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Abstract— In this article we propose a novel approach for
networked control systems with unknown constant time delay.
A distributed controller is considered, under the assumption
that static controllers directly connected to the plant, can be
implemented. Stability and sensitivity to time delay goals can
be conjointly defined. The necessary and sufficient conditions
for the existence of a controller which guarantees delay-
independent stability and a frequency dependent maximum of
the norm of the sensitivity function with respect to time delay
are formulated as a feasibility problem with polynomial matrix
inequality constraints. In a numerical example we show that the
proposed formulation can give usefull solutions in non-trivial
cases.

I. INTRODUCTION

IN networked control systems (NCS) the plant and the

controller are spatially separated, and connected through

a communication network, see [1]–[3] for an overview. The

motivation for replacing classical point-to-point architec-

ture with NCS originates, among others, from the flexi-

ble reconfiguration NCS offer ; nodes can be added or

removed without additional wiring effort. The number of

active nodes sharing the communication line has an effect

on the communication time delay, the packet loss, and the

available communication bandwidth, parameters which are

therefore not exactly known during the controller design.

Advantageously, NCS offer additional degrees of freedom for

the controller design, i.e. some limited computational power

is available on the plant side, which can be used to implement

low order controllers.

In this article the unknown constant time delay challenge

is addressed. Time delay in the control loop deteriorates

the performance and may lead to instability. For a general

overview on constant time delay systems see [4], [5]. Con-

stant time delay methods are distinguished between delay-

dependent and delay-independent, according to whether a

bound on the time delay value is necessary for stability or

not. Delay-independent methods are usually based on the

small gain theorem, i.e. the gain of the open loop transfer

function must be smaller than one over all frequencies, which

is known to be rather conservative.

Here, a novel distributed controller approach is proposed

for delay-independent stability, under the assumption that

only static controllers can be implemented on the plant side.

A two degrees of freedom controller is considered. The first
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controller part is designed for zero time delay, while the

second guarantees delay-independent stability and low sensi-

tivity to time delay. Low sensitivity to time delay ensures that

the performance gracefully degrades with increasing time

delay value. Combined with good performance for zero time

delay, satisfactory performance is achieved in a wide range

of time delay values.

Delay-independent stability as well as a frequency de-

pendent maximum of the norm of the sensitivity function

with respect to time delay can be guaranteed by the H∞

norm of the loop, where the time delay and the ”extended

by the static controller plant” reside. The necessary and

sufficient conditions for the existence of a controller which

guarantees a maximum H∞ norm of the above mentioned

loop are formulated as a feasibility problem with polynomial

matrix constraints. In a numerical example it is shown that

the proposed approach can supply useful solutions in non-

trivial cases.

This work is a continuation of the results in [6], [7] and

was originally inspired by the scattering transformation [8],

[9]. The scattering transformation, is a method frequently

encountered in force feedback telepresence systems with ar-

bitrary constant time delay. Major contribution of this article

compared to the above is the formulation of the controller

design problem as a feasibility problem with polynomial

matrix constraints, as well as the consideration of a more

general transformation.

The remainder of this article is organized as follows.

Section II presents the necessary background and Section III

the problem formulation. The stability analysis is given

in Section IV and performance issues are discussed in

Section V. In Section VI a controller design strategy is

presented and in Section VII a numerical example in given.

Conclusions are presented in Section VIII.

II. PRELIMINARIES

Notation : The set of non-negative real numbers is de-

noted by R+, the Euclidean space of dimension m by Rm,

and the set of real and complex valued matrices with

dimensions n×m by Rn×m and Cn×m respectively. For

a matrix M the transposition and conjugate transposition

are denoted by MT and M∗. The notation M > 0 is used

to denote its positive definiteness (“≥”,“<”,“≤” for posi-

tive semi-definiteness, negative definiteness, negative semi-

definiteness respectively). With I, the unit matrix is denoted

and with diag[M1, ...,Mn], the block diagonal matrix with

diagonal elements M1 until Mn.

We consider linear-time-invariant (LTI), controllable and

observable systems given by
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Σ : ẋ = Ax + Bu, y = Cx + Du (1)

where x(t) ∈ Rn,u(t) ∈ Rm,y(t) ∈ Rp are the state, input

and output vectors respectively. With capital letters, the

Laplace transforms of the corresponding signals are de-

noted and with G(s) = C(sI −A)−1B + D the transfer func-

tion of (1), where s = σ + jω is the Laplace variable. The

norm of a transfer function at ω is denoted by |G( jω)| and

its H∞ norm, i.e. max |G( jω)|,∀ω , by ‖G‖∞. L2e denotes the

extended space of Lebesgue integrable functions. For conve-

nient notation, when non-ambiguous the time argument t and

the Laplace variable s are dropped.

A. Sensitivity function

The sensitivity function of a system (1) with transfer

function G, with respect to a parameter T , is given by

SG
T (s) =

dG(s)/G(s)

dT/T
=

T

G(s)

dG(s)

dT
.

Low |SG
T (s)| implies that a variation in T slightly affects G,

i.e. the input-output behaviour of the system.

B. The Kalman-Yakubovich-Popov lemma

Given a controllable and observable system (1) with

transfer function G(s) and the matrices Q = QT ∈Rm×m,S ∈
R

p×m,R = RT ∈ R
p×p, the following statements are equiva-

lent [10] :

1) For all ω ∈ R with det( jωI −A) 6= 0
[

I

G( jω)

]∗ [

Q S

ST R

][

I

G( jω)

]

≤ 0

2) There exists a symmetric matrix P = PT such that
[

AT P+ PA PB

BT P 0

]

+

[

0 I

C D

]T [

Q S

ST R

][

0 I

C D

]

≤ 0.

III. PROBLEM FORMULATION

The plant Σp is given by (1), with xp ∈ Rnp ,up ∈ Rm,yp ∈
Rp being its state, input and output vectors respectively,

see Fig. 1. On the plant side a static-output-feedback-input-

feedforward (SOFIF) controller is used. The local static con-

troller with input and output vectors [ur yp], [up vr] ∈ Rm+p

respectively, is described by an invertible transforma-

tion M ∈ R(m+p)×(m+p) between the plant input-output vec-

tor zp, and the right hand transmitted through the network

variables sr, i.e.

sr = Mzp, with zT
p = [up yp], sT

r = [ur vr]. (2)

The remote controller is decomposed in the same structure,

i.e. a static part described by the inverse transformation M−1

between the left hand transmitted through the network vari-

ables sl and the input-output vector zc, i.e.

zc = M−1sl, with zT
c = [yc uc] sT

l = [ul vl], (3)

and the dynamic controller Σc given by (1),

with xc ∈ R
nc ,e ∈ R

p,yc ∈ R
m being its state, input

and output vectors respectively, see Fig. 1. By e = w−uc

the control error is denoted, with w ∈ L2e being the desired

value and uc the lefthand output of M−1. In order to avoid

confusion, in the following we refer to the local and remote

SOFIF controllers simply as transformation M.

Fig. 1. Networked control system with local and remote control measures.

The communication network is modelled as a forward time

delay operator DT1
(controller to plant channel) and a back-

ward time delay operator DT2
(plant to controller channel)

with inputs ul(t),ur(t) and outputs vr(t),vl(t), see Fig. 1.

The relation between the left and right transmitted vari-

ables is given by ur(t) = ul(t −T1) and vl(t) = vr(t −T2).
The time delays T1,T2 ∈ R+ are constant but unknown.

For further reference, the following subsystems are de-

fined: Σr : ur(·) → vr(·), Σl : vl(·) → ul(·), ΣOL = Σr ◦Σl,

see also Fig. 1. Note that the index ()r denotes the right

subsystem, including the local controller and the plant, and

the index ()l the left, comprising the whole remote controller.

With the proposed controller structure, for

zero time delay, when sl = sr (2) (3) holds, we

have zc = M−1sl = M−1sr = M−1Mzp = zp. The left

static transformation M−1 cancels the right one M and the

standard feedback interconnection between the plant Σp and

the controller Σc is recovered. In consequence, for zero time

delay, Σc can be designed with typical controller design

techniques. Note, that the standard approach independently

of the time delay is recovered for M = I.

In the remainder of this article we consider that the

controller Σc is a-priori designed for zero time delay. We

furthermore assume, that the closed loop system is well

posed, i.e. for each input signal w ∈ L2e there exists a

unique solution for the signals e,uc,yc,ul,vl,ur,vr,up,yp that

causally depends on w. Clearly, considering the standard

approach, i.e. M = I, the closed loop system can be unstable,

as shown e.g. in [11] for passive subsystems. The main

result of this paper are the necessary and sufficient conditions

of the existence of a transformation M which guarantees

delay-independent stability as well as a frequency dependent

maximum for the norm of the sensitivity function of the

closed loop system with respect to time delay.

IV. STABILITY ANALYSIS

In the rest of this article we restrict to single-input-

single-output case, i.e. m = 1. The elements of the matrix

M ∈ R2×2 are denoted by m11 = a,m12 = b,m21 = c,m22 = d,

where we choose a,b,c,d such that detM 6= 0. The closed

loop transfer function G(s) from the reference input W

to the plant output Yp is computed by the transformation

equations (2),(3) to be,
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G(s) = G0(s)Gtr(s)e
−sT1 , where G0(s) =

Gp(s)Gc(s)

1 + Gp(s)Gc(s)
,

(4)
Gtr(s) =

1−GOL(s)

1−GOL(s)e−sT
, and GOL = GrGl (5)

with Gr =
Vr

Ur

=
c + dGp

a + bGp

, Gl =
Ul

Vl

=
b−aGc

d − cGc

. (6)

According to (4) the system can be seen as a series con-

nection of the standard closed loop system without time

delay G0, and the system Gtr which describes the influence

of the time delay and the transformation M in the closed

loop behaviour. Under this setup delay-independent stability

is equivalent to a small gain condition of the loop where the

time delay and the ”extended by the local static controller

plant” reside, see Fig. 1

Proposition 1: The closed loop system is delay-

independently stable if and only if GOL is stable and

|GOL| < 1, for all ω > 0. (7)

Proof: For delay independent stability the system must be

stable for T1 = T2 = ∞, i.e. when there is no connection

between plant and controller. This means that Gr,Gl and

consequently GOL must be stable. Now, consider the full

open loop transfer function, including the forward and back-

ward time delay T = T1 + T2, i.e. GOLe− jωT . For stability

|GOLe− jωT | < 1 must be satisfied, when arg{GOLe− jωT} ≤
−180o holds. For arbitrary T and ω 6= 0, e− jωT defines an

arbitrary phase shift. Thus, for all ω > 0, |GOL| < 1 must

hold.

The addition of the transformation M allows a larger class

of controllers for delay-independent stability compared to

the standard small gain theorem. This may lead to less

conservative controller design. In fact, even delay-dependent

approaches are outperformed as shown in [6] for a special

case of the proposed approach.

Remark 1: Instead of the necessary and sufficient stability

condition (7), the condition ‖GOL‖∞ < 1 can be used, as the

computation of ‖GOL‖∞ is amenable to many analysis tools,

e.g. linear matrix inequalities. Conservatism of the stability

condition ‖GOL‖∞ < 1 comes from the fact that |GOL| must

be less than one in the zero frequency as well.

Remark 2: Proposition 1 implies strict stability of Σr, Σl .

Σr is the combination of the plant Σp with the local SOFIF

controller. Thus, in case of an unstable plant, it must be pre-

stabilized by the static output-feedback, restricting the ap-

proach to static-output-feedback stabilizable plants. If that’s

not the case, a higher order dynamic transformation M should

be considered. This is subject for future research.

Remark 3: Special cases of the proposed setup are the

scattering transformation used in passive telepresence sys-

tems with time delay and packet loss in the communi-

cation network [11], as well as the more general trans-

formation introduced by the authors in [7] for input-

feedforward-output-feedback passive systems. In fact, in

all these cases, instead of the stability condition (7),

the more conservative one ‖Gr‖∞‖Gl‖∞ < 1 is considered

as ‖GOL‖∞ ≤ ‖Gr‖∞‖Gl‖∞. By resolving to this more conser-

vative condition many scattering based approaches for time-

varying delay [12] and packet loss [13] are straightforward to

apply here. However, here, we concentrate on the necessary

and sufficient conditions for constant time delay.

V. PERFORMANCE ANALYSIS

In the following, the sensitivity to time delay and the

steady state behaviour are discussed.

A. Sensitivity to time delay

According to the previous section in the remainder of this

section it is assumed that ‖GOL‖∞ < 1, i.e. the system is de-

lay independently stable. Here, it is shown that a lower bound

on ‖GOL‖∞ < 1 can further guarantee a frequency dependent

maximum of the norm of the sensitivity function with respect

to time delay. The sensitivity function of the closed loop

system with respect to the round trip time delay T = T1 + T2

is given by the infinite dimensional transfer function

SG∗

T =
T

G∗

dG∗

dT
= sTe−sT GOL

1−GOLe−sT
,

where G∗(s) = G0(s)Gtr(s) is the transfer function (4) with-

out the purely time shifting part e−sT1 . For SG∗

T the next

Theorem holds

Theorem 1: When ‖GOL‖∞ < 1 for each ω0 holds

|SG∗

T ( jω0)| ≤
ω0T‖GOL‖∞

1−‖GOL‖∞

. (8)

Proof : For the norm of the sensitivity function we have

|SG∗

T ( jω0)| =
ω0T |GOL|

|1−GOLe− jω0T |
≤

ω0T |GOL|

1−|GOL|
≤

ω0T‖GOL‖∞

1−‖GOL‖∞

where the dependence on jω0 is suppressed for convenience

of notation.

From the derivative of (8) with respect to ‖GOL‖∞ it is

straightforward to see that the right part of (8) is a strictly

increasing function of ‖GOL‖∞. Thus, instead of minimizing

the norm of the infinite dimensional function SG∗

T we can

minimize ‖GOL‖∞. Note that this conforms to the small

gain stability requirement ‖GOL‖∞ < 1. However, Theorem 1

guarantees a worst case bound for the sensitivity function and

not the actual value.

Insensitivity, i.e. SG∗

T = 0, can be achieved with a

proportional controller Gc(s) = b
a
, independently of the

plant. This follows from substituting Gc in (5) resulting

in GOL = 0 ⇒ SG∗

T = 0 ⇒ Gtr(s) = 1. The closed loop trans-

fer function (4) reduces to G(s) = G0(s)e
−sT1 with the time

shifting part having no effect on the transient response. This

is the limit case in which the controller is completely locally

implemented. Only the reference input w is transmitted

through the communication network, as implied by GOL = 0.

In general, a proportional controller does not meet the

performance requirements and a compromise should be made

between performance and sensitivity to time delay.

B. Steady state behaviour

The steady state behaviour of the proposed controller

structure is equivalent to the steady state behaviour of

the typical feedback interconnection of plant and controller

without time delay, as easily derivable by setting s = 0

in (4) and (5) resulting in G(0) = G0(0). In terms of

steady state error the proposed approach clearly outper-

forms the standard small gain approach which is the
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only alternative delay-independent method without local

control measures. The standard small gain approach re-

quires |Gc( jω)Gp( jω)| < 1,ω > 0, i.e. free integrators in

the open loop are not allowed. In the proposed approach

free integrators in plant or controller do not necessarily

appear as free integrators in GOL (5). As a result delay-

independent stability can still be guaranteed by Proposition 1

while the integrator guarantees steady state error zero. This

can be easily demonstrated using examples, e.g. Gp(s) =
1

s+1
,Gc(s) = s+1

s(s+10)
,a = 0.866,b = 0.5,c =−0.5, d = 0.866.

VI. CONTROLLER DESIGN

Based on the above, the problem of guaranteeing delay-

independent stability as well as a frequency dependent

maximum for the norm of the sensitivity function with

respect to time delay, can be expressed as a minimization

problem of ‖GOL‖∞. In the following it is shown that the

controller design problem of finding a transformation M so

that ‖GOL‖∞ is bounded by a specific value can be expressed

as a feasibility problem with polynomial matrix constraints.

In the following theorem the optimization parameters are

denoted by bold letters.

Theorem 2: ‖GOL‖∞ ≤ γex if and only if there

are γc,γp ∈ R+, l1, l2, l3, l4 ∈ R, and symmetric matrices

Pp,Pc,Pex so that for i ∈ {ex, p,c},

Fi =

[

AT
i Pi + PiAi PiBi

BT
i Pi 0

]

+

[

0 I

Ci Di

]T

Qi

[

0 I

Ci Di

]

≤ 0,

(9)

Pp > 0, Pc > 0, l1l4 = l2l3, l1 6= l4,

with Qi for i ∈ {ex, p,c} given by Qi = Ti
T diag{1,−γi

2}Ti,

Tex =

[

l1 l2 −l3 −l4
l4 l3 −l2 −l1

]

, (10)

Tp =

[

0 l3
l3 l1

]

, Tc =

[

0 l4
l4 −l1

]

,

and Aex,Bex,Cex,Dex representing the extended system of the

parallel connection of Σp, Σc and Σpc = Σp ◦Σc, i.e.

Aex = diag[Ap,Ac,Apc] BT
ex = [Bp Bc Bpc]

Cex = diag[Cp Cc Cpc] DT
ex = [Dp Dc Dcp],

(11)

and
Apc =

[

Ap 0

BcCp Ac

]

Bpc =

[

Bp

BcDp

]

Cpc = [DcCp Cc] Dpc = DcDp.
For a feasible solution l1, f , l2, f , l3, f , l4, f , d can be freely

chosen. The rest of the elements of M are given by a =
l4, f /d, b = l2, f /d, c = l1, f d/l2, f .

Proof : See the appendix.

The boundness of ‖GOL‖∞ by γex is equivalent to strict

stability of Σr,Σl , and |GOL( jω)| ≤ γex, ∀ω . It is shown in

the proof that a bound of |GOL( jω)|, ∀ω can be concluded by

the values on the jω axis of the extended system Σex (11).

The KYP lemma is then used in order to reformulate the

condition for the values of |Gex( jω)| to a finite dimensional

matrix inequality, i.e. Fex ≤ 0 (9), based on the state space

representation of Σex (11). Inequalities Fp ≤ 0, Fc ≤ 0 (9),

imply finite gain L2 stability Σr and Σl with arbitrary large

gains γp,γc ∈ R+ respectively, which is equivalent to strict

stability.

Remark 4: The optimization parameters γp,γc, i.e. the ar-

bitrary large L2 gains of Σr,Σl , are in real problems bounded

by the computational capabilities of the solvers. Therefore,

they can be a-priori set to a large constant value, reducing

the constraints Fp,Fc ≤ 0 (9) from polynomial to quadratic.

Remark 5: Inequalities Fp,Fc ≤ 0 (9), which guarantee

strict stability of Σr,Σl , can be replaced by a number of

quadratic inequalities. The stability area for the plant feed-

back gain in Σr can be a-priori defined based on classical

methods, like the Nyquist plot or the root locus. It is shown

in the proof that the plant feedback gain in Σr is −l1/l3. In

consequence, the constraint for strict stability of Σr can be

expressed as a number of inequalities of the form − l1
l3

< ki or

− l1
l3

> ki, where ki are the limits of the pre-defined admissible

stability areas. Equivalently, the stability constraint for Σl

can be expressed by a number of quadratic inequalities of

the form l3/l4 < k j or l3/l4 > k j.

Remark 6: Any non-convex polynomial constraint can

be reformulated into a bilinear one with increased dimen-

sion [14]. Bilinear problems are in general hard to solve,

and it is known that even the BMI feasibility problem is NP-

hard [15]. Nevertheless, as shown in the numerical example,

the available solvers can give useful solutions in non-trivial

cases based on the proposed formulation.

Remark 7: For controller design methods that can be

implemented as problems with bilinear constraints, e.g. LQG

control, the co-design of Σc and the transformation M is

straightforward. The co-design is achieved by considering

the controller parameters Ac,Bc,Cc,Dc as optimization pa-

rameters and adding the additional performance constraints.

Nevertheless, by this way, well established linearization

techniques, which lead to an efficient solution for Σc cannot

be applied.

VII. NUMERICAL EXAMPLE

The considered system is the NN8 example, extracted from

the publicly available benchmark collection COMPleib [16],

regarding only its first input and output, resulting thus in a

SISO system. Its state space representation is given by

Ap =





−0.25 0.1 1

−0.05 0 0

0 0 −1



 , Bp =





0

0

1



 ,

Cp = [1 0 0], Dp = 0.
The exact design procedure is described in the next section.

A. Design of controller Σc.

As controller Σc a Linear Quadratic Regulator is consid-

ered minimizing the cost function

J =

∞
∫

0

y2(τ)+ 0.01u2(τ)dτ, (12)

with a full state observer. The poles of the observer are

placed in the positions [-2 -3 -4], resulting in the controller
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Fig. 2. Bode diagram of the sensitivity function with respect to time delay,
of the systems with and without the transformation M, for T = 300ms.

Fig. 3. Impulse response of the systems with and without the transforma-
tion M, for different values of the time delay.

Ac =





−8 0.1 1

−240 0 0

−3.122 −0.339 −4.387



 ,Bc =





−7.8
−239.95

6



 ,

Cc = [−9.122−0.339−3.387], Dc = 0.
(13)

B. Design of transformation M

For the design of the transformation M, (9) is solved

using the YALMIP Matlab toolbox [17] with the local solver

PENBMI [18]. The gains γp,γc are kept constant to 106. The

constraint l1 6= l4, which cannot be handled by the solver, is

substituted by l1 − l4 ≥ 0.2, in order to further avoid solutions

close to singularity. The optimization problem is solved

iteratively for decreasing values of γex. A feasible solution

was always obtained for all γex ≥ 0.58, independently of the

initial values of l1, l2, l3, l4. The initial values only slightly

affected the CPU optimization time, which for γex = 0.58

fluctuated from 3.6s to 4s, in an AMD Athlon 64 Dual

Core Processor 3800+ CPU running under Debian Linux.

The free parameter was fixed to d = 1. The elements of the

best obtained transformation are a = 22.51,b = 151.083,c =
−0.017,d = 1 and the H∞ norm ‖GOL‖∞ = 0.5767.

C. Simulations

In the following, a comparison is presented between the

systems with and without the transformation.

1) Sensitivity to time delay: The sensitivity function with

respect to round trip time delay of the two systems, for round

trip time delay T = 300ms, is shown in Fig. 2. The sensitivity

is plotted until the maximum cutoff frequency of the two

closed loop systems. The sensitivity of the system with the

transformation is less than the one without the transformation

in almost all the frequencies of interest.

2) Impulse response: The impulse response to the plant

input, is shown in Fig. 3 for T =0,150,300,600ms. For zero

time delay both systems give the same response. The system

with the transformation remains stable in all cases, and its

response is slightly affected by the time delay value. On the

contrary, the system without the transformation is sensitive

to time delay, and becomes unstable at T =288ms.

VIII. CONCLUSIONS

In this article a novel control approach is proposed with

a two degrees of freedom controller for delay-independent

stability and low sensitivity to time delay. The first controller

part guarantees specific performance measures for zero time

delay, while the second part deals with delay-independent

stability and low sensitivity to time delay. The necessary and

sufficient conditions of the existence of a controller which

guarantees delay-independent stability and a frequency de-

pendent maximum of the norm of the sensitivity function

with respect to time delay are formulated as a feasibility

problem with polynomial matrix constraints. In simulations

it is shown that the proposed formulation can give usefull

solutions in non-trivial cases. In a numerical example the

proposed approach significantly reduces the sensitivity to

time delay. Future research is to approach multiple-input-

multiple-output systems, and time-varying delay.

APPENDIX

Firstly, we prove an alternative formulation of the

static output feedback stabilizability problem for systems

with D 6= 0. This is necessary as we cannot consider without

loss of generality Dp = Dc = 0 since the right and the left

transformations M and M−1 are not independent systems.

Lemma 1: The closed loop system of a system Σ (1) with

a static output feedback gain matrix K, i.e.

u = w+ Ky (14)

is strictly stable if and only if there is a symmetric positive

definite matrix P = PT > 0 and a γ ∈ R+ so that

F =

[

AT P+ PA PB

BT P 0

]

+

[

0 I

C D

]T

Q

[

0 I

C D

]

≤ 0

(15)

with Q = T T

[

I 0

0 −γ2I

]

T, T =

[

0 I

I −K

]

. (16)

Proof : Strict stability of LTI systems is equivalent to

finite gain L2 stability. Finite gain L2 stability is equivalent

to the existence of a quadratic positive definite function

V = xT Px : Rn → R, i.e. a symmetric positive definite ma-

trix P = PT > 0 so that for each w ∈ Rm the following holds

V̇ + yT y ≤ γ2wT w ⇒ V̇ +

[

y

w

]T [

I

0 −γ2I

][

y

w

]

≤ 0.

(18)
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







I

Gp

Gc

GpGc









∗







c2b2 −a2d2γ2 b2cd −abd2γ2 −abc2 + a2cdγ2 −abcd + abcdγ2

∗ b2d2 −b2d2γ2 −abcd + abcdγ2 −abd2 + b2cdγ2

∗ ∗ a2c2 −a2c2γ2 a2cd−abc2γ2

∗ ∗ ∗ a2d2 −b2c2γ2

















I

Gp

Gc

GpGc









≤ 0, ∀ω . (17)

Equation (14) can be rewritten as
[

y

w

]

=

[

0 I

I −K

][

u

y

]

. (19)

Between the states of the plant x and its input-output vector

we have
[

u

y

]

=

[

0 I

C D

][

x

u

]

, (20)

and further

V̇ = 2xT P[Ax + Bu] =

[

x

u

][

AT P + PA PB

BT P 0

][

x

u

]

.

(21)
Substituting (19)-(21) in (18) it results in

[

x

u

]T

F

[

x

u

]

≤ 0. (22)

Controllability implies that each state x can be reached.

Further, since the system is assumed to be well-posed, i.e.

the matrix [I −KD] is invertible, for the input signal u we

get u = [I −KD]−1w+[I−KD]−1KCx. Since w can be freely

chosen, so can u. Thus, necessary and sufficient condition

for (22) is that the matrix F is negative semi-definite.

We are now able to state the proof of Theorem 2

Proof of Theorem 2: The fact that ‖GOL‖∞ is bounded by γex

is equivalent to the strict stability of Σr,Σl and

GOL( jω)∗GOL( jω) ≤ γ2
ex, ∀ω . (23)

By substituting (6) in (23), and separating the terms with

respect to Gp,Gc,G
∗
p,G

∗
c and their products, (23) can be

rewritten as in (17). By denoting the extended system (11)

by Gex = [Gp Gc GpGc]
T , after some mathematical manipu-

lation (17) becomes
[

I

Gex( jω)

]∗

T T
ex

[

1 0

0 −γ2
ex

]

Tex

[

I

Gex( jω)

]

≤ 0, ∀ω ,

(24)
with Tex =

[

bc bd −ac −ad

ad bd −ac −bc

]

.

Setting bc = l1, bd = l2, ac = l3, ad = l4 (25)

under the constraint

l1

l2
=

l3

l4
=

c

d
⇒ l1l4 = l2l3, (26)

the matrix Tex is given by (10). Using the KYP lemma, (24)

is equivalent to the existence of a symmetric matrix Pex = PT
ex

so that Fex ≤ 0 (9).

The constraints Fp,Fc ≤ 0 (9) imply the strict stability

of the Σr,Σl . From (2) and (25) it is straightforward to

see that up = 1/aur −b/ayp, i.e. the feedback gain of Σp

in subsystem Σr is −b/a = −l1/l3. Based on Lemma 1

strict stability of Σr is equivalent to the existence of a

symmetric positive definite matrix P = PT > 0 and a γ ∈ R+

so that F ≤ 0 (15) with T given by

T =

[

0 1

1 l1/l3

]

. (27)

By multiplying F (15) with l2
3 , Fp ≤ 0 (9) is obtained.

Following the same procedure for Σl and considering the

negative feedback sign, Fc ≤ 0 (9) is obtained. The last

constraint l1 6= l4 ⇒ ad−bc 6= 0 implies the invertibility of

the mapping M.

For each l1, l2, l3, l4 under the restriction (26), one of the

parameters a,b,c,d can be freely chosen. We consider here

d as a free parameter, the other cases are equivalent. The rest

of the parameters are given by a = l4
d
, b = l2

d
, c = d

l1
l2

.
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