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Abstract— This paper presents a within-stride feedback con-
troller that achieves an exponentially stable, periodic, and fast
walking gait for a 3D bipedal robot consisting of a torso,
revolute knees, and passive (unactuated) point feet. The walking
surface is assumed to be rigid and flat; the contact between
the robot and the walking surface is assumed to inhibit yaw
rotation. The studied robot has 8 DOF in the single support
phase and 6 actuators. In addition to the reduced number
of actuators, the interest of studying robots with point feet
is that the feedback control solution must explicitly account
for the robot’s natural dynamics in order to achieve balance
while walking. We use an extension of the method of virtual
constraints and hybrid zero dynamics (HZD), a very successful
method for planar bipeds, in order to determine a periodic orbit
and an autonomous feedback controller that realizes the orbit,
for a 3D (spatial) bipedal walking robot. The effect of output
selection on the zero dynamics is highlighted and a pertinent
choice of outputs is proposed, leading to stabilization without
the use of a supplemental event-based controller.

I. INTRODUCTION

The primary objective of this paper is to demonstrate

that the methods presented in [27] for underactuated planar

bipedal robots (i.e., bipeds constrained to the sagittal plane

of motion) have a natural extension to underactuated spatial

(or 3D) bipedal robots. In particular, the work presented

here addresses the frontal plane dynamics (i.e., side-to-side

motion) in addition to the sagittal plane dynamics treated

in [27]. We study a simple 5-link robot model with an

unactuated point contact at the leg ends and seek a time-

invariant feedback controller that creates an exponentially

stable, periodic walking motion.

Our control design is based on the method of virtual con-

straints and hybrid zero dynamics (HZD), which generalizes

the fundamental work of Byrnes and Isidori [11] to the hybrid

setting [26]. In our first attempt at applying these methods

to a simple 3-link spatial model, we selected the actuated

joints as the outputs for the purpose of designing the virtual

constraints [19]. Optimization of the free parameters in the

virtual constraints was used to compute a periodic orbit, but

unlike the planar designs in [27], the orbit was unstable

under the nominal continuous-time controller used to zero

the outputs. An event-based controller was then designed,

which, in conjunction with the continuous-time controller,

yielded exponential stability of the periodic orbit.

In the current paper, we provide a choice of outputs for

feedback design that results in exponential stability of a

periodic orbit without recourse to event-based control. The

advantages of this include a simpler overall feedback design

and an immediate reaction to perturbations instead of waiting

for the next impact. In a paper to appear in IEEE-TRO, we

compare both controllers [3] (a pre-print is available at [8]).
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Fig. 1. A five-link 3D biped with point feet in support on leg-1. There
is no yaw motion about the stance leg end and the degrees of freedom at
the leg end specified by q1 and q2 are unactuated. The remaining joints
are actuated. In single support, the robot has 8 DOF and 6 independent
actuators. For simplicity, each link is modeled by a point mass at its center.

II. RELATED WORK

The work most closely related to ours is [6], where the

control of a 3D walker was decomposed into the study of

its motion in the sagittal plane and the frontal plane; see

also [14] for a related decomposition result on control in the

frontal plane. The method of virtual constraints was applied

in [6] to regulate the sagittal plane motion of the biped,

while an inverted pendulum approximation of the dynamics

was used to design a controller for the frontal plane. An

event-based controller was then introduced to synchronize

the phasing of the independently designed sagittal and frontal

plane controllers. The overall closed-loop system was shown

to be stable through simulation and subsequently through

experimentation. In our approach, we do not decompose the

model into sagittal and frontal plane motions, and coupling

of the sagittal and frontal plane dynamics is introduced into

the controller from the very beginning.

A very interesting study of the feedback control of un-

deractuated spatial robots has been given in [20], where a

controller for a five-link 3D robot with unactuated point feet

has been designed on the basis of linearizing the robot’s

dynamic model along a periodic orbit. So that the controller

would be time-invariant, the orbit was parameterized with a

configuration variable that is strictly monotonic throughout

a normal gait, as in [9], [18], [2], [26], before linearization

was applied. The (within-stride) control law is designed on

the basis of a discrete-time approximation of the linearized
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model, which makes stability of the closed-loop system

difficult to assess.

Other important work includes [5] and references therein,

where the analysis of passive spatial bipeds is presented.

The emphasis in their work is on energy efficiency and

underactuation; the role of feedback control in achieving a

wide range of behaviors is not emphasized. On the other

hand, the work in [22], [1] seeks energy efficiency and a large

basin of attraction under the assumption of full actuation;

in particular, full actuation between the leg and ground is

assumed (pitch, roll and yaw), as opposed to the unactuated

assumption made here. Very careful stability analysis of the

closed-loop system is provided through geometric (Routhian)

reduction. This work is taken one step further in [7], where,

starting from a 2D (sagittal plane) passive limit cycle, the

authors use geometric reduction to first achieve control of the

frontal plane motion and then a second stage of geometric

reduction to achieve steering within the walking surface.

To the best of our knowledge, other work on the control

of spatial robots either assumes full actuation or does not

provide significant analysis of the closed-loop system. There

are many control strategies based on the zero moment point

ZMP [24], with one of the more famous users being the

robot ASIMO [23]. In this approach, a desired trajectory

of the ZMP is defined and successive inner control loops

are closed on the basis of the ZMP. In the work of [13],

predictive control is performed on the basis of the position

of the center of mass and a simplified model of the robot in

order to achieve a desired ZMP trajectory. Recently, on-line

adjustment of the ZMP has been added [12]; this control

method is implemented on the robot HRP2. The control of

the ZMP ensures that the supporting foot will not rotate about

its extremities, but this does not ensure stability in the sense

of convergence toward a periodic motion, as proved in [4].

III. MODEL

The model presented here was chosen to be complex

enough to capture interesting features of gait control that

do not occur in planar robots, and simple enough that the

presentation of the ideas will remain transparent. It is our

expectation that the ideas presented here apply to a wider

class of bipeds, but proving such a conjecture is not an

objective of this paper.

A. Description of the robot and the walking gait

The 3D bipedal robot discussed in this work is depicted

in Fig. 1. It consists of five links: a torso and two legs

with revolute one DOF knees that are independently actuated

and terminated with “point-feet”. Each hip consists of a

revolute joint with two degrees of freedom and each degree

of freedom (DOF) is independently actuated. The width of

the hips is nonzero. The stance leg is assumed to act as

a passive pivot in the sagittal and frontal planes, with no

rotation about the z-axis (i.e., no yaw motion), so the leg end

is modeled as a point contact with two DOF and no actuation.

This model corresponds to the limiting case of robot with feet

when the size of the feet decreases to zero. The unactuated

DOF at the leg ends correspond to the classical DOF of an

ankle. The DOF corresponding to the swing-leg ankle are

not modelled. In total, the biped in the single support phase

has eight DOF, and there are two degrees of underactuation.

The following assumptions are made in this study:

• Each link is rigid and has mass.

• Walking consists of two alternating phases of motion:

single support and double support.

• The double support phase is instantaneous and occurs

when the swing leg impacts the ground.

• At impact, the swing leg neither slips nor rebounds.

• The swing and stance legs exchange their roles at each

impact.

• The gait is symmetric in steady state.

• Walking takes place on a flat surface.

A more detailed list of hypotheses is given in [27, Chap. 3]

for planar robots, and with the obvious modifications for

spatial robots, those hypotheses apply equally well here.

Since the gait is composed primarily of single support

phases, the variables used to describe the robot are adapted

to this phase of motion. The robot is represented as a tree

structure. The stance foot, which is fixed on the ground, is

the base of the tree structure. A set of generalized coordinates

q = [q1, . . . , q8]
′ is shown in Fig. 1. Absolute angles (q1, q2)

are roll and pitch angles of the stance leg, respectively.

Angles q3 and q8 are the relative joint angles of the stance-leg

knee and swing-leg knee, respectively. Angles q4 and q5 are

the joint angles of the stance leg relative to the torso along

the y-axis and the x-axis, respectively, and angles q6 and

q7 are the joint angles of the swing leg relative to the torso

along the x-axis and the y-axis, respectively. The coordinates

(q1, q2) are unactuated (due to the passive contact), while

(q3, . . . , q8) are independently actuated.

The position of the robot with respect to an inertial frame

is defined by appending four variables to q, resulting in

qe = [q′, xst, yst, zst, q0,st]
′, where xst, yst and zst are

the Cartesian coordinates of the stance foot1, and q0,st

defines the rotation along the z-axis of the stance leg. These

variables are constant during each single support phase, but

are discontinuous when the supporting leg changes (i.e., at

each impact).

We have chosen to define the generalized coordinates

with respect to the contact point of the current stance foot.

When leg-2 is the supporting leg, the variables are defined

as shown in Fig. 2 and the same notation is employed as

when the supporting leg is leg-1, viz. Fig. 1. Hence, at

each leg exchange (i.e., impact), the variables qe undergo

a jump due to the change in location of the reference frame.

During each single support phase, only one set of coordinates

is used, depending on which leg is the supporting leg. In

double support, either set of coordinates may be used. The

transformation from one set of coordinates to the other is

nonlinear [20], but it can be computed in closed form by

standard means.

1The leg ends are referred to as feet or point feet.
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Fig. 2. A five-link 3D point-feet biped in support on leg-2. The degrees
of freedom at the leg end (foot) are not actuated.

The legs exchange roles from one step to the next. If T is

the duration of a step, on a periodic walking cycle, due to

the choice of coordinates in Figs. 1 and 2, we must have

q1(t + T ) = −q1(t) q2(t + T ) = q2(t)
q3(t + T ) = q3(t) q4(t + T ) = q4(t)
q5(t + T ) = −q5(t) q6(t + T ) = −q6(t)
q7(t + T ) = q7(t) q8(t + T ) = q8(t)
and q0,st(t + T ) = −q0,st(t).

(1)

The last condition yields a motion along the x-axis.

B. Dynamic model

The dynamic models for single support and impact (i.e.,

double support) are derived here assuming support on leg 1.

The models for support on leg 2 can be written in a similar

way. The Euler-Lagrange equations yield the dynamic model

for the robot in the single support phase as

D(q)q̈ + H(q, q̇) = B u =

[
02×6

I6×6

]

u, (2)

where D(q) is the positive-definite (8 × 8) mass-inertia

matrix, H(q, q̇) is the (8 × 1) vector of Coriolis and gravity

terms, B is an (8 × 6) full-rank, constant matrix indicating

whether a joint is actuated or not, and u is the (6 × 1) vector

of input torques. Following standard practice in the literature,

the double support phase is assumed to be instantaneous.

However, it actually consists of two distinct subphases: the

impact, during which a rigid impact takes place between

the swing foot and the ground, and coordinate relabeling.

During the impact, the biped’s configuration variables do

not change, but the generalized velocities undergo a jump.

The derivation of the impact model in double support phase

requires the use of the vector qe. Conservation of momentum

during the impact process and the swing leg neither slipping

nor rebounding at impact yield

[
q̇+
e

Fsw

]

=

[
De −E′

sw

Esw 04×4

]
−1 [

Deq̇
−

e

04×1

]

, (3)

where q̇−e and q̇+
e are the extended velocities before and

after the impact, respectively, Fsw is the reaction force at

zsw(q) = 0 & xsw(q) > 0

ẋ1 = f1(x1) + g1(x1)u1

x
+

2
= ∆1(x

−

1
)

zsw(q) = 0 & xsw(q) > 0

ẋ2 = f2(x2) + g2(x2)u2

x
+

1
= ∆2(x

−

2
)

Fig. 3. Bipedal robot’s dynamic model as a hybrid system.

the contact point, De is the extended mass-inertia matrix,

and Esw = ∂
∂qe

[xsw, ysw, zsw, q0,sw]
′

is the Jacobian matrix

for the position of the swing foot and its orientation in the

x− y-plane. Analogously to [9], the overall impact model is

written as

q+ = ∆q(q
−) (4)

q̇+ = ∆q̇(q
−, q̇−), (5)

and is obtained from solving (3) and projecting down to the

generalized coordinates for support on leg 2.

Define state variables as xj =

[
q
q̇

]

, and let x+
j =

[
q+

q̇+

]

and x−

j =

[
q−

q̇−

]

, where the subscript j denotes the

stance leg number. Then a complete walking motion of the

robot can be expressed as a nonlinear system with impulse

effects, as shown in Fig. 3 and written as

Σ :







ẋ1 = f1(x1) + g1(x1)u1 x−

1 /∈ S1

x+
2 = ∆1(x

−

1 ) x−

1 ∈ S1

ẋ2 = f2(x2) + g2(x2)u2 x−

2 /∈ S2

x+
1 = ∆2(x

−

2 ) x−

2 ∈ S2

, (6)

where S1 = {(q, q̇)|zsw(q) = 0, xsw(q) > 0} is the

switching surface,

f1(x) =

[
q̇

−D−1(q)H(q, q̇)

]

, g1(x) =

[
0

D−1(q)B

]

,

and

x+
2 = ∆1(x

−

1 ) =

[
∆q(q

−)
∆q̇(q

−, q̇−)

]

.

When leg-2 is the support leg, the same derivation produces

S2, f2, g2 and ∆2.

IV. VIRTUAL CONSTRAINTS

The method of virtual constraints, which has proven

very successful in designing feedback controllers for stable

walking in planar bipeds [9], [18], [2], [26], will be applied

to the 3D biped of the previous section. In this method, one

holonomic constraint per actuator is proposed in the form

of an output that, when zeroed by a feedback controller, en-

forces the constraint. The most direct form of the constraint

is [27, Chap. 6.4]

y = h(q) = qa − hd(θ), (7)

where qa = [q3, q4, q5, q6, q7, q8]
′ is the 6-vector of actuated

coordinates, θ = θ(q) is a quantity that is strictly monotonic
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(i.e., strictly increasing or decreasing) along a typical walk-

ing gait, and hd(θ) is the desired evolution of the actuated

variables as a function of θ. Roughly speaking, θ is used

to replace time in parameterizing a periodic motion of the

biped. In a forward walking motion, the x-coordinate of the

hip is monotonically increasing. Hence, if the virtual stance

leg is defined by the line that connects the stance foot to

the stance hip, the the angle of this leg in the sagittal plane

is monotonic. When the shin and the thigh have the same

length, the angle of the virtual leg in the sagittal plane can

be selected as

θ = −q2 − q3/2 (8)

(the minus sign is used to make θ strictly increasing over a

step).

The outputs (7) are easily checked to have uniform relative

degree 2 (i.e., relative degree two and an invertible decou-

pling matrix). The torque u∗ required to remain on the virtual

constraint corresponding to qa = hd(θ) can be computed as2

u∗ = (
∂h(q)

∂q
D−1B)−1

(
∂2hd(θ)

∂θ2
θ̇2(t) +

∂h(q)

∂q
D−1H(q, q̇)

)

(9)

This leads to an input-output linearizing controller to asymp-

totically enforce the constraints [15] [27, Chap. 5],

u = u∗ −

(
∂h

∂q
D−1B

)
−1

(
Kp

ε2
y +

Kd

ε
ẏ), (10)

which results in

ÿ +
Kd

ε
ẏ +

Kp

ε2
y = 0. (11)

In other words, determining the constraints is equivalent to

the design of a feedback controller in the single support

phase, up to the choice of the gains Kp > 0, Kd > 0, and

ǫ > 0 such that (11) is exponentially stable and converges

sufficiently rapidly with respect to the duration of a single

support phase; see [27, Chap. 4].

The swing phase zero dynamics is easily computed and

has dimension 4 (the robot’s model has dimension 16 (8

DOF) and the 6 outputs (7) have uniform relative degree

2). Let qu = [q1, θ]
′ denote the unactuated joints and qa =

[q3, q4, q5, q6, q7, q8]
′ denote the controlled joints, which are

selected here to be the actuated joints. A linear relation exists

between q, qu and qa,

q = T

[
qu

qa

]

, (12)

where T is an (8 × 8) invertible matrix. Then (2) can be

rewritten as

T ′D(q)T

[
q̈u

q̈a

]

+ T ′H(q, q̇) = T ′B u =

[
02×6

I6×6

]

u,

(13)

The first two lines of the RHS of this equation are zero,

yielding

D11(q)q̈u + D12(q)q̈a + H1(q, q̇) = 02×1, (14)

2As shown in [21], [27, pp. 60], an expression for u∗ can be obtained
without inversion of the (8 × 8) mass-inertia matrix D.

where D11 is the (2×2) upper left sub-matrix of T ′D(q)T ,

D12 is the (2 × 6) upper right sub-matrix of T ′D(q)T
and H1(q, q̇) consists of the first two lines of T ′H(q, q̇).
Substituting the expressions of qa, q̇a and q̈a corresponding

to the virtual constraints, the dynamic model of the single

support phase is now reduced to a low-dimensional, 2 DOF,

autonomous system,

D11(qu)

[
q̈1

θ̈

]

+ D12(qu)
(

∂ hd

∂ θ
θ̈ + ∂2hd

∂ θ2 θ̇2
)

+H1(qu, q̇u) = 0,
(15)

namely the swing phase zero dynamics [10], [27, Chap. 5].

One can clearly see that the dynamic properties of the

swing phase zero dynamics depend on the particular choice

of the virtual constraint 0 = y = qa − hd(θ). How to

determine a choice for hd(θ) that results in a periodic

walking motion is summarized in the next section.

V. DESIGN FOR A SYMMETRIC PERIODIC GAIT

The objective of this section is to design virtual constraints

qa = hd(θ) that correspond to a periodic motion of the

robot. The gait considered is composed of single support

phases separated by impacts as described in Fig. 3. The

legs exchange roles from one step to the next, and due to

symmetry, the study of a gait can be limited to a single step

and the use of the symmetry relations in (1).

A. Virtual constraints and Bezier polynomials

The problem of designing the virtual constraints will be

transformed into a parameter optimization problem as in [27,

Chap. 6]. Here, our main goal is to obtain a periodic motion;

optimality is not so crucial. To simplify the optimization

process, the number of variables used in the optimization

problem is first reduced. This is accomplished by exploit-

ing boundary conditions that arise from periodicity. Bezier

polynomials are parametric functions that allow one to easily

take into account boundary conditions on the configuration

and velocity at the beginning and end of a step.

The initial and final configuration and velocity of the

robot for a single support phase are important for defining

the passage between the single and double support phases.

Because the terminal configuration of the robot is chosen

to be the instant before the double support configuration,

both legs are in contact with the ground and therefore

only seven independent variables are needed to describe this

configuration (a closed kinematic chain). These variables

parameterize the final configuration of the first step denoted

qf . The eight joint velocities q̇f are independent and are also

added.

Knowing the final state of the single support phase, the

impact model (4) and (5) determines the initial state of the

ensuing single support phase. The symmetry condition (1)

then gives the initial state of the first step: qi, q̇i. The initial

orientation (qi)0,st of the robot is calculated such that the

orientation for the second step is symmetric to the orientation

for the first step in order that no net yaw rotation is observed

during the nominal (periodic) gait.
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To obtain a periodic gait, the single support must be such

that the state of the robot evolves from qi, q̇i to qf , q̇f . For

given desired initial and final state values, virtual constraint

can be easily deduced to connect the desired values for the

actuated and controlled variables. However, the evolution of

the unactuated variables is known only by integration of

the dynamics (15); a desirable dynamic behavior is imposed

on these variables by the use of equality and inequality

constraints in the optimization process.

B. Specifics

Here, Bezier polynomials of degree 3 are chosen to define

the virtual constraints3. The virtual constraints are expressed

as functions of the variable θ; see (8). From qi and qf ,

the initial and final values of θ, denoted θi and θf , can be

calculated. Let

hd(θ) =
3∑

k=0

αk

3!

k!(3 − k)!
sk(1 − s)3−k, (16)

where

s =
θ − θi

θf − θi

(17)

is the normalized independent variable. The coefficients of

the Bezier polynomials, αk, are (6 × 1) vectors of real

numbers. They must be determined so as to join (qi)a

to (qf )a and (q̇i)a to (q̇f )a, (the additional subscript “a”

denotes the actuated variables) when θ varies from θi to θf ,

yielding

α0 = hd(θi) = (qi)a

α1 = (qi)a +
θf−θi

3
∂hd

∂θ
(θi) = (qi)a +

θf−θi

3
(q̇i)a

θ̇i

α2 = (qf )a −
θf−θi

3
∂hd

∂θ
(θf ) = (qf )a −

θf−θi

3
(q̇f )a

θ̇f

α3 = hd(θf ) = (qf )a.
(18)

The evolution of the unactuated variables is calculated by

integration of the dynamic subsystem (15), that is, the stance

phase zero dynamics, starting from the initial state (qi)u =
[(qi)1, θi]

′ and terminating at θ = θf , where (qi)1 denotes

the initial value of q1 for the first step.

When the evolution of the unactuated variables is calcu-

lated, because the evolution of the actuated variable is given

by (7) and (16), the required torque can be calculated by

lines 3 through 8 of equation (13), and the ground reaction

force Fst expressed in the inertial reference frame (see Fig.

1) can be calculated as well.

The search for a periodic walking motion can now be

cast as a (non-convex) constrained nonlinear optimization

problem: Find the 15 optimization parameters prescribing

(qf , q̇f ) that minimize the integral-squared torque per step

length,

J =
1

L

∫ T

0

u∗
′

u∗dt, (19)

3A degree greater than 3 can also be chosen, in which case the number
of optimization variables increases [25].

where T is the walking period and L is the step length, while

satisfying symmetry (1), and subject to the following:

inequality constraints

• θ is strictly increasing (i.e, θ̇ > 0 along the solution);

• the swing foot is positioned above the ground (zsw ≥
0);

• a no-take-off constraint, Fst(3) > 0;

• a friction constraint,
√

Fst(1)2 + Fst(2)2 ≤ µ Fst(3);

equality constraints

and a set of conditions imposing periodicity,

q1(T ) = (qf )1

q̇1(T ) = (q̇f )1

θ̇(T ) = θ̇f ,

where q1(t) and θ(t) result from the integration of the zero

dynamics and the walking period T is such that θ(T ) = θf .

The above procedure can be performed in MATLAB with

the FMINCON function of the optimization toolbox. A fixed-

point solution x∗ = [q∗f , q̇∗f ]′ minimizing J defines a desired

periodic walking cycle (or nominal orbit). The criterion being

optimized (19) has many local minima and the optimization

technique used is local. Thus, the obtained optimal periodic

motion depends on the initial set of optimization parameters.
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Fig. 4. Stick-diagram of the optimal motion with respect to (19).

C. An example periodic motion minimizing integral-squared

torque

The physical parameters of the 3D biped studied here are

given in Table I. For these parameters, a periodic orbit was

computed following the technique presented in the previous

subsection. We obtained a periodic motion defined by x∗ =
(q∗f , q̇∗f ), where

q∗f = [−0.0174,−0.34038, 0.3820,−0.2940, 0.0602, 0.0487,

−0.5077, 0.1688]′,
q̇∗f = [−0.4759,−1.1825, 0.0997, 0.2785,−0.1000, 0.1000,

1.398, 0]′.

A stick-figure diagram for the first step of the periodic

walking gait is presented in Fig. 4. The walking gait has

a period of T = 0.39 seconds, a step size of L = 0.176m,

and an average walking speed of 0.447 m/sec, or 0.745 body
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g W L1 L2 L3 m1 m2 m3

9.81 0.15 0.275 0.275 0.05 0.875 0.875 5.5

TABLE I

PARAMETERS FOR THE 3D BIPEDAL ROBOT (IN MKS).

lengths per second. The step width is 0.156m, close to the

hip width. The peak torque required to produce the periodic

motion is less than 10Nm for each joint.

VI. CREATING A HYBRID ZERO DYNAMICS

The stability of a fixed-point x∗ can be tested numerically

by linearizing the Poincaré map about the fixed-point as

presented in [19]. This numerical stability test has a high

computational cost, however, because it requires the esti-

mation of the Jacobian of the Poincaré map, in a space of

dimension 2n-1, where n is the number of independent joint

coordinates; here n = 8. We propose a slight modification

of the control law in order to be able to study the stability of

the closed-loop system in a reduced-dimensional state space.

A. Hybrid zero dynamics (HZD) and a stability test in a

reduced space

The control law (10) is such that, on the periodic orbit, the

virtual constraints (7) are identically satisfied. However, off

the periodic orbit, even if the virtual constraints are satisfied

at the end of given step, they will not in general be satisfied4

at the beginning of the next step. Consequently, the behavior

of the robot cannot be deduced from the behavior of the

uncontrolled variables qu and the simulation of the complete

model is required to predict the behavior of the robot. In the

language of [25], [27, Chap. 5], while the feedback control

law (10) has created a zero dynamics of the stance phase

dynamics, it has not created a hybrid zero dynamics, that is,

a zero dynamics of the full hybrid model (6).

If the control law could be modified so as to create a

hybrid zero dynamics, then the study of the swing phase zero

dynamics (15) and the impact model would be sufficient to

determine the stability of the complete closed-loop behavior

of the robot, thereby leading to a reduced-dimension stability

test. A modification of the control law to achieve a hybrid

zero dynamics was first proposed in [17]; a second more

easily implementable method has been given in [16], along

with a complete stability analysis.

Following [16], the virtual constraints are modified stride

to stride so that they are compatible with the initial state of

the robot at the beginning of each step. The new output for

the feedback control design is

yc = h(q, yi, ẏi) = qa − hd(θ) − hc(θ, yi, ẏi). (20)

This output consists of the previous output (7), and a

correction term hc that depends on (7) evaluated at the

beginning of the step, specifically, yi = qa,i − hd(θi) and

4This may be true for several reasons, one of which is that the virtual
constraints may not have been chosen to be compatible with the impact
map.

ẏi = q̇a,i −
∂hd(θ)

∂θ
θ̇i, where the subscript “i” denotes the

initial value for the current step. The values of yi, ẏi are

updated at the beginning of each step and held constant

throughout the step. The function hc is taken to be a three-

times continuously differentiable function of θ such that5







hc(θi, yi, ẏi) = yi
∂hc

∂θ
(θi) = ẏi

θ̇i

hc(θ, yi, ẏi) ≡ 0,
θi+θf

2 ≤ θ ≤ θf .

(21)

With hc designed in this way, the initial errors of the output

and its derivative are smoothly joined to the original virtual

constraint at the middle of the step. In particular, for any

initial error, the initial virtual constraint hd is exactly satisfied

by the end of the step.

Under the new control law defined by (20), the behavior

of the robot is completely defined by the impact map and

the swing phase zero dynamics (15), where hd is replaced

by hd + hc. The stability of a fixed-point x∗ can now be

tested numerically using a restricted Poincaré map defined

from ρ : S ∩ Z → S ∩ Z , where Z = {(q, q̇)|yc(q) =
0, ẏc(q) = 0} and S is the switching surface. The key point

is that in S ∩ Z , the state of the robot can be represented

using only three independent variables, xz = [q1, q̇1, θ̇]′, and

hence the Jacobian of the restricted Poincaré map evaluated

at a fixed point is a 3×3 matrix. From [16], for ǫ sufficiently

small in (10), the exponential stability of a fixed-point of the

restricted Poincaré map determines exponential stability of

the full-order closed-loop robot model.

B. Example of the periodic motion minimizing integral-

squared torque

We consider the virtual constraints corresponding to the

optimal periodic motion obtained in Section V-C, and the

control law defined by (20) is used.

To study the stability of this control law around the

periodic motion, the eigenvalues of the linearized restricted

Poincaré map are computed yielding

λ1 = 0.8878

λ2 = −0.6951

λ3 = −2.0891

One eigenvalue has magnitude greater than one and hence

the gait is unstable under this controller.

We have found that for most periodic motions optimized

with respect to integral-squared torque per step length, (19),

the obtained gait is unstable under the control law defined

by (20). In the next section, freedom in the selection of the

controlled outputs6 is used to obtain a stable walking cycle

using only within-stride control.

5In our specific application, we used a fifth order polynomial for θi ≤

θ ≤
θi+θf

2
; continuity of position, velocity and acceleration is ensured at

θ =
θi+θf

2
.

6The controlled outputs are no longer the actuated variables as in (10),
but a judiciously chosen linear combination of q. A convenient choice of
outputs is provided.
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VII. IMPROVED OUTPUT SELECTION

In the previous sections, the controlled variables driven

by the virtual constraints are simply the actuated variables,

qa; see (7). The choice of the controlled variables directly

affects the zero dynamics in (15). It is shown here that for the

same desired periodic motion, the stability of the closed-loop

system can be dramatically improved through a judicious

choice of the controlled variables.

A. Effect on the swing phase zero dynamics

For simplicity, we limit our analysis to the case of con-

trolled variables that are linear with respect to the configu-

ration variables. Thus the controlled variables are

qc = M





q1

θ
qa



 =
[

M1 Mθ Ma

]





q1

θ
qa



 , (22)

where M is a (6 × 8) constant matrix with Ma invertible.

A known periodic motion q∗(t) can be reparameterized7

as function of the variable θ, yielding q∗(θ). The virtual

constraint for the new controlled variables then yields the

output

y = M





q1

θ
qa





︸ ︷︷ ︸

h0(q)

−M





q∗1(θ)
θ

q∗a(θ)



 .

︸ ︷︷ ︸

hd(θ)

(23)

When the constraint is satisfied, y ≡ 0, equation (23)

allows us to solve for qa, giving

qa = q∗a(θ) + M−1
a M1 (q∗1(θ) − q1) . (24)

Substituting this equation into (14), we obtain for the swing

phase zero dynamics

D11(qu)

[
q̈1

θ̈

]

+ D12(qu)
(

∂ q∗

a

∂ θ
θ̈ +

∂2q∗

a

∂ θ2 θ̇2
)

+

D12(qu)M−1
a M1

(
∂ q∗

1

∂ θ
θ̈ +

∂2q∗

1

∂ θ2 θ̇2 − q̈1

)

+ H1(qu, q̇u) = 0.

(25)

The nominal periodic motion satisfies both equations (25)

and (15), but the two equations produce different solutions

away from the periodic motion. When the principle of virtual

constraints is applied to a system with only one degree of

underactuation, namely θ, which is common for example in

planar bipeds, the swing phase zero dynamic is not affected

by the choice of the output, and therefore the stability of a

periodic orbit (i.e., walking motion) is not modified; only the

transient motion can be different. In the case of a system with

two degrees of underactuation, the choice of the controlled

output can affect the stability of the gait via the choice of

M−1
a M1.

In order to illustrate this property, a new choice of output

is proposed. This choice is based on the following physical

reasoning: The motion in the frontal direction is difficult to

stabilize. The position of the center of mass in the frontal

direction is important. If, at touchdown, the center of mass

7This assumes that θ is monotonic.

is not between the feet, but outside the position of the next

supporting foot, the robot will topple sideways. Thus, the

control of the variable q6 (which regulates step width on the

swing leg) is replaced by the control of the distance between

the swing leg end and the center of mass along the frontal

direction. To obtain a linear output, this function is linearized

around the touchdown configuration to define M in (23).

B. Example of the periodic motion minimizing integral-

squared torque

The periodic motion described in Section V-C can be

stabilized using the new controlled output. As mentioned in

the previous subsection, the actuated joints q3, q4, q5, q7,

and q8 are controlled via virtual constraints just as in the

original control law. A new output hd,4 is considered, with

this output no longer based on q6 but instead on distance

between the swing leg end and the center of mass along the

frontal direction.

For this trajectory, for support on leg 1, the linearization

around qf of the distance between the swing leg end and the

center of mass along the frontal direction yields

d = −0.457q1 − 0.020q2 − 0.018q3 − 0.020q4 − 0.489q5

+0.461q6 − 0.056q7 − 0.022q8.

On the periodic orbit, this distance is evaluated and approxi-

mated by a function of θ, denoted d∗(θ). The new controlled

output is then

y4 = −0.457q1 − 0.020q2 − 0.018q3 − 0.020q4 − 0.489q5

+0.461q6 − 0.056q7 − 0.022q8 − d∗(θ).
(26)

When the control law is defined using this new output, the

walking gait is stable, as can be shown via the calculation of

the eigenvalues of the linearization of the restricted Poincaré

map:

λ1 = 0.7846

λ2,3 = −0.028± 0.250i

|λ2,3| = 0.2512.

To illustrate the orbit’s local exponential stability, the 3D

biped’s model in closed-loop is simulated with the initial

state perturbed from the fixed-point x∗. An initial error of

−1◦ is introduced on each joint and a velocity error of

−5◦s−1 is introduced on each joint velocity. Fig. 5 shows

phase-plane plots of the first four variables. The convergence

towards a periodic motion is clear.

VIII. CONCLUSIONS

An underactuated 3D bipedal model has been studied, with

the objective of developing a time-invariant feedback control

law that induces asymptotically stable walking, without rely-

ing on the use of large feet. The method of virtual constraints

and hybrid zero dynamics was applied to the 3D robot, with

the virtual constraints chosen via optimization as suggested

in [26]. The main contributions of the paper are:

1) The computation of human-like periodic walking mo-

tions that can be stable or unstable, depending on the

choice of actuated variables and virtual constraints.
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Fig. 5. Phase-plane plots for qi, i = 1, . . . , 4. The straight lines correspond
to the jump of the impact phase. The initial state is represented by a (red)
star. Each variable converges to a periodic motion.

2) The numerical study of stability on the basis of a low-

dimensional subsystem corresponding to the hybrid

zero dynamics. The Poincaré return map was computed

in a space of dimension three for a robot with two

degrees of underactuation.

3) The discovery of the importance of the selection of the

controlled outputs on the stability of a given periodic

motion.

When the method of virtual constraints is applied to

a bipedal model with only one degree of underactuation,

which is common for example in planar bipeds, the swing

phase zero dynamic is not affected by the choice of the

output, and therefore the stability of a periodic orbit (i.e.,

walking motion) is unaffected by the choice of the controlled

output; only the transient motion can be different. In the

case of a biped with two degrees of underactuation, as in an

underactuated 3D biped, the choice of the controlled output

can affect the stability of the hybrid zero dynamics. A more

systematic study of this property is needed.
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