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Abstract— In this paper, we use a Lagrangian approach to
solve for Nash equilibrium in a continuous non-cooperative
game with coupled constraints. We discuss the necessary and
the sufficient conditions to characterize the equilibrium of the
constrained games. In addition, we discuss the existence and
uniqueness of the equilibrium. We focus on the class of potential
games and point out a relation between potential games and
centralized optimization. Based on these results, we illustrate
the Lagrangian approach with symmetric quadratic games
and briefly discuss the notion of game duality. In addition,
we discuss two engineering potential game examples from
network rate control and wireless power control, for which
the Lagrangian approach simplifies the solution process.

I. INTRODUCTION

Classical Lagrangian multiplier theory is well-known to
solve standard nonlinear mathematical programming prob-
lems, in which an objective function is destined to be
optimized subject to certain given constraints [1]. From a
system’s perspective, such type of optimization problems can
be viewed as a centralized approach in that there is one single
agent who has the complete system information, searching
for an optimal solution. Modern systems are growing in more
complexity and are composed of different sub-units forming
different hierarchies, for example, optical networks, biolog-
ical systems, and the Internet. A central type of classical
optimization is not practical in terms of information delivery,
system scaling and etc. Recently, game-theoretical approach
has been considered as an alternative, especially in the appli-
cation of large-scale network systems, multi-agent systems,
market-based systems, etc., [2]. Its distributed feature and
inherent assumption of self-optimizing rationality make it a
suitable framework to model systems with interactive self-
interest components, or agents.

In many current literature, the application of games are
mostly limited to problems without coupled constraints, i.e.,
users’ sets of strategies are independent of one another.
However, in most engineering scenarios, such restrictions
lead to impractical solutions, as most of the existing systems
are constrained in a coupled and interative fashion. For
example, capacity constraint is one of the notable constraints
in a resource allocation problem. Therefore, it is essential to
establish a theoretical basis to study non-cooperative games
(NG) with coupled constraints.

Attempts for such extension were made in [3] and [4],
where the payoff functions of the players are modified to
include penalty terms that reduces the payoff when the
coupled constraints are violated. This approach circumvents
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the problem of a constrained game by turning it into an
unconstrained game and thus solved in a known way. Since
the penalty functions are commonly chosen to be a reciprocal
function of the constraints or a logarithmic function of
multi-variables, it becomes easily intractable when multiple
constraints are involved and utilities become nonlinear and
strongly coupled. Though such approach employs the current
results on non-cooperative games, for example in [5], it is
still challenging to perform analysis on the model. On the
other hand, such approach is strongly problem dependent.
A different problem may need a different construction of
modified payoff functions.

Due to such technical inconvenience, a lot of current
applications resort to numerical analysis, such as in [6], [7]
and [8]. They follow a semi-analytical approach in which the
Nash equilibrium is obtained following relaxation algorithms
are derived based on a best response function from maximiz-
ing a certain function, e.g. Nikaido-Isoda function in [6] and
game potential function in [7]. Some of the approaches are
restricted to games with certain properties and are not widely
applicable.

In [9], an extension is made on the duality theory to the
game-theoretical framework, but the theory is developed by
augmenting cost functions into a single game cost function
as a two-argument function. Such extension builds upon
a component-wise necessary condition for a fixed point
solution as indicated in the proof of Lemma 2 in [9]. This
result is not further elaborated but used to develop an in-
volved discussion of duality and hierarchical decomposition
of constrained games in [9]. We find that the argument made
in Lemma 2 is particularly central for continuing the work by
Rosen in [10]. In [10], the work is focus on characterizing the
uniqueness of a N -person concave game using the condition
of diagonally strict concavity. The discussion of a Lagrangian
approach in [9] and [10] inspire us to investigate further on
using this approach to solve constrained games. We state
necessary and sufficient conditions that characterize the NE
with a game Lagrangian. With the same techniques used
in [10], we are able to state conditions for existence and
uniqueness of Nash equilibrium.

Based on these results, we are particularly interested
in a class of potential games, recently proposed in [11].
Using a Lagrangian approach, we can arrive at a simple
characterization via centralized optimization. This discovery
potentially simplifies the techniques used in [12] and sup-
ports the approach adopted in [7] for a constrained wireless
power control. In addition, the well-known result in [11]
on uniqueness and existence of a pure Nash equilibrium of
potential games can further be extended to the case of such

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA16.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2420



games with coupled constraints.
It should be pointed out that a critical assumption made

throughout this paper is that constraints are common in-
formation to all the players. This assumption is reasonable
since in most engineering situations constraints are open to
all users, for example, capacity constraints in power control
games. However, for the situation in which part of the
constraints are not open information, we need to make a
modification using information sets on the Lagrangian so that
the constraints are user dependent. We will briefly elaborate
this in the directions of the future work.

The contribution of this paper is to 1) review and rigor-
ously state a Lagrangian approach for solving games with
coupled constraints; 2) extend results of potential games to
the constrained case and establish a connection with classical
mathematical programming with potential game theory; 3)
briefly discuss the concept of duality in quadratic games
that has a computational advantage with lower dimension;
4) point out its practical applications to solve the problem in
engineering such as network rate control problem and power
control problem in wireless networks. Most notably, the price
of anarchy of rate control game described in [12] appears to
be 1, independent of constraints. Moreover, for the strongly
coupled wireless power control game, we use a parametric
approach to design a game for a certain efficiency (price of
anarchy) criterion.

This paper is organized as follows. In section II-A, we
first review some notations of unconstrained non-cooperative
game and concepts from convex games and potential games.
In section II-B, we discuss the necessary and the sufficient
conditions of constrained Nash games and the issue of
existence and uniqueness. In section II-C, we apply these
results to potential games and build a connection between
a centralized optimization with a potential game problem.
In section III-A, we use symmetric quadratic games as
an example to illustrate the theory and briefly discuss the
concept of game duality. In section III-B, we study potential
games arising from network rate control game and wireless
power control game. We conclude and point out future
direction of research in section IV.

II. LAGRANGIAN APPROACH TO CONSTRAINED GAMES

In this section, we extend the classical Lagrangian mul-
tiplier theory for a standard optimization problem to a
non-cooperative game with coupled constraints. We assume
that the coupled constraints are common information so
that every player is subject to the same set of constraints.
Applying optimization theory to constrained games has been
seen in [10] and more recently in [9]. In [10], a differential
form of the necessary and sufficient Kuhn-Tucker (KKT)
conditions is used to discuss the uniqueness and existence of
Nash equilibrium for a constrained game. However, it was
not evident that Lagrangian theory extends to games as well.
On the other hand, in [10], an extension of duality theory is
made to solve a general class of constrained games. The idea
centers around a hierarchical decomposition of the original
constrained problem into two unconstrained sub-problems.

Lemma 2, upon which the extension is built, is essentially
a component-wise Lagrangian approach that coincides with
[10]. We rigorously review and connect these two work
together and state the following results on the necessary
and the sufficient conditions as well as the existence and
uniqueness.

A. Preliminaries and Definitions

Let’s consider a non-cooperative game (NG) defined
by a triplet Ξ = 〈N , (Ai), Ji〉, i ∈ N , where Ai =
[ui,min, ui,max] is the continuous strategy set, Ji : Ω =∏N

i Ai → R is the cost function and N = {1, 2, · · · , N}
is the index set of players. Each player behaves according
to its best response function BRi(u−i) to minimize its cost,
without knowing other player’s strategy or behavior.

Definition 2.1: Consider an N -player game, in which
each player minimizes the cost functions Ji : Ω → R. A
vector u∗ = [u∗i ] or u∗ = (u∗−i, u

∗
i ) ∈ Ω is called a Nash

equilibrium (NE) of this game if u∗i ∈ BRi(u∗−i),∀i ∈ N , or
equivalently, Ji(u∗i ,u

∗
−i) ≤ Ji(u′i,u

∗
−i),∀u′i ∈ Ai,∀i ∈ N

Definition 2.2: A NG Ξ is a constrained NG if Ξ is
subject to coupled inequality constraints gi(u) ≤ 0, i =
{1, · · · ,M} or g(u) ≤ 0 in vector form, with g(u) =
[g1(u), · · · , gM (u)]T . We denote such constrained game as
a quartet Ξg = 〈N,Ai, Ji,Ω〉. Let Ω = {u | g(u) ≤ 0}. A
point u is feasible if u∗ ∈ Ω ∩ Ω. u∗ is an NE solution to
Ξg if

Ji(u∗i ,u
∗
−i) ≤ Ji(u′i,u

∗
−i),∀u′i ∈ Ωi(u∗−i),∀i ∈ N ,

where Ωi(u∗−i) is the projection set defined as

Ωi(u∗−i) = {ui ∈ Ai | (u′i,u∗−i) ∈ Ω ∩ Ω}.
Definition 2.3: ( [11]) A NG Ξ is a potential game (PG)

if there exists a function Φ(u) : Ω → R such that for all
i ∈ N and (ui,u−i) and (u′i,u−i) ∈ Ω:

Ji(ui,u−i)− Ji(u′i,u−i) = Φ(ui,u−i)− Φ(u′i,u−i).

If the cost function Ji is continuously differentiable, then a
NG is a PG if there exists a potential function Φ(u) : Ω→
R, such that

∂Ji

∂ui
=
∂Φ
∂ui

,∀i ∈ N .
Definition 2.4: A potential game Ξ is called a convex

potential game (CPG) if Φ(u) and g(u) are convex in
u ∈ Ω ∩Ω. We call a CPG a strictly convex potential game
(SCPG) if Φ(u) is strictly convex.

The definition of CPG allows us to categorize an important
class of tractable problems for which we have classical
analysis tools for solving NE.

B. A Lagrangian Approach to Non-cooperative Games with
Coupled Constraints

In this section, we study a general Lagrangian framework
for continuous non-cooperative games with coupled con-
straints. In particular, we state the necessary and the sufficient
conditions for constraints games and then use the strictly
diagonally convex condition as in [10] to characterize the
existence and uniqueness of the Nash equilibrium.
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Theorem 2.1: ( [13]) A NG Ξ has a Nash equilibrium if
for all i ∈ N ,
• (A1) the set Ai is nonempty compact convex subset of
R.

• (A2) Ji is continuous and quasi-convex on Ai.

Theorem 2.2: Consider a NG Ξg with constraints given
by g(u) ≤ 0. Let A(u) = {r | gr(u) = 0} denote the set
of active constraints and A = N\A the set of non-active
constraints. Assume
• (C1) Ji, i ∈ N is continuously differentiable.
• (C2) gr, r ∈ A is continuously differentiable.
• (C3) Ai, i ∈ N is convex and compact.
(a) (Necessity) Assume that, in addition, Ji, i ∈ N is also

quasi-convex, and gr, r ∈ A are also convex. Let u∗ be an
NE solution. Then there exist unique ν∗, ν∗r ≥ 0, r ∈ A such
that

∂Li

∂ui
(u∗i ,u

∗
−i, ν

∗) = 0, (1)

and ν∗r = 0,∀r ∈ A, i.e.,

ν∗r gr(u) = 0, r ∈ N (2)

where Li,∀i ∈ N is the game Lagrangian defined by

Li(ui,u−i, ν) = Ji(ui,u−i) + νT g(ui,u−i).

(b) (Sufficiency) Let u∗ be a feasible point, i.e., u∗ ∈
Ω ∩Ω and ν∗ be the game Lagrangian multipliers such that
ν∗r gr(u) = 0, r ∈ N . If u∗ minimizes the game Lagrangian
Li,∀i, then u∗ is an NE to the constrained Nash game.

Proof: Omitted due to length
Remark 2.1: We observe that the sufficiency doesn’t re-

quire assumptions of convexity in the utility functions and
constraints. In addition, the necessity part of Theorem 2.2
only assumes quasi-convexity of Ji for the existence of NE.
It relaxes the assumption of convexity in [9] in Lemma 2.

Existence of NE of a game is usually shown using Kaku-
tani fixed point theorem [13], whereas, the uniqueness of
NE can be quite involved. For a two-person game described
in Proposition 4.1 in [5] may need a stringent condition for
uniqueness. In the following, we adopt the definition of strict
diagonal convexity from [10] and show that uniqueness of
NE under such conditions.

Definition 2.5: A map J(u) : Ω ∈ RN → RN is strictly
diagonally convex (SDC) [10] if

(u1 − u2)T
(
DuJ(u1)−DuJ(u2)

)
> 0,

for every u1,u2 ∈ Ω, where J = [J1(u), · · · , JN (u)]T and
DuJ(u) = [ dJ1

du1
(u), dJ2

du2
(u), · · · , dJN

duN
(u)]T .

Similarly, Ji, i ∈ N is diagonally convex if we replace
the strict inequality with inequality. It is also easy to verify
that for a potential game with strict convex potential function
Φ(u), the cost functions Ji form a diagonally strict convex
map.We will use this fact later in Corollary 2.8 to show
the uniqueness of NE in strictly convex potential games.
Moreover, when a game Ξ is linear [14], i.e., DuJ(u) =
Cu−d, for some C ∈ RN×N and b ∈ RN , then Ji yields

a diagonally strictly convex map if C is positive definite.
To see this, we let u1 and u2 be two feasible points and,
for i = 1, 2, we have DuJ(ui) = Cui − d. Take the
difference between the two expressions and we arrive at
(u1 − u2)T C(u1 − u2) > 0 for all u1,u2 ∈ Ω if C is
positive definite.

Theorem 2.3: (Existence and Uniqueness of NE in Con-
strained Nash Game Ξg) Consider a NG Ξg in Theorem 2.2
and the conditions (C1)-(C2) on Ji, gr, and Ai are satisfied.
In addition, Ji is quasi-convex and gr is convex.
• (Existence) There exists an NE to Ξg.
• (Uniqueness) There exists a unique NE to Ξg provided

that Ji is strictly diagonally convex.
Proof: Omitted due to length.

Remark 2.2: From the uniqueness proof, we can also state
that NE is unique when Ji is diagonally convex (not strictly)
but g(u) is strictly convex (instead of just being convex). In
this case, we have W1 ≤ 0 but W2 < 0. Applying the same
argument, we can arrive at the conclusion of uniqueness of
NE.

C. Constrained Potential Games

Following the last section, we are equipped to study poten-
tial games subject to coupled constraints. With the definition
of the potential games with continuous strategy set in section
II-A, we are able to simplify the Lagrangian characterization
for this special type of games. From Definition 2.3, we
have ∂Ji

∂ui
= ∂Φ

∂ui
,∀i ∈ N , and subsequently, the necessary

condition (1) of Theorem 2.2 is reduced to

∂LΦ

∂ui
(ui,u−i, ν) = 0, (3)

or in terms of the constraints and potential function,

∂Φ
∂ui

(ui,u−i) + νT ∂g
∂ui

(ui,u−i) = 0, (4)

where LΦ = Φ(u) + νT g(u), and νT g(u) = 0.
Theorem 2.4: Suppose there exists a potential function

Φ(u) : Ω→ R of the NG Ξ. The solution to the optimization
problem (PPG) is a NE to the constrained Nash game Ξg.

(PPG) min Φ(u)
subject to g(u) ≤ 0,u ∈ Ω.

Proof: Let u′ be the optimal solution to (PPG). Since
u′ minimizes LΦ, u′ minimizes Li,∀i. Therefore, u′ is a NE
to the constrained game from the sufficiency of Theorem 2.2.

It should be noted that under general cases, not every
equilibrium from the constrained game solves (PPG) because
(3) only gives a necessary condition. It is essential to use
other criteria to choose from the candidate solutions the one
that minimizes the Lagrangian Li(u), or Φ(u).

Corollary 2.5: Every potential game such that Φ(u) is
continuous and Ω ∩ Ω is nonempty and compact has a NE.

Proof: Using Weierstrass’ Theorem, we can conclude
that there always exists an optimal solution uopt to (PPG).
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From Theorem 2.4, uopt is a corresponding NE to the con-
strained noncooperative game. Therefore, the result follows.

Corollary 2.5 indicates that quasi-convexity or convexity
are not necessary to ensure the existence of NE, but rather
just the continuity and compactness of the feasible set. Under
the case where no coupled constraints are present, the result
of Corollary 2.5 actually coincides with Lemma 4.3 from
[11], stating that ‘Every continuous potential game with
compact strategy sets possesses a pure-strategy equilibrium
point.’ Corollary 2.5 extends this result to a potential game
with coupled constraints.

Corollary 2.6: Assume that Φ(u) is continuous and dif-
ferentiable on Ω ∩ Ω. If a potential game is convex, then
solving the constrained Nash potential game is equivalent to
solving (PPG).

Proof: From Theorem 2.2, the necessary condition for
an NE is given by

∂LΦ

∂ui
= 0. (5)

Since Φ(u) and g(u) are convex in u ∈ Ω ∩ Ω from
Definition 2.4, (5) also becomes a sufficient condition for NE.
Therefore, the problem of solving constrained Nash game is
equivalent to solving the convex program (PPG).

Theorem 2.7: (Saddle-point Characterization of CPG)
Consider a convex potential game (CPG) defined in Defi-
nition 2.4. Assume the constraints satisfy Slater’s condition,
i.e., there exists a vector u′ ∈ Ω ∩ Ω such that gr(u′) < 0,
for every r ∈M. Then u∗ is an NE if an only if there exists
ν∗ ∈ RM , ν∗ ≥ 0 such that

LΦ(u∗, ν) ≤ LΦ(u∗, ν∗) ≤ LΦ(u, ν∗),

for every u ∈ Ω ∩ Ω and ν ∈ RM
+ .

Proof: From Corollary 2.6, we note that a CPG has a
corresponding convex program. The proof of Theorem 2.7
immediately follows from the saddle-point characterization
of optimality for a convex program, as appeared in [1] and
[15].

The saddle point theorem does not assume differentiability
or continuity and has its implication in duality of the convex
potential games, i.e., we can find the optimal solution (1)
either fixing ν and minimizing with respect to u, or (2) fixing
u and maximizing the Lagrangian with respect to ν. It can
be shown easily that under the Slater’s condition, the two
approaches give rise to the same optimal value of LΦ, i.e.
the property of strong duality. We will use this result for
quadratic games in section III-A to discuss the notion of
game duality.

Lastly, we use Theorem 2.3 to prove the the uniqueness
of the NE to convex potential game (CPG).

Corollary 2.8: Every strictly convex potential game
(SCPG) admits a unique equilibrium

Proof: Since Φ(u) is strictly convex in u, thus, it is
equivalent that

(∇Φ(u1)−∇Φ(u2)) · (u1 − u2) > 0.

Therefore, Ji,∀i ∈ N is strictly diagonally convex. Directly
following Theorem 2.3, we obtain the result.

We can also prove Corollary 2.8 from a different perspec-
tive, using the result in section II-C. Since Φ(u) is strictly
convex, (PPG) has a unique solution. According to Theorem
2.6, this solution is a NE to the potential game. Due to the
game equivalence with optimization problem (PPG) from
Corollary 2.6, we can conclude that the solution is also
unique for the game. Following the Remarks 2.2, we can
also modify Corollary 2.8 and state that convex potential
games (not strictly convex) have unique equilibrium if g(u)
is strictly convex.

III. EXAMPLES AND APPLICATIONS

In this section, we first demonstrate the use of the La-
grangian approach for quadratic games subject to linear
constraints. We also use examples from network rate control
and wireless power control to show the simplification of
finding Nash equilibrium using results in section II.

A. Symmetric Quadratic Games

Quadratic game is an important class of linear games
which are analytically tractable [5]. The case without con-
straints has been discussed in [5]. We first assume that the
linear best response functions are given by BRi(u) = cT

i u+
di. Let C ∈ RN×N be a matrix with its i-th column given
by cT

i and d = RN = [di]. We consider a symmetric case in
which game possesses potential function is a quadratic form,
i.e., C has the symmetry such that Cij = Cji. We denote
quadratic games with such property symmetric quadratic
games (SQG). We can introduce a general potential function
ΦS(u) for SQG.

ΦS(u) =
1
2

N∑
i=1

N∑
j=1

Cijuiuj −
N∑

i=1

diui =
1
2
uT Cu− dT u.

(6)
For an SQG without constraints, with the assumption that

C is positive definite, it is obvious to verify that the uncon-
strained Nash equilibrium is a solution to minu∈R+ ΦS(u).
Therefore, the Nash solution is uniquely determined by
u∗ = C−1d.

Let’s now consider an SQG with linear constraints g(u) =
Bu − v ≤ 0. We again assume that C is positive definite.
From Corollary 2.6, we can conclude that a Nash equilibrum
is a solution from (QCPG) and, from Theorem 2.7, we are
ready to use the duality theory to solve and derive an iterative
algorithm for the equilibrium.

(QCPG) minu ΦS(u)
subject to Bu ≤ v,u ≥ 0.

The problem (QCPG) is in the form of a standard quadratic
programming problem (QCPG). The Lagrangian is given by

L(u, ν) =
1
2
uT Cu− dT u + νT (Bu− v).
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Since L is convex, a necessary and sufficient condition for
a minimum u∗ is to satisfy

Cu + BT ν − d = 0.

that is, the Nash solution u∗ is given by

u∗ = −C−1(BT ν − d). (7)

It is easy to observe that (7) coincides with the result in
Theorem 2.2 obtained in [14]. We can easily convert (QCPG)
into an unconstrained dual problem (DQPG) given by

(DQPG) minDS(ν)
subject to ν ≥ 0.

where DS = 1
2ν

T Dν + νT h − 1
2d

T C−1d, and D =
−BC−1BT ,h = −v + BC−1d.

At this stage, we can introduce the concept of duality in
quadratic games. We denote Ξd = 〈M,Bi, Ui,Ωd〉 as the
dual game with respect to Ξg = 〈N,Ai, Ji,Ω〉. Let Bi =
[νmin, νmax] and

Ui =
∑
j 6=i

Dijνjνi + hiνi +
1
2
Diiν

2
i .

In dual game Ξd, each individual maximize his utility Ui

with respect to ui rather than minimizing his cost function
as in Ξg. It is obvious that the dual game of a quadratic
game is also a quadratic game and that the NE of Ξg and
the NE of Ξd are related by (43). The dual game Ξd does
not have coupled constraints, i.e., Ωd = RM . In addition,
the dual game Ξd has less dimension when M < N.

B. Engineering Applications

1) Network Rate Control: In this section, we discuss a
network rate allocation problem inspired by recent effort to
alleviate congestion in the Internet [16], [17]. Consider a
network with L links and N users. Let N = {1, 2, · · · , N}
denote the set of users, L = {1, 2, · · · , L} the set of links
and xi ∈ Ai ⊂ R the rate allocated to i-th user, where
Ai = [xi,min, xi,max]. Each user i ∈ N has a utility function
Ui(xi) : R → R and each link has a capacity cl, l ∈ R. Let
A = [Ali] ∈ RL×N be the matrix describing the user-link
relation of the network, i.e.,

Aij =
{

1, if user i uses link l;
0, otherwise.

The network system is subject to the capacity constraint of∑
i∈N Alixi ≤ cl, or in the matrix form Ax ≤ c, i.e., c =

[cl], a vector of link constraints. In addition, we let Ci(xi) :
R → R be the pricing term for each user, and thus the payoff
function of each user as Fi(xi) = Ui(xi)−Ci(xi) for i ∈ N .
Therefore, using the game-theoretical framework in [18] and
[12], we have a game ΞR = 〈N , (Ai), Fi〉 subject to the
capacity constraint Ax ≤ c. The approach used in [18] is
to embed the constraints as penalty terms into the payoff
function so that the payoff decreases when the constraint is
violated. This method is analytically cumbersome, especially
when we have multiple constraints. We observe that the game
ΞR is a potential game due to the fact that each user has

his own utility decoupled from other users. The potential
function ΦR(x) for this game is simply the sum of the payoff
functions, i.e.,

ΦR(x) =
∑
i∈N

Fi(xi). (8)

Therefore, a Nash solution x∗ to the constrained game can
be found by the optimal solution xopt to the optimization
problem (PPGF).

(PPGF) maxx ΦR(x)
subject to Ax ≤ c, xi ∈ Ai.

With the assumption of concavity of ΦR(x), we can
establish the equivalence between (PPGF) and ΞR. It should
be noted that the relation between (PPGF) and Ξ gives
rise to a centralized optimization scheme proposed in [19].
Therefore, we can state that the Nash equilibrium to the
network rate control problem coincides with the centralized
optimal solution. In addition, with the assumption of a
logarithmic utility function, the Nash solution also agrees
with the Nash bargaining solution described in [20].

From the perspective of efficiency, the price of anarchy ρ,
defined in [21] as the ratio between game optimal and the
social optimal, is always 100% in this case, i.e.,

ρ =
ΦR(x∗)

ΦR(xopt)
= 1. (9)

The inclusion of coupled constraints into the game ΞR

actually doesn’t affect the game efficiency at all.
2) Wireless Power Control Game: In this section, we

discuss a power control potential game described in [7]. In
a typical CDMA wireless systems, mobile users respond to
the time-varying nature of the channel by regulating their
transmitter powers. The major goal is to optimize signal-
to-interference ratio and minimize the interference level.
In [22], a game theoretical framework is used for uplink
power control problems in CDMA networks. We extend the
problem by considering a capacity constrained power control
game.

Let’s consider a single-cell CDMA communication system
with total bandwidth W Hz and unspread bandwidth B Hz,
supporting N users. Let hi, i = 1, · · · , N denote normalized
the slowly-varying channel gain with respect to thermal noise
power. The signal to noise ratio (SNR) of i− th user at the
receiver is given by

SNRi(p) =
W

B

|hi|2pi

1 +
∑

j 6=i |hj |2pj
,

where p = [p1, p2, · · · , pN ], pi is the transmit power of the
i− th user.

Consider a well-know strategic noncooperative
wireless power control game ΞW = 〈N , (Ai), Pi〉,
where Ai = [pmin,i , pmax,i ] and Pi(p) =

ln
(

1 + |hi|2pi

1+
∑

j 6=i
|hj |2pj

− ripi

)
. Described in [7], this

game has a potential function given by

ΦW (p) = ln

(
1 +

N∑
i=1

|hi|2pi

)
−

N∑
i=1

ripi.
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Without coupled constraints, for example, capacity con-
straints

∑N
i=1 pi ≤ C0, the Nash equilibrium has been stud-

ied in [22]. With coupled constraints, using the Lagrangian
theory of constrained games, we can arrive at solving the
optimization problem (WPG), coinciding with the result
obtained in [7] from a different analysis.

(WPG) maxp ΦW (p)
subject to 1T p ≤ C0,p ≥ 0.

The minimization problem (WPG) provides us a basis to
compare NE with classical centralized optimization problem
(CCP) as in [23], [24]. It circumvents the difficulty of
relating classical Lagrangian method for solving optimal
solutions to game-theoretical solutions and provides two
optimization problems in the similar structure. We expect
this will facilitate , at least numerically, the investigation on
efficiency of Nash equilibrium in the network.

(CCP) maxp

∑N
i=1 Pi(p)

subject to 1T p ≤ C0,p ≥ 0.

For example, suppose we use the same definition of price
of anarchy in (9) for the wireless power control game and
we desire the resulting Nash equilibrium to reach certain
efficiency criterion, i.e, the price of anarchy ρ ≥ θ, where
θ ∈ R is a feasible target. We then have a single design
optimization problem (DPA) as follows.

(DPA) maxp ΦW (p)
subject to 1T p ≤ C0,p ≥ 0,

θS −
∑N

i=1 Pi(p) ≤ 0,

where S is the optimal value of (CCP). By imposing an extra
constraint, we limit the feasible set of NE and the (DPA)
framework allows us to find an NE that can satisfy a given
efficiency criterion. We can also optimize (DPA) with respect
to p and θ and form a parametric optimization problem
(DPA,θ). Under a certain Slater’s condition, we are also able
to show that (DPA) is also a stable parametric programming
in θ, [25].

IV. CONCLUSION AND FUTURE WORKS

This paper deals with constrained Nash games with con-
tinuous sets of strategies. We use a Lagrangian approach
to obtain necessary and sufficient conditions to character-
ize the Nash equilibrium under coupled constraints. The
paper also discusses existence and uniqueness of the Nash
equilibrium under certain conditions on the cost functions
and constraints. We extend these fundamental results to
potential games and discover an extension of existence of
Nash equilibrium in potential games with the presence of
coupled constraints. In addition, we illustrate the application
of Lagrangian approach on quadratic games, wireless power
control games and rate control games.
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