBi + C ′
iDi)(γ

2I − D′
iDi)

−1(PiBi + C ′
iDi)

′

In this section a suboptimal solution to the H∞ problem

(3) is provided. To this end, we need to introduce the

following matrices

Hi = Ai + BiLi (25)

Qi = (Ci + DiLi)
′(Ci + DiLi) − γ2L′

iLi (26)

Li = (γ2I − D′
iDi)

−1(PiBi + C ′
iDi)

′ (27)

and we left the reader to verify that the above algebraic

Riccati equations can be factorized as

H ′
iPi + PiHi + Qi = 0 (28)
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for all i ∈ K. As indicated before, noticing that the optimal

gain Li is determined from the unique stabilizing solution

to the algebraic Riccati equation (28), matrix Hi is Hurwitz

for each i ∈ K. However, since matrix Qi for each i ∈ K

is not positive definite, the stabilizing solution of the Riccati

equation is not a Lypunov matrix associated to the closed

loop system, a well known fact in H∞ theory.

The next lemma is of key importance since it gives an

upper bound to the H∞ cost appearing in the left hand side

of (3).

Lemma 3: For the switched linear system (23)-(24), the

following upper bound holds

J(σ) ≤

∞
∑

k=0

x(tk)′Pσ(tk)x(tk), ∀ σ ∈ DT (29)

where Pi for each i ∈ K is the stabilizing positive definite

solution to the algebraic Riccati equation (28).

Proof: Taking into account that jumps on σ ∈ DT occur

at time tk for k ≥ 0, we have

J(σ) = sup
w∈L2

∫ ∞

0

(y′y − γ2w′w)dt

≤

∞
∑

k=0

sup
w∈L2

∫ tk+1

tk

(y′y − γ2w′w)dt

≤

∞
∑

k=0

sup
w∈L2

∫ ∞

tk

(y′y − γ2w′w)dt

≤

∞
∑

k=0

x(tk)′Pσ(tk)x(tk) (30)

where the first inequality follows from an obvious property

of the sup{·} operator and that for all t ∈ [tk, tk+1] the

switching rule σ(tk) ∈ K remains unchanged. The second

inequality is a direct consequence of Lemma 1 and finally

the third inequality is provided by the cost-to-go function.

This proves the proposed lemma.

From the proof of Lemma 3 it is clear that two different

sources of conservatism have been introduced. One is due to

the fact that we have replaced the supremum with respect to

the input w ∈ L2 on the entire time interval [0,+∞) by the

supremum with respect to independent inputs on successive

time intervals [tk, tk+1) for all k ≥ 0. The second is an

immediate consequence of Lemma 1. Following the same

reasoning adopted in [7] the last source of conservativeness

can be significatively attenuated by using the time varying

solution of the Riccati equation in a finite time interval such

that any σ ∈ DT further satisfies the additional constraint

tk+1 − tk ≤ T for all k ≥ 0, for some T ≥ T ≥ 0 given.

The next theorem states the main result of this paper.

Theorem 2: Given T > 0. Assume that there exists a

collection of positive definite matrices {Z1, · · · , ZN} of

compatible dimensions such that

H ′
iZi + ZiHi + Qi < 0 , ∀ i ∈ K (31)

and

eH′

iT Zje
HiT − Zi + Pi < 0, ∀ i 6= j ∈ K (32)

The following hold:

a) The equilibrium solution x = 0 of the switched linear

system (23)-(24) is globally asymptotically stable.

b) Any trajectory of the switched linear system (23)-(24)

with zero initial condition satisfies

J(σ) < 0, ∀ σ ∈ DT (33)

Proof: For any σ ∈ DT , between two successive

switching times the worst input is applied. Consequently, the

closed loop switched system obeys the differential equation

ẋ = Hσx. From (31) and (28) it is seen that the matrix

Xi := Zi − Pi > 0 and satisfies

H ′
iXi + XiHi < 0 , ∀ i ∈ K (34)

On the other hand, using (32) we obtain

eH′

iT Xje
HiT − Xi < −eH′

iT Pje
HiT

< 0, ∀ i 6= j ∈ K (35)

Hence, part a) follows from Lemma 2. To prove part b),

we first assume that the initial condition x(0) = ξ ∈ R
n is

arbitrary. Since by assumption σ ∈ DT , consider that σ(t) =
i ∈ K for all t ∈ [tk, tk+1) where tk+1 = tk + Tk with

Tk ≥ T > 0 and that at t = tk+1 the switching policy jumps

to σ(t) = j ∈ K. Moreover, since (34) implies that for each

i ∈ K the inequality eH′

iτ (Zi − Pi)e
Hiτ ≤ (Zi − Pi) holds

for any τ ≥ 0, with v(x(t)) = x(t)′Zσ(t)x(t) inequalities

(35) yield

v(x(tk+1)) = x(tk+1)
′Zjx(tk+1)

< x(tk)′eH′

i(Tk−T )(Zi − Pi)e
Hi(Tk−T )x(tk)

< x(tk)′(Zi − Pi)x(tk)

< v(x(tk)) − x(tk)′Pσ(tk)x(tk) (36)

which summing up for all k ≥ 0 and remembering that the

switched linear system under consideration is asymptotically

stable, we obtain

∞
∑

k=0

x(tk)′Pσ(tk)x(tk) < v(x(0))

< ξ′Zσ(0)ξ

< max
i∈K

ξ′Ziξ (37)

applying Lemma 3 and making ξ → 0, the claim follows.

The above result deserves a few comments. First, as

apparent from (31) and (32), feasibility is always met with

for large values of T . Indeed, for T → ∞, the inequalities

are satisfied thanks to the fact that γ > γc and Zi −Pi > 0.

Moreover, for γ → ∞, it follows that

Qi → C ′
iCi

Hi → Ai

Pi →

∫ ∞

0

eA′

itC ′
iCie

Aitdt

so that conditions (31) and (32) of Theorem 2 boil down to

those in [7] for the H2 cost.

It is important to stress that the result of Theorem 2 is
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based on sufficient conditions and upper bounds determina-

tion. Hence, it may be conservative. However, to our best

knowledge, this is the first result available in the literature

to date capable to deal with switched linear systems of

arbitrary dimension n and composed by an arbitrary number

of subsystems N . In the next section the conservativeness

of the proposed result is evaluated by means of a simple

example.

IV. NUMERICAL ISSUES

In this section we put in evidence some relevant points

concerning the result of Theorem 2. First of all, as already

mentioned, for γ2 = +∞ it reduces to that of [7] for all

σ ∈ DT such that tk+1−tk ≤ T for all k ≥ 0 and T = +∞.

That is, no upper bound on the dwell time is provided by

the designer.

Let us now introduce the following function

T (γ) = min
T>0,Z1>0,··· ,ZN >0

{T : (31) − (32)} (38)

which for γ > 0 fixed, can be calculated as follows:

a) For each subsystem i ∈ K, the algebraic Riccati
equation

0 = A
′

iPi + PiAi + C
′

iCi +

+ (PiBi + C
′

iDi)(γ
2
I − D

′

iDi)
−1(PiBi + C

′

iDi)
′

is solved and matrices Hi, Qi are determined.

b) The optimal solution of the problem appearing in the

right hand side of (38) is solved by any LMI solver and

line search.

From (38), a relevant issue is the domain of the function

T (γ), that is the values of the parameter γ > 0 assuring that

T (γ) exists or, in other words the values of γ > 0 for which

the constraints of problem (38) are feasible. Fortunately, the

answer to this question is that feasibility of the constraints of

problem (38) is assured for all γ > 0 such that the algebraic

Riccati equations (28) admit positive definite stabilizing

solutions. Actually, in the affirmative case, considering T

big enough inequalities (31)-(32) are satisfied for Zi closed

enough to Pi for all i ∈ K. Hence, T (γ) defined in (38) can

be determined for all γ satisfying

γ > max
i∈K

‖Ci(sI − Ai)
−1Bi + Di‖∞ = γc (39)

It is important to keep in mind that problem (38) remains

solvable even when γ is set arbitrarily close to γc. On the

other hand, since for any fixed dwell time the switching rule

σ(t) = i ∈ K for all t ≥ 0 belongs to DT then feasibility

of inequality (3) also requires (39) to hold. This allows the

conclusion that the conditions provided by Theorem 2 are

not conservative in the present case.

Following Theorem 1, if there exists a positive definite

matrix P = P ′ > 0 satisfying the linear matrix inequalities

(21) then (3) holds for all T ≥ 0. That is, the H∞ condition

holds for all policies σ(t) ∈ K with possibly arbitrary fast

switching. In the affirmative case, (3) remains feasible for

all γ > 0 satisfying

γ > min
γ>0,P>0

{γ : (21)} := γd (40)

The fact that γd ≥ γc is an obvious consequence that in

the last case all possible switching rules are taken under

consideration which is not true for the former one since

the minimum dwell time T (γ) must be satisfied for all

switching policy belonging to DT (γ). Only a special (and

small) class of switched linear systems admits a common

positive definite solution to the inequalities (21). However,

even for systems of this class and γ > γd we can not obtain

T (γ) = 0 as a solution to the problem (38). This fact can be

verified with no difficulty since inequality (32) is infeasible

for T = 0. This is true because for T = 0 the switching

can be arbitrarily fast and each switching causes a positive

increment on H∞ cost, making it unbounded. This puts in

evidence the importance of considering switching policies

with minimum and maximum dwell time as done in [7], see

also [22]. This aspect goes beyond the scope of this paper

and so is left to future research.

A. Example

For illustration purpose of the theoretical results obtained

so far, let us consider the following example with N = 2
already analyzed in [7] for dwell time calculations. The

matrices of the switching system (1)-(2) are given by

[

A1 B1

C1 D1

]

=





0 1 0
−10 −1 1

0.8715 0 −0.8715



 (41)

[

A2 B2

C2 D2

]

=





0 1 0
−0.1 −0.5 1

0 0.3350 0.3350



 (42)

and it is important to mention that they are not open loop

quadratically stable, in which case the value of γd can not

be calculated. The output matrices have been determined in

such a way that each transfer function has an unitary H∞

norm, yielding γc = 1.

Moreover, with T > 0 fixed it is always possible to define

a time-switching control strategy σ ∈ DT such that Hσ(t)

is periodic. As a consequence, a necessary condition for the

feasibility of constraints (31) and (32) is

θ(T ) = max
q=1,··· ,n

∣

∣

∣

∣

∣

λq

(

N
∏

p=1

eEpT

)∣

∣

∣

∣

∣

< 1 (43)

where λq(·) denotes a generic eigenvalue of (·) and

{E1, · · · , EN} are matrices corresponding to any permu-

tation among those of the set {H1, · · · ,HN}. However,

since the conditions of Theorem 2 take into account non-

periodic policies as well, the necessary condition (43) for

the existence of a feasible solution to inequalities (31)-

(32), generally does not meet sufficiency. Hence a relevant

function to be determined, based on this necessary condition

is

Tp(γ) = max
T>0

{T : θ(T ) = 1} (44)
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Fig. 1. The functions T (γ) and Tp(γ)

Figure 1 shows in solid line the function T (γ), in dashdot

line the function Tp(γ) against γ ∈ (1, 2] and in dashed

line the value of T (∞) which is in accordance to the

fact that, for this particular example, the minimum dwell

time preserving asymptotical stability belongs to the interval

T∗ ∈ [2.71, 2.76], for more details see [7]. From this figure

it is also confirmed that Tp(γ) ≤ T (γ) for all γ > γc

and that both are decreasing functions. The consequence is

that the minimum dwell time is associated to γ = +∞.

This is an expected behavior of the function T (γ) since for

smaller values of γ, bounded bellow by γc, the switched

linear system must support richer switching rules without

loosing stability. This is compensated by the increasing of

the corresponding dwell time T (γ). Figure 1 also puts in

evidence the good concordance between the functions T (γ)
obtained from a sufficient condition assuring inequality (3)

and Tp(γ) obtained from a necessary condition assuring

the same inequality. Although mentioned before, this aspect

could be improved but, in our opinion, the results reported

in this simple example are precise enough to classify the

proposed method as a valid procedure for H∞ and dwell

time specifications.

V. CONCLUSION

In this paper we have proposed a new design procedure

for H∞ and dwell time specifications for switched linear

systems. It was possible to address the H∞ control problem

of this class of dynamic systems in a general framework

in order to design a minimum dwell time assuring a pre-

specified RMS gain.

Although some conservativeness have been introduced in

order to obtain solvable problems, the final design method

appears to provide good and precise control laws as observed

in an academical example. Of course, further research efforts

are needed towards its final validation. Special attention was

devoted to the numerical solvability of the design problems

by means of methods based on linear matrix inequalities and

line search.

Several issues raised are left to further research. In our

opinion, the most important one is related to the solution

of the time varying Riccati equation associated to the H∞

control problem with finite time horizon. This feature may

have a decisive impact on the determination of more precise

dwell time based policies assuring a pre-specified RMS gain

level. Taking into account the time varying nature of the

involved switching conditions, this point constitutes a real

theoretical challenge.
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