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Abstract— We study a class of uncertain linear estimation
problems in which the data are affected by random uncertainty.
In this setting, we consider two estimation criteria, one based
on minimization of the expected `1 or `2 norm residual and
one based on minimization of the level within which the `1
or `2 norm residual is guaranteed to lie with an a-priori fixed
probability (residual at risk). The random uncertainty affecting
the data is characterized by means of its first two statistical
moments, and the above criteria are intended in a worst-
case probabilistic sense, that is worst-case expectations and
probabilities over all possible distribution having the specified
moments are considered. The ensuing estimation problems can
be solved efficiently via convex programming, yielding exact
solutions in the `2 norm case and upper-bounds on the optimal
solutions in the `1 case.

Keywords: Uncertain least-squares, random uncertainty, robust
convex optimization, value at risk, `1 norm approximation.

I. INTRODUCTION

To introduce the problem treated in this paper, let us
consider a standard parameter estimation problem where
an unknown parameter θ ∈ Rn is to be determined so to
minimize a norm residual of the form ‖Aθ−b‖p, where A ∈
Rm,n is a given regression matrix, b ∈ Rm is a measurement
vector, and ‖ · ‖p denotes the `p norm. In this setting, the
most relevant and widely studied case arise of course for
p = 2, where the problem reduces to classical least-squares.
The case of p = 1 also has important applications due to
its resilience to outliers and to the property of producing
“sparse” solutions, see for instance [6], [8]. For p = 1, the
solution to the norm minimization problem can be efficiently
computed via linear programming, [3, §6.2].

In this paper we are concerned with an extension of this
basic setup that arises in realistic cases where the problem
data A, b are imprecisely known. Specifically, we consider
the situation where the entries of A, b depend affinely on a
vector δ of random uncertain parameters, that is A

.= A(δ)
and b

.= b(δ). Due its practical significance, the parameter
estimation problem in the presence of uncertainty in the
data has attracted much attention in the literature. When
the uncertainty is modeled as unknown-but-bounded, a min-
max approach is followed in [9], where the maximum over
the uncertainty of the `2 norm of the residual is minimized.
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Relations between the min-max approach and regularization
techniques are also discussed in [9] and in [13]. Generaliza-
tions of this approach to `1 and `∞ norms are proposed in
[11].

In the case when the uncertainty is assumed to be random
with given distribution, a classical stochastic optimization
approach is often followed, whereby a θ is sought that
minimizes the expectation of the `p norm of the residual
with respect to the uncertainty. This formulation leads in
general to numerically “hard” problem instances, that can be
solved approximately by means of stochastic approximation
methods, see, e.g., [4]. In the special case where the squared
Euclidean norm is considered, instead, the expected value
minimization problem actually reduces to a standard least-
squares problem, which has a closed-form solution, see [4],
[11].

In this paper we consider the uncertainty to be random and
we develop our results in a “statistical ambiguity” setting,
in which the probability distribution of the uncertainty is
only known to belong to a given family of distributions.
Specifically, we consider the family of all distributions on
the uncertainty having a given mean and covariance, and
seek results that are guaranteed irrespective of the actual
distribution within this class. We address both the `2 and
`1 cases, under two different estimation criteria: the first
criterion aims at minimizing the worst-case expected resid-
ual, whereas the second one is directly tailored to control
residual tail probabilities. That is, for given risk ε ∈ (0, 1),
we minimize the residual level such that the probability of
residual falling above this level is no larger than ε.

A journal version of this paper will be available in [5].

Notation. The identity matrix in Rn,n and the zero matrix
in Rn,n are denoted as In and 0n, respectively (subscripts
may be omitted when dimensions can be inferred from
context). ‖x‖p denotes the standard `p norm of vector x;
‖X‖F denotes the Frobenius norm of matrix X , that is
‖X‖F =

√
Tr X>X , where Tr is the trace operator. The

notation δ ∼ (δ̂, D) means that δ is a random vector with
expected value E {δ} = δ̂ and covariance matrix var {δ} .=
E

{
(δ − δ̂)(δ − δ̂)>

}
= D. The notation X Â 0 (resp.

X º 0) indicates that matrix X is symmetric and positive
definite (resp. semi-definite).

II. PROBLEM SETUP AND PRELIMINARIES

Let A(δ) ∈ Rm,n, b(δ) ∈ Rm be such that

[A(δ) b(δ)] .= [A0 b0] +
q∑

i=1

δi[Ai bi], (1)
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where δ = [δ1 · · · δq]> is a vector random uncertainties,
[A0 b0] represents the “nominal” data, and [Ai bi] are the
matrices of coefficients for the uncertain part of the data.
Let θ ∈ Rn be a parameter to be estimated, and consider the
following norm residual:

fp(θ, δ)
.= ‖A(δ)θ − b(δ)‖p (2)

= ‖ [(A1θ − b1) · · · (Aqθ − bq)] δ +
+ (A0θ − b0)‖p

.= ‖L(θ)z‖p,

where we defined z
.= [δ> 1]>, and L(θ) ∈ Rm,q+1 is

partitioned as

L(θ) .= [L(δ)(θ) L(1)(θ)], (3)

with
L(δ)(θ) .= [(A1θ − b1) · · · (Aqθ − bq)] ∈ Rm,q,
L(1)(θ) .= A0θ − b0 ∈ Rm.

(4)

In the following we assume that E {δ} = 0 and var {δ} = Iq .
This can be done without loss of generality, since data can
always be pre-processed so to comply with this assumption,
as detailed in the following remark.

Remark 1 (Preprocessing the data): Suppose that the un-
certainty δ is such that E {δ} = δ̂ and var {δ} = D º 0,
and let D = QQ> be a full-rank factorization of D. Then,
we may write δ = Qν + δ̂, with E {ν} = 0, var {ν} = Iq ,
and redefine the problem in terms of uncertainty ν ∼ (0, I),
with L(δ)(θ) = [(A1θ − b1) · · · (Aqθ − bq)]Q, L(1)(θ) =
[(A1θ − b1) · · · (Aqθ − bq)]δ̂ + (A0θ − b0). /

We next state the two estimation criteria and the ensuing
problems that are tackled in this paper.

Problem 1: (Worst-case expected residual minimization)
Determine θ ∈ Rn that minimizes supδ∼(0,I) E {fp(θ, δ)},
that is solve

min
θ∈Rn

sup
δ∼(0,I)

E {‖L(θ)z‖p}, z> .= [δ> 1], (5)

where p ∈ {1, 2}, L(θ) is given in (3), (4), and the
supremum is taken with respect to all possible probability
distributions having the specified moments (zero mean and
unit covariance).
In some applications, such as in financial Value-at-Risk
(V@R) [7], [12], one is interested in guaranteeing that the
residual remains “small” in “most” of the cases, that is one
seeks θ such that the corresponding residual is small with
high probability. An expected residual criterion such as the
one considered in Problem 1 is not suitable for this purpose,
since it concentrates on the average case, neglecting the tails
of the residual distribution. The second criterion that we
consider is hence focused on controlling the risk of having
residuals above some level γ ≥ 0, where risk is expressed as
the probability Prob {δ : f(θ, δ) ≥ γ}. Formally, we state
the following second problem.

Problem 2: (Guaranteed residual-at-risk minimization)
Fix a risk level ε ∈ (0, 1). Determine θ ∈ Rn such that
a residual level γ is minimized while guaranteeing that
Prob {δ : fp(θ, δ) ≥ γ} ≤ ε. That is, solve

minθ∈Rn,γ≥0 γ subject to:
supδ∼(0,I) Prob {δ : ‖L(θ)z‖p ≥ γ} ≤ ε,

where z> .= [δ> 1], p ∈ {1, 2}, L(θ) is given in (3), (4), and
the supremum is taken with respect to all possible probability
distributions having the specified moments (zero mean and
unit covariance).
A key preliminary result opening the way for the solution
of Problem 1 and Problem 2 is stated in the next lemma.
This lemma is a powerful consequence of convex duality,
and provides a general result for computing the supremum
of expectations and probabilities over all distributions pos-
sessing a given mean and covariance matrix, see Section 16.4
in [2].

Lemma 1: Let S ⊆ Rn be a measurable set (not neces-
sarily convex), and φ : Rn → R a measurable function. Let
z> = [x> 1], and define

Ewc
.= sup

x∼(x̂,Γ)

E {φ(x)}

Pwc
.= sup

x∼(x̂,Γ)

Prob {x ∈ S}

Q
.=

[
Γ + x̂x̂> x̂

x̂> 1

]
.

Then,

Ewc = infM=M> TrQM subject to:
z>Mz ≥ φ(x), ∀x ∈ Rn

and
Pwc = infMº0 Tr QM subject to:

z>Mz ≥ 1, ∀x ∈ S.

/
A proof of Lemma 1 can be found in [5].

Remark 2: Lemma 1 provides a result for computing
worst-case expectations and probabilities. However in many
cases of interest we shall need to impose constraints on these
quantities in order to eventually optimize them with respect
to some other design variables. It is however a simple matter
to verify that the following equivalences hold:

supx∼(x̂,Γ) E {φ(x)} ≤ γ

m
∃M = M> : TrQM ≤ γ,

z>Mz ≥ φ(x), ∀x ∈ Rn,

and

supx∼(x̂,Γ) Prob {x ∈ S} ≤ ε

m
∃M = M> º 0 : TrQM ≤ ε,

z>Mz ≥ 1, ∀x ∈ S.

/

III. WORST-CASE EXPECTED RESIDUAL MINIMIZATION

In this section we focus on Problem 1 and provide an
efficiently computable exact solution for the case p = 2,
and efficiently computable upper and lower bounds on the
solution for the case p = 1. Define

ψp(θ)
.= sup

δ∼(0,I)

E {‖L(θ)z‖p}, (6)

with z> .= [δ> 1], r
.= [0 · · · 0 1/2]> ∈ Rq+1, (7)
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where L(θ) ∈ Rm,q+1 is an affine function of parameter θ,
given in (3), (4). We have the following preliminary lemma.

Lemma 2: For given θ ∈ Rn, the worst-case residual
expectation ψp(θ) is given by

ψp(θ) = infM=M> Tr M subject to:
M − ru>L(θ)− L(θ)>ur> º 0,

∀u ∈ Rm : ‖u‖p∗ ≤ 1,

where ‖u‖p∗ is the dual `p norm. /
Proof. From Lemma 1 we have that

ψp(θ) = infM=M> Tr M subject to:
z>Mz ≥ ‖L(θ)z‖p, ∀δ ∈ Rq.

Since
‖L(θ)z‖p = sup

‖u‖p∗≤1

u>L(θ)z,

it follows that z>Mz ≥ ‖L(θ)z‖p holds for all δ if and
only if z>Mz ≥ u>L(θ)z holds ∀δ ∈ Rq and ∀u ∈ Rm :
‖u‖p∗ ≤ 1. Now, since z>r = 1/2, we write u>L(θ)z =
z>(ru>L(θ) + L(θ)>ur>)z, whereby the above condition
is satisfied if and only if

M − ru>L(θ) + L(θ)>ur> º 0, ∀u : ‖u‖p∗ ≤ 1,

which concludes the proof. ¤

We are now in position to state the following key theorem.
Theorem 1: Let θ ∈ Rn be given, and let ψp(θ) be

defined as in (6). Then, the following holds for the worst-case
expected residuals in the `1- and `2-norm cases.

1) Case p = 1: Define

ψ1(θ)
.=

m∑

i=1

∥∥Li(θ)>
∥∥

2
, (8)

where Li(θ)> denotes the i-th row of L(θ). Then,

2
π

ψ1(θ) ≤ ψ1(θ) ≤ ψ1(θ). (9)

2) Case p = 2:

ψ2(θ) =
√

Tr L(θ)>L(θ) = ‖L(θ)‖F . (10)

/
Proof. (Case p = 1) The dual `1 norm is the `∞ norm, hence
applying Lemma 2 we have

ψ1(θ) = inf
M=M>

Tr M subject to: (11)

M − L(θ)>ur> − ru>L(θ) º 0, ∀u : ‖u‖∞ ≤ 1. (12)

For ease of notation, we drop the dependence on θ in the
following derivation. Note that

L>ur> + ru>L =
m∑

i=1

uiCi,

where

Ci
.= rL>i + Lir

> =

[
0q

1
2L

(δ)
i

1
2L

(δ)>
i L

(1)
i

]
,

where L>i is partitioned according to (4) as L>i =
[L(δ)>

i L
(1)
i ], with L

(δ)>
i ∈ R1,q , and L

(1)
i ∈ R. The

characteristic polynomial of Ci is pi(s) = sq−1(s2−L
(1)
i s−

‖L(δ)
i ‖22/4), hence Ci has q − 1 null eigenvalues, and two

non-zero eigenvalues at ηi,1 = (L(1)
i + ‖Li‖2)/2 > 0,

ηi,2 = (L(1)
i − ‖Li‖2)/2 < 0. Since Ci is rank two, the

constraint in problem (11) takes the form (19) considered
in Theorem 4 in the Appendix. Consider thus the following
relaxation of problem (11):

ϕ
.= inf

M=M>,Xi=X>
i

TrM subject to:

−Xi + Ci ¹ 0, −Xi − Ci ¹ 0, i = 1, . . . , m,
m∑

i=1

Xi −M ¹ 0,

where we clearly have ψ1 ≤ ϕ. The dual of problem (13)
can be written as

ϕD = sup
Λi,Γi

m∑

i=1

Tr ((Λi − Γi)Ci) (13)

subject to: Λi + Γi = Iq+1,

Γi º 0, Λi º 0, i = 1, . . . ,m.

Since the problem in (13) is convex and Slater conditions are
satisfied, ϕ = ϕD. Next we show that ϕD equals ψ1 given
in (8). To this end, observe that (13) is decoupled in the
Γi, Λi variables and, for each i, the subproblem amounts to
determining sup0¹Γi¹I Tr (I−2Γi)Ci. By diagonalizing Ci

as Ci = ViΘiV
>
i , with Θi = diag(0, . . . , 0, ηi,1, ηi,2), each

subproblem is reformulated as sup0¹Γ̃i¹I TrCi−2TrΘiΓ̃i,
where it immediately follows that the optimal solution is
Γ̃i = diag(0, . . . , 0, 0, 1), hence the supremum is (ηi,1 +
ηi,2) − 2ηi,2 = ηi,1 − ηi,2 = |ηi,1| + |ηi,2| = ‖eig(Ci)‖1,
where eig(·) denotes the vector of the eigenvalues of its
argument. Now, we have ‖eig(Ci)‖1 = ‖L>i ‖2, then ϕD =∑m

i=1 ‖L>i ‖2, and by the first conclusion in Theorem 4 in
the Appendix, we have ψ1 = ϕ = ϕD and ψ1 ≤ ψ1.

For the lower bound on ψ1 in (9), assume that the problem
in (13) is not feasible. Then, for M º 0, we have that

{
M : TrM = ϕD

} ⋂
{M : Xi º ±Ci,

∑n
i=1 Xi ¹ M} = ∅.

This last emptiness statement, coupled with the fact that,
for i = 1, . . . , n, Ci is of rank two, implies, by the second
conclusion in Theorem 4, that

{
M : TrM = ϕD

} ⋂
{M : M º ∑n

i=1 uiCi, ∀u : |ui| ≤ π/2} = ∅
and

{
M̃ : Tr M̃ = ϕD

π/2

} ⋂
{

M̃ : M̃ º ∑n
i=1 ũiCi, ∀ũ : |ũi| ≤ 1

}
= ∅.

Consequently, we have ψ1 ≥ ϕD

π/2 = ψ1
π/2 , which concludes

the proof of the p = 1 case.
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(Case p = 2) The dual `2 norm is the `2 norm itself, hence
applying Lemma 2 we have

ψ2 = inf
M=M>

Tr M subject to:

M − ru>L− L>ur> º 0, ∀u : ‖u‖2 ≤ 1.

Applying the LMI robustness lemma (Lemma 3.1 of [10]),
we have that the previous semi-infinite problem is equivalent
to the following SDP

ψ2(θ) = inf
M=M>,τ>0

Tr M subject to:
[

M − τrr> L>

L τIm

]
º 0.

By the Schur complement rule, the latter constraint is equiv-
alent to τ > 0 and M º 1

τ (L>L)+τrr>. Thus, the infimum
of Tr M is achieved for M = 1

τ (L>L) + τrr> and, since
rr> = diag(0q, 1/4), the infimum of Tr M over τ > 0
is achieved for τ = 2

√
Tr L>L. From this, it follows that

ψ2 =
√

Tr L>L, thus concluding the proof. ¤

Starting from the results in Theorem 1, it is easy to observe
that we can further minimize the residuals over the parameter
θ, in order to find a solution to Problem 1. Convexity of the
ensuing minimization problem is a consequence of the fact
that L(θ) is an affine function of θ. This is formalized in the
following corollary, whose simple proof is omitted.

Corollary 1: (Worst-case expected residual minimization)
Let

ψ∗p
.= min

θ∈Rn
sup

δ∼(0,I)

E {‖L(θ)z‖p}, z> .= [δ> 1].

For p = 1, it holds that

2
π

ψ
∗
1 ≤ ψ∗1 ≤ ψ

∗
1,

where ψ
∗
1 is computed by solving the following second-

order-cone (SOCP) program:

ψ
∗
1 = min

θ∈Rn

m∑

i=1

‖Li(θ)>‖2.

For p = 2, it holds that

ψ∗2 = min
θ∈Rn

‖L(θ)‖F ,

where a minimizer for this problem can be computed via con-
vex quadratic programming, by minimizing Tr L>(θ)L(θ).
/

Remark 3: Notice that in the specific case of δ ∼ (0, I)
we have that ψ2

2 = Tr L>(θ)L(θ) =
∑q

i=0 ‖Aiθ − bi‖22,
hence the minimizer can in this case be determined by
standard Least-Squares solution method. Interestingly, this
solution coincides with the solution of the expected squared
`2-norm minimization problem discussed for instance in [4],
[11]. This might not be obvious, since in general E {‖·‖2} 6=
(E {‖ · ‖})2. /

IV. GUARANTEED RESIDUAL-AT-RISK MINIMIZATION

A. The `2-norm case

Assume first θ ∈ Rn is fixed, and consider the problem
of computing

Pwc2(θ) = sup
δ∼(0,I)

Prob {δ : ‖L(θ)z‖2 ≥ γ}

= sup
δ∼(0,I)

Prob {δ : ‖L(θ)z‖22 ≥ γ2},

where z> .= [δ> 1]. By Lemma 1, this probability corre-
sponds to the optimal value of the optimization problem

Pwc2(θ) = inf
Mº0

Tr M subject to:

z>Mz ≥ 1, ∀δ : ‖L(θ)z‖22 ≥ γ2,

where the constraint can be written equiv-
alently as z> (M − diag(0q, 1)) z ≥ 0, ∀δ:
z>

(
L(θ)>L(θ)− diag(0q, γ

2)
)
z ≥ 0. Applying the

lossless S-procedure, the condition above is in turn
equivalent to the existence of τ ≥ 0 such that
(M − diag(0q, 1)) º τ

(
L(θ)>L(θ)− diag(0q, γ

2)
)
,

therefore we obtain

Pwc2(θ) = inf
Mº0,τ>0

Tr M subject to:

M º τL(θ)>L(θ) + diag(0q, 1− τγ2),

where the latter expression can be further elaborated using
the Schur complement formula into

[
M − diag(0q, 1− τγ2) τL(θ)>

τL(θ) τIm

]
º 0. (14)

We now notice, by the reasoning in Remark 2, that the
condition Pwc2(θ) ≤ ε with ε ∈ (0, 1) is equivalent to the
conditions: ∃τ ≥ 0, M º 0 such that Tr M ≤ ε and (14)
holds. Dividing both conditions by τ > 0 and then renaming
variables so that M/τ → M , 1/τ → τ , we have that a
parameter θ that minimizes the residual-at-risk level γ while
satisfying the condition Pwc2(θ) ≤ ε can be computed by
solving a convex semidefinite optimization problem (SDP)
as formalized in the next theorem.

Theorem 2 (`2 residual-at-risk estimation): A solution of
Problem 2 in the `2 case can be found by solving the
following SDP:

inf
τ>0,MÂ0,θ∈Rn,γ2>0

γ2, subject to: (15)

Tr M ≤ τε[
M − diag(0q, τ − γ2) L>(θ)

L(θ) Im

]
º 0.

/

B. The `1-norm case

We next consider the problem of determining θ ∈ Rn

such that the residual-at-risk level γ is minimized while
guaranteeing that Pwc1(θ) ≤ ε, where Pwc1(θ) is the worst-
case `1-norm residual tail probability

Pwc1(θ) = sup
δ∼(0,I)

Prob {δ : ‖L(θ)z‖1 ≥ γ},
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and ε ∈ (0, 1) is the a-priori fixed risk level. To this end,
define

D .= {D ∈ Rm,m : D diagonal, D Â 0}
and consider the following proposition (whose statement may
be easily proven by taking the gradient with respect to D and
setting it to zero).

Proposition 1: For any v ∈ Rm, it holds that

‖v‖1 =
1
2

inf
D∈D

m∑

i=1

(
v2

i

di
+ di

)

=
1
2

inf
D∈D

(
v>D−1v + TrD

)
, (16)

where di is the i-th diagonal entry of D. /
The following key theorem holds.

Theorem 3 (`1 residual-at-risk estimation): Consider the
following SDP:

inf
τ>0,Mº0,D∈D,θ∈Rn,γ≥0

γ, subject to: (17)

Tr M ≤ τε[
M − (τ − 2γ + TrD)J L>(θ)

L(θ) D

]
º 0,

with J
.= diag(0q, 1). The optimal value of this SDP provides

an upper bound for Problem 2 in the `1 case, that is an upper
bound on the minimum level γ for which there exist θ such
that Pwc1(θ) ≤ ε. /

Proof. Define

S
.= {δ : ‖L(θ)z‖1 ≥ γ}

S(D) .= {δ : z>L(θ)>D−1L(θ)z + TrD ≥ 2γ},
with D ∈ D. For ease of notation we drop the dependence
on θ in the following derivation. Using (16) we have that,
for any D ∈ D,

2‖Lz‖1 ≤ z>L>D−1Lz + TrD,

hence δ ∈ S implies δ ∈ S(D), thus S ⊆ S(D), for any
D ∈ D. This in turn implies that

Prob {δ ∈ S} ≤ Prob {δ ∈ S(D)}
≤ sup

δ∼(0,I)

Prob {δ ∈ S(D)}

for any probability measure and any D ∈ D, and therefore

Pwc1 = sup
δ∼(0,I)

Prob {δ ∈ S}

≤ inf
D∈D

sup
δ∼(0,I)

Prob {δ ∈ S(D)} .= P̄wc1.

Note that, for fixed D ∈ D, we can compute Pwc1(D) .=
supδ∼(0,I) Prob {δ ∈ S(D)} from its equivalent dual:

Pwc1(D) = inf
Mº0

Tr M : z>Mz ≥ 1, ∀δ ∈ S(D)

= inf
Mº0

Tr M : z>Mz ≥ 1,

∀δ : z>L>D−1Lz + Tr D ≥ 2γ

[applying the lossless S-procedure]
= inf

Mº0,τ>0
Tr M :

M º τL>D−1L + (1− 2τγ + τTr D)J,

where J = diag(0q, 1). Hence, P̄wc1 is obtained by minimiz-
ing Pwc1(D) over D ∈ D, which results in

P̄wc1 = inf
Mº0,τ>0,D∈D

Tr M :

M º τL>D−1L + (1− 2τγ + τTr D)J

[by change of variable τD → D ]
= inf

Mº0,τ>0,D∈D
Tr M :

M º τ2L>D−1L + (1− 2τγ + Tr D)J

= inf
Mº0,τ>0,D∈D

Tr M :

[
M − (1− 2τγ + Tr D)J τL>

τL D

]
º 0.

Now, from the reasoning in Remark 2, we have that (re-
introducing the dependence on θ in the notation) P̄wc1(θ) ≤ ε
if and only if there exist M º 0, τ > 0 and D ∈ D such
that Tr M ≤ ε and

[
M − (1− 2τγ + Tr D)J τL(θ)>

τL(θ) D

]
º 0.

Dividing both conditions by τ > 0 and then renaming the
variables as M/τ → M , D/τ → D, 1/τ → τ , these
conditions become Tr M ≤ τε, and

[
M − (τ − 2γ + TrD)J L>(θ)

L(θ) D

]
º 0. (18)

Notice that, since L(θ) is affine in θ , condition (18) is an
LMI in M,D, θ, τ, γ. We can thus minimize the residual
level γ subject to the condition P̄wc1(θ) ≤ ε (which implies
Pwc1(θ) ≤ ε), and this results in the statement of the theorem.
¤

V. NUMERICAL EXAMPLE

As a numerical example, we used data from a test appeared
in [4]. Let

A(δ) = A0 +
3∑

i=1

δiAi, bT =
[

0 2 1 3
]
, with

A0 =




3 1 4
0 1 1
−2 5 3
1 4 5.2


 , A1 =




0 0 0
0 0 0
0 0 0
0 0 1


 ,

A2 =




0 0 1
0 1 0
0 0 0
0 0 0


 , A3 =




0 0 0
0 0 0
1 0 0
0 0 0


 ,

and let δi be independent random perturbations with zero
mean and standard deviations σ1 = 0.067, σ2 = 0.1, σ3 =
0.2. The standard `2 and `1 solutions (obtained neglecting
the uncertainty terms, i.e. setting A(δ) = A0) result to be

θnom2 =




−10
−9.728
9.983


 , θnom1 =



−11.8235
−11.5882
11.7647


 ,

with nominal residuals of 1.7838 and 1.8235, respectively.

Expected residual minimization. Applying Theorem 1,
the minimal worst-case expected `2 residual resulted to be
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ψ∗2 = 2.164, whereas the minimal upper bound on worst-
case expected `1 residual resulted to be ψ̄∗1 = 4.097. The
corresponding parameter estimates are

θewc2 =



−2.3504
−2.0747
2.4800


 , θewc1 =



−2.8337
−2.5252
2.9047


 .

We next analyzed numerically how the worst-case expected
residuals increase with the level of perturbation. To this end,
we consider the previous data with standard deviations on the
perturbation depending on a parameter ρ ≥ 0: σ1 = ρ·0.067,
σ2 = ρ · 0.1, σ3 = ρ · 0.2. A plot of the worst-case expected
residuals as a function of ρ is shown in Figure 1. We observe
that both `1 and `2 expected residuals tend to a constant value
for large ρ.

0 0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

ρ

ψ
2
∗

ψ
1
∗

Fig. 1. Plot of ψ∗2 (solid) and ψ̄∗1 (dashed) as a function of perturbation
level ρ.

Residual at risk minimization. Consider again the variable
perturbation level problem of the previous paragraph. Now,
we fix the risk level to ε = 0.1 and solve repeatedly problems
(15) and (17) for increasing values of ρ. A plot of the
resulting optimal residuals at risk as a function of ρ is shown
in Figure 2. These residuals grow with the covariance level
ρ, as it might be expected since increasing the covariance
increases the tails of the residual distribution.
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Fig. 2. Worst-case `2 and `1 residuals at risk as a function of perturbation
level ρ.

VI. CONCLUSIONS

In this paper we discussed two criteria for linear parameter
estimation in presence of random uncertain data, under both
`2 and `1 norm residuals. The first criterion is a worst-
case residual expectation and leads to exact and efficiently

computable solutions for the `2 norm case. For the `1 norm,
we can efficiently compute upper and lower bounds on the
optimal solution, by means of convex second order cone
programming. The second criterion considered in the paper
is the worst-case residual for a given risk level ε. With this
criterion, an exact solution for the `2 norm case can be
computed by a solving a convex semi-definite optimization
problem, and an analogous computational effort is required
for computing an upper bound on the optimal solution in the
`1 norm case. The estimation setup proposed in the paper is
“distribution free,” in the sense that only information about
the mean and covariance of the random uncertainty need be
available to the user: the results are guaranteed irrespective
of the actual shape of uncertainty distribution.

APPENDIX

Theorem 4 (Matrix cube relaxation; [1]): Let B0, B1,
. . ., BL ∈ Rn×n be symmetric and B1, . . . , BL be of rank
two. Let the problem Pρ be defined as:

Pρ : Is B0 +
L∑

i=1

uiB
i º 0, ∀u : ‖u‖∞ ≤ ρ ? (19)

and the problem Prelax be defined as:
Prelax: Do there exist symmetric matrices
X1, . . . , XL ∈ Rn×n satisfying

Xi º ±ρBi, i = 1, . . . , L,∑L
i=1 Xi ¹ B0?

Then, the following statements hold:
1) If Prelax is feasible, then Pρ is feasible.
2) If Prelax is not feasible, then Pπ

2 ρ is not feasible.
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