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Abstract— In this study one considers the tracking control
problem of a class of nonsmooth fully actuated Lagrangian sys-
tems subject to frictionless unilateral constraints. A passivity-
based switching controller that guarantees some stability prop-
erties of the closed-loop system is designed. A particular
attention is paid to transition (impacting) and detachment
phases of motion. This work extends previous works on the topic
as it considers multiconstraint n-degree-of-freedom systems.

I. INTRODUCTION

This paper focuses on the problem of tracking control of

complementarity Lagrangian systems [12] subject to friction-

less unilateral constraints whose dynamics may be expressed

as:






M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = U + ∇F (X)λX

0 ≤ λX ⊥ F (X) ≥ 0,
Collision rule

(1)

where X ∈ R
n is the vector of generalized coordinates,

M(X) = MT (X) ∈ R
n×n is the positive definite in-

ertia matrix, F (X) ∈ R
m represents the distance to the

constraints, C(X, Ẋ) is the matrix containing Coriolis and

centripetal forces, G(X) contains conservative forces, λX ∈
R

m is the vector of the Lagrangian multipliers associated

to the constraints and U ∈ R
n is the vector of gen-

eralized torque inputs. For the sake of completeness we

precise that ∇ denotes the Euclidean gradient ∇F (X) =
(∇F1(X), . . . ,∇Fm(X)) ∈ R

n×m where ∇Fi(X) ∈ R
n

represents the vector of partial derivatives of Fi(·) with re-

spect to the components of X . We assume that the functions

Fi(·) are continuously differentiable and that ∇Fi(X) 6= 0
for X with Fi(X) = 0. It is worth to precise here that for

a given function f(·) its derivative with respect to the time

t will be denoted by ḟ(·). For any function f(·) the limit

to the right at the instant t will be denoted by f(t+) and

the limit to the left will be denoted by f(t−). A simple

jump of the function f(·) at the moment t = tℓ is denoted

σf (tℓ) = f(t+ℓ ) − f(t−ℓ ).
The admissible domain associated to the system (1) is the

closed set Φ where the system can evolve and it is described

as follows:

Φ = {X | F (X) ≥ 0} =
⋂

1≤i≤m

Φi,
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where Φi = {X | Fi(X) ≥ 0} considering that a vector

is non-negative if and only if all its components are non-

negative. In order to have a well-posed problem with a

physical meaning we consider that Φ contains at least a

closed ball of positive radius.

Definition 1: A singularity of the boundary ∂Φ of Φ is

the intersection of two or more codimension-one surfaces

Σi = {X | Fi(X) = 0}.

The presence of ∂Φ can induce some impacts that must be

included in the dynamics of the system. It is obvious that

m > 1 allows both simple impacts (when one constraint

is involved) and multiple impacts (when singularities or

surfaces of codimension larger than 1 are involved). The

collision (or restitution) rule in (1), is a relation between

the post-impact velocity and the pre-impact velocity. Among

the various models of collision rules, Moreau’s rule is an ex-

tension of Newton’s law which is energetically consistent [8]

and is numerically tractable [1]. For these reasons throughout

this paper the collision rule will be defined by Moreau’s

relation [12]:

Ẋ(t+ℓ ) = (1 + en) arg min
z∈TΦ(X(tℓ))

1

2
[z − Ẋ(t−ℓ )]T

× M(X(tℓ))[z − Ẋ(t−ℓ )] − enẊ(t−ℓ )

(2)

where Ẋ(t+ℓ ) is the post-impact velocity, Ẋ(t−ℓ ) is the pre-

impact velocity, en ∈ [0, 1] is the restitution coefficient and

TΦ(X) is the tangent cone to Φ at X [12], [14]. Denoting

by T the kinetic energy of the system, we can compute the

kinetic energy loss at the impact tℓ as [9]:

TL(tℓ) = −
1 − en

2(1 + en)
σ⊤

Ẋ
(tℓ)M(X(tℓ))σẊ(tℓ) ≤ 0 (3)

The structure of the paper is as follows: in Section 2 one

presents some basic concepts and prerequisites necessary

for the further developments. Section 3 is devoted to the

controller design. In Section 4 one defines the desired (or

”exogenous”) trajectories entering the dynamics. The desired

contact-force that must occur on the phases where the

motion is constrained, is explicitly defined in Section 5.

Section 6 focuses on the strategy for take-off at the end of

constraint phases. The main results related to the closed-loop

stability analysis are presented in Section 7. One example

and concluding remarks end the paper.

The tracking control problem under consideration was

studied in [7] mainly in the 1-dof (degree-of-freedom) case

and in [4] in the n-dof case. Both of these papers consider

systems with only one unilateral frictionless constraint. Here

we not only consider the multiconstraint case but the results
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in Section 7 relax some very hard to verify condition imposed

in [4].

The following standard notations will be adopted: || · ||
is the Euclidean norm, bp ∈ R

p and bn−p ∈ R
n−p are the

vectors formed with the first p and the last n−p components

of b ∈ R
n, respectively. NΦ(Xp = 0) is the normal cone

NΦ(X) to Φ at X (see [12], [14]) when X satisfies Xp = 0,

λmin(·) and λmax(·) represent the smallest and the largest

eigenvalues, respectively. We also note that an LCP is a

system as 0 ≤ λ ⊥ Aλ+ b ≥ 0, which has a unique solution

for all b ∈ R
n if and only if A ∈ R

n×n is a P-matrix.

II. BASIC CONCEPTS

A. Typical task

In the case m = 1 (only one unilateral constraint) the

system dynamics alternates free-motion phases Ω2k when the

constraint is not active(F (X) > 0), and constraint-motion

phases Ω2k+1 when the constraint is active (F (X) = 0).

Between free and constraint phases the dynamical system

always passes through a transition phase Ik containing some

impacts (more details can be found in [7]).

In the case m ≥ 2 (multiple constraints) things complicate

since the number of typical phases increases due to the

singularities of ∂Φ that must be taken into account. Explic-

itly, the constraint-motion phases need to be decomposed in

sub-phases where some specific constraints are active. As

we shall see later the tracking during this phases does not

present particular difficulties for different number of active

constraints. Thus the goal is to control the system during a

generic phase (constraint or not) and the passage between

phases when the number of active constraints increases or

decreases. We stress out that an impacting transition occurs

when the number of active constraints increases but there is

no impact (and no change of the dynamics) when the number

of active constraints decreases. Therefore, without any loss

of generality we study the following typical task:

R
+ =

⋃

k≥0

(

ΩJk

2k ∪ IJk

k ∪ Ω
J ′

k

2k+1

)

, Jk, Jk+1 ⊂ J ′
k (4)

where the superscript Jk represents the set of active con-

straints during the corresponding motion phase. Throughout

the paper, the sequence ΩJk

2k ∪ IJk

k ∪ Ω
J ′

k

2k+1 will be referred

to as the cycle k of the system’s evolution. Furthermore

for robustness reasons, during impacting transition phases

IJk

k we impose a closed-loop dynamics (with impacts) that

mimics somehow the bouncing-ball dynamics (see e.g. [5]).

B. Stability analysis criteria

The system (1) is a complex nonsmooth and nonlinear

dynamical system which involves continuous and discrete

time phases. A stability framework for this type of systems

has been proposed in [7] and extended in [4]. This is an

extension of the Lyapunov second method adapted to closed-

loop mechanical systems with unilateral constraints. In the

sequel we introduce some basic concepts in order to clarify

the framework.

The trajectories playing a role in the dynamics and the design

of the controller are:

• Xnc(·) – the desired trajectory of the unconstrained system

(i.e. the trajectory that the system should track if there were

no constraints). We suppose that F (Xnc(t)) < 0 for some

t, otherwise the problem reduces to the tracking control of

a system with no constraints.

• X∗
d (·) – the signal entering the control input and playing

the role of the desired trajectory during some parts of the

motion.

• Xd(·) – the signal entering the Lyapunov function. This

function is set on the boundary ∂Φ after the first impact of

each cycle.

These signals may coincide on some time intervals as we

shall see later.

Throughout the paper Ω denotes the complement of

I =
⋃

k≥0

IJk

k . The Lebesgue measure of Ω, denoted

λ[Ω], is assumed infinite. Consider x(·) the state of the

closed-loop system in (1) with some feedback controller

U(X, Ẋ,X∗
d , Ẋ∗

d , Ẍ∗
d ).

Definition 2 (Weakly Stable System [7]): The closed loop

system is called weakly stable if for each ǫ > 0 there exists

δ(ǫ) > 0 such that ||x(0)|| ≤ δ(ǫ) ⇒ ||x(t)|| ≤ ǫ for all

t ≥ 0, t ∈ Ω. The system is asymptotically weakly stable

if it is weakly stable and lim
t∈Ω, t→∞

x(t) = 0. Finally, the

practical weak stability holds if there exists 0 < R < +∞
and t∗ < +∞ such that ||x(t)|| < R for all t > t∗, t ∈ Ω.

Consider IJk

k
∆
= [τk

0 , tkf ] and V (·) such that there exists

strictly increasing functions α(·) and β(·) satisfying the

conditions: α(0) = 0, β(0) = 0 and α(||x||) ≤ V (x, t) ≤
β(||x||).
In the sequel, we consider that for each cycle the sequence

of impact instants tkℓ has an accumulation point tk∞. We note

that a finite accumulation period (i.e. tk∞ < +∞) implies

that en < 1 (en = 1 ⇒ tk∞ = +∞ see [3]).

The following is inspired from [4], and will be used to

study the stability of the system (1).

Proposition 1 (Weak Stability): Assume that the task ad-

mits the representation (4) and that

a) λ[IJk

k ] < +∞, ∀k ∈ N,

b) outside the impact accumulation phases [tk0 , tk∞] one has

V̇ (x(t), t) ≤ −γV (x(t), t) for some constant γ > 0,

c)
∑

ℓ≥0

[

V (tk−ℓ+1) − V (tk+
ℓ )
]

≤ K1V
p1(τk

0 ), ∀ℓ ≥ 0 for

some p1 ≥ 0, K1 ≥ 0,

d) the system is initialized on Ω0 such that V (τ0
0 ) ≤ 1,

e)
∑

ℓ≥0

σV (tkℓ ) ≤ K2V
p2(τk

0 )+ξ for some p2 ≥ 0, K2 ≥ 0

and ξ ≥ 0.

If p = min{p1, p2} < 1 then V (τk
0 ) ≤ δ(γ, ξ), where δ(γ, ξ)

is a function that can be made arbitrarily small by increasing

the value of γ. The system is practically weakly stable with

R = α−1(δ(γ, ξ)).

Remark 1: Since the Lyapunov function is exponentially

decreasing on the Ωk phases, assumption (d) in Proposition

1 means that the system is initialized on Ω0 sufficiently
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far from the moment when the trajectory Xnc(·) leaves the

admissible domain and is therefore not stringent.

The practical stability is very useful because attaining asymp-

totic stability is not an easy task for the unilaterally con-

strained systems described by (1) especially when n ≥ 2
and M(q) is not a diagonal matrix (i.e. there are inertial

couplings, which is the general case). Precisely, the practical

weak stability is characterized by an ”almost decreasing”

Lyapunov function V (x(·).·) as shown in Figure 4.

III. CONTROLLER DESIGN

In order to overcome some difficulties that can appear in

the controller definition, the dynamical equations (1) will

be expressed in the generalized coordinates introduced by

McClamroch & Wang [10]. We suppose that the generalized

coordinates transformation holds globally in Φ, which may

obviously not be the case in general. However, the study of

the singularities that might be generated by the coordinates

transformation is out of the scope of this paper. Let us

consider D = [Im

... O] ∈ R
m×n, Im ∈ R

m×m the identity

matrix. The new coordinates will be q = Q(X) ∈ R
n, with

q =

[

q1

q2

]

, q1 =







q1
1
...

qm
1






such that Φ = {q | Dq ≥ 0}.

The controller used here consists of different low-level

control laws for each phase of the system. More precisely,

the switching controller can be expressed as

T (q)U =







Unc for t ∈ Ω∅
2k

UJ
t for t ∈ IJ

k

UJ
c for t ∈ ΩJ

k

(5)

where T (q) =

(

T1(q)
T2(q)

)

∈ R
n×n is full-rank under some

assumptions (see [10]). The dynamics becomes:

8

>

<

>

:

M11(q)q̈1 + M12(q)q̈2 + C1(q, q̇)q̇ + g1(q) = T1(q)U + λ
M21(q)q̈1 + M22(q)q̈2 + C2(q, q̇)q̇ + g2(q) = T2(q)U
qi
1 ≥ 0, qi

1λi = 0, λi ≥ 0, 1 ≤ i ≤ m
Collision rule

(6)
where the set of complementary relations can be written more
compactly as 0 ≤ λ ⊥ Dq ≥ 0. In the sequel Unc coincides
with the fixed-parameter controller proposed in [13]. First,
let us introduce some notations: q̃ = q− qd, q̄ = q− q∗d, s =
˙̃q+γ2q̃, s̄ = ˙̄q+γ2q̄, q̇r = q̇d−γ2q̃ where γ2 > 0 is a scalar
gain and qd, q∗d represent the desired trajectories defined in
the previous section. Using the above notations the controller

is given by T (q)U ,

8

>

>

<

>

>

:

Unc = M(q)q̈r + C(q, q̇)q̇r + G(q) − γ1s

UJ
t = UJ

c , t ≤ tk
0

UJ
t = M(q)q̈r + C(q, q̇)q̇r + G(q) − γ1s̄, , t > tk

0

UJ
c = Unc − Pd + Kf (Pq − Pd)

(7)

where γ1 > 0 is a scalar gain, Kf > 0, Pq = DT λ and

Pd = DT λd is the desired contact force during persistently

constrained motion. It is clear that during ΩJ
k not all the

constraints are active and, therefore, some components of λ
and λd are zero.

In order to prove the stability of the closed-loop system

(6)–(7) we will use the following positive definite function:

V (t, s, q̃) =
1

2
sT M(q)s + γ1γ2q̃

T q̃ (8)

IV. TRACKING CONTROL FRAMEWORK

In this paper we treat the tracking control problem for

the closed-loop dynamical system (5)–(7) with the complete

desired path a priori taking into account the complemen-

tarity conditions and the impacts. In order to define the

desired trajectory let us consider the motion of a virtual

and unconstrained particle perfectly following a trajectory

(represented by Xnc(·) on Figure 1) with an orbit that leaves

the admissible domain for a given period. Therefore, the orbit

of the virtual particle can be split into two parts, one of them

belonging to the admissible domain (inner part) and the other

one outside the admissible domain (outer part). In the sequel

we deal with the tracking control strategy when the desired

trajectory is constructed such that:

(i) when no activated constraints, it coincides with the

trajectory of the virtual particle,

(ii) when p activated constraints, its orbit coincides with the

projection of the outer part of the virtual particle’s orbit

on the surface of codimension p defined by the activated

constraints (Xd between A′′ and C in Figure 1),

(iii) the desired detachment moment and the moment when

the virtual particle re-enters the admissible domain

(w.r.t. p ≤ m constraints) are synchronized.

Therefore we have not only to track a desired path but also

to impose a desired velocity allowing the motion synchro-

nization on the admissible domain.

The main difficulties here consist of:

• stabilizing the system on ∂Φ during the transition

phases IJk

k and incorporating the velocity jumps in the

overall stability analysis;

• deactivating some constraints at the moment when the

unconstrained trajectory re-enters the admissible do-

main with respect of them;

• maintaining a constraint movement between the mo-

ment when the system was stabilized on ∂Φ and the

detachment moment.

A. Design of the desired trajectories

Throughout the paper we consider IJk

k = [τk
0 , tkf ], where

τk
0 is chosen by the designer as the start of the transition

phase IJk

k and tkf is the end of IJk

k . We note that all

superscripts (·)k will refer to the cycle k of the system

motion. We also use the following notations:

• tk0 is the first impact during the cycle k,

• tk∞ is the accumulation point of the sequence {tkℓ }ℓ≥0

of the impact instants during the cycle k (tkf ≥ tk∞),

• τk
1 will be explicitly defined later and represents the

instant when the desired signal X∗
d reaches a given value

chosen by the designer in order to impose a closed-loop

dynamics with impacts during the transition phases,

• tkd is the desired detachment instant, therefore the phases

Ω
J ′

k

2k+1 can be expressed as [tkf , tkd].
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It is noteworthy that tk0 , tk∞, tkd are state-dependent whereas

τk
1 and τk

0 are exogenous and imposed by the designer. To

better understand the definition of these specific instants we

present in Figure 1 a simplified representation of the signals

introduced in the previous section.

A

A’’

BA’

C

Φ

∂Φ

X∗
d(t) = Xd(t)

Xd(t)

X∗
d(t)

Xnc(t) = X∗
d(t) = Xd(t)

Xnc(t)

Fig. 1. The closed-loop desired trajectory and control signals

The points A, A′, A′′ and C in Figure 1 correspond to

the moments τk
0 , tk0 , tkf and tkd respectively. On the other

hand in Figure 1 we see that starting from A the desired

trajectory Xd(·) = X∗
d (·) is deformed compared to Xnc(·).

In order to reduce this deformation τk
0 and implicitly the

point A must be close to ∂Φ. Taking into account just the

constraints J ′
k \ Jk+1 we can identify tkd with the moment

when Xd(·) and Xnc(·) rejoin at C.

B. Design of q∗d(·) and qd(·) on the phases IJk

k

During the transition phases the system must be stabilized

on ∂Φ. Obviously, this does not mean that all the constraints

have to be activated. Let us consider that only the first p
constraints (eventually reordering the coordinates) define the

border of Φ where the system must be stabilized. On [τk
0 , tk0)

we define q∗d(·) as a twice differentiable signal such that q∗d(t)
approaches a given point of the normal cone NΦ(qp = 0) on

[τk
0 , τk

1 ]. Precisely, we define q∗d(·) such as:

q∗d(τk
0 ) = qnc(τk

0 ), q̇∗d(τk
0 ) = qnc(τk

0 )

q∗d(τk
0 + δ) = qnc(τk

0 ), q̇∗d(τk
0 + δ) = 0

(qi
d)

∗(τk
1 ) = −ϕV 1/3(τk

0 ), (q̇∗d)p (τk
1 ) = 0, i = 1, . . . , p

(9)

where ϕ > 0, and δ > 0 is a small constant introduced in

order to assure the twice differentiability of q∗d before the

first impact. The rationale behind the choice of q∗d(·) is on

one hand to assure a robust stabilization on ∂Φ, mimicking

the bouncing-ball dynamics; on the other hand to enable

one to compute suitable upper-bounds that will help using

Proposition 1 (hence V 1/3(·) terms in (9) with V (·) in (8)).

Remark 2: Two different situations are possible. The first

is given by tk0 > τk
1 (see Figure 2) and we shall prove that in

this situation all the jumps of the Lyapunov function in (8)

are negative. The second situation was pointed out in [4] and

is given by tk0 < τk
1 . In this situation the first jump at tk0 in

the variation of the Lyapunov function is positive, therefore

the system can be only weakly stable.

O

B CA

t

tk0 tk1 tkd

(q∗d)
i(t)

qi
1

qi
1(t)

τ k
0

tk0 > τ k
1

Ω2k Ik Ω2k+1 Ω2k+2

A′

tkf

τ k
1

(q∗d)
i(t)

(q∗d)
i(t)

−ϕV 1/3(τ k
0 )

Fig. 2. The design of q∗1d on the transition phases I
Jk

k

During the transition phases IJk

k we define (qd)n−p (t) =
(q∗d)n−p (t). Assuming a finite accumulation period, the

impact process can be considered in some way equivalent

to a plastic impact. Therefore, (qd)p and (q̇d)p are set to

zero on the right of tk0 .

V. DESIGN OF THE DESIRED CONTACT FORCE DURING

CONSTRAINT PHASES

For the sake of simplicity we consider the case of the

constraint phase ΩJ
k , J 6= ∅ with J = {1, . . . , p}. Obviously

a sufficiently large desired contact force Pd assures a con-

strained movement on ΩJ
k . Nevertheless at the end of the

ΩJ
2k+1 phases a detachment from some surfaces Σi has to

take place. It is clear that a take-off implies not only a well

defined desired trajectory but also some small values of the

corresponding contact force components. On the other hand,

if the components of the desired force decrease too much

a detachment can take place before the end of the ΩJ
2k+1

phases which can generate other impacts. Therefore we need

a lower bound of the desired force which assures the contact

during the ΩJ
k phases.

Dropping the time argument, the dynamics of the system

on ΩJ
k can be written as

{

M(q)q̈ + F (q, q̇) = Uc + DT
p λp

0 ≤ qp ⊥ λp ≥ 0
(10)

where F (q, q̇) = C(q, q̇)q̇+G(q) and Dp = [Ip

... O] ∈ R
p×n.

On ΩJ
k the system is permanently constrained which implies

qp(·) = 0 and q̇p(·) = 0. In order to assure these conditions

it is sufficient to have λp > 0. In the following let us denote

M−1(q) =

(

[M−1(q)]p,p [M−1(q)]p,n−p

[M−1(q)]n−p,p [M−1(q)]n−p,n−p

)

and

C(q, q̇) =

(

C(q, q̇)p,p C(q, q̇)p,n−p

C(q, q̇)n−p,p C(q, q̇)n−p,n−p

)

where the

meaning of each component is obvious.

Proposition 2: On ΩJ
k the constraint motion of the closed-

loop system (10),(5),(7) is assured if the desired force is
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defined by

(λd)p , β −
M̄p,p(q)

1 + Kf

(

[M−1(q)]p,pCp,n−p(q, q̇)+

[M−1(q)]p,n−pCn−p,n−p(q, q̇) + γ1[M
−1(q)]p,n−p

)

sn−p

(11)

where M̄p,p(q) =
(

[M−1(q)]p,p

)−1
and β ∈ R

p, β > 0.

Proof: For the sake of brevity we give here only the

idea of the proof. The result is based on the solution of the

LCP derived combining (10) and (7), which is:

0 ≤ DpM
−1(q)

[

− F (q, q̇) + Unc − (1 + Kf )DT
p (λd)p

]

+(1 + Kf )DpM
−1(q)DT

p λp ⊥ λp ≥ 0
(12)

It is worth to precise that the LCP (12) has a unique solution

since (1 + Kf )DpM
−1(q)DT

p > 0.

VI. STRATEGY FOR TAKE-OFF AT THE END OF

CONSTRAINT PHASES ΩJ
2k+1

In this section we are interested in finding the conditions

on the control signal UJ
c that assure the take-off at the end of

constraint phases ΩJ
2k+1. As we have already seen before, the

phase ΩJ
2k+1 can be expressed as the time interval [tkf , tkd).

The dynamics on [tkf , tkd) is given by (10) and the system

is permanently constrained, which implies qp(·) = 0 and

q̇p(·) = 0. Let us also consider that the first r constraints (r <
p) have to be deactivated. Thus, the detachment takes place

at tkd if q̈r(t
k+
d ) > 0 which requires λr(t

k−
d ) = 0. The last

p−r constraints remain active which means λp−r(t
k−
d ) > 0.

To simplify the notation we drop the time argument in

many equations of this section. We denote the LCP matrix

as:

(1 + Kf )DpM
−1(q)DT

p =

(

A1(q) A2(q)
A2(q)

T A3(q)

)

with A1 ∈ R
r×r, A2 ∈ R

r×(p−r) and A3 ∈ R
(p−r)×(p−r).

Proposition 3: For the closed-loop system (10),(5),(7) the
decrease of active constraints from p to r < p, is possible if
at the instant tkd

(λd)
r

=
“

A1 − A2A
−1

3 A
T
2

”

−1
`

br − A2A
−1

3 bp−r − A2C2

´

− C1

(λd)
p−r

= C2 + A
−1

3

“

bp−r − A
T
2 (λd)

r

”

(13)

where

bp = b(q, q̇, Unc) , DpM
−1(q)[Unc − F (q, q̇)] ≥ 0

and C1 ∈ R
r, C2 ∈ R

p−r such that C1 ≥ 0, C2 > 0
Proof: The result follows solving the LCP (12).

Proposition 4: The closed-loop system (10),(5), (7) is

permanently constrained on [tkf , tkd) and a smooth detachment

is guaranteed on [tkd, tkd +ǫ) (ǫ is a small positive real number

chosen by the designer) if

(i) (λd)p is defined on [tkf , tkd) by (13) where C1 is replaced

by C1(t − tkd).
(ii) On [tkd, tkd + ǫ)

q∗d(t) = qd(t) =

(

q∗r (t)
qnc
n−r(t)

)

,

where q∗r (t) is a twice differentiable function such that

q∗r (tkd) = 0, q∗r (tkd + ǫ) = qnc
r (tkd + ǫ),

q̇∗r (tkd) = 0, q̇∗r (tkd + ǫ) = q̇nc
r (tkd + ǫ)

(14)

and q̈∗r (tkd) = a > max
(

0, −A1(q) ((λd)r (tk−d )
)

.

Proof: The uniqueness of solution of the LCP (12)

assures us that (11) and (13) agree if C1 < 0. In other

words, replacing C1 by C1(t − tkd) in (13) we assure a

constrained motion on [tkf , tkd) and the necessary conditions

for detachment on [tkd, tkd + ǫ). The second item simply

says that the detachment is assured by a sufficiently large

positive desired acceleration q̈∗r . Relations (14) assure the

twice differentiability of qd and q∗d .

VII. CLOSED-LOOP STABILITY ANALYSIS

In the case Φ = R
n, the function V (t, s, q̃) in (8) can be

used to prove the closed-loop stability of the system (6), (7)

(see for instance [6]). In the case studied here (Φ ⊂ R
n) the

analysis becomes more complicated as shown in [7].

To simplify the notation V (t, s(t), q̃(t)) is denoted as

V (t). In order to introduce the main result of this paper

we make the next assumption, which is verified in practice

for dissipative systems.

Assumption 1: The controller Ut in (7) assures that the

sequence {tkℓ }ℓ≥0 of the impact times possesses a finite

accumulation point tk∞ i.e. lim
ℓ→∞

tkℓ = tk∞ < +∞, ∀k.

Theorem 1: Let Assumption 1 hold, en ∈ [0, 1) and (q∗d)p

defined as in (9). The closed-loop system (5)-(7) initialized

on Ω0 such that V (τ0
0 ) ≤ 1, satisfies the requirements

of Proposition 1 and is therefore practically weakly stable

with the closed-loop state x(·) = [s(·), q̃(·)] and R =
√

Ke−γ(tk
f
−tk

∞
) where γ = 2γ1/λmax(M(q)) and K > 0

is a real constant.

Proof: The proof consist of verifying the conditions b),

c) and e) of Proposition 1. The details can be found in [11].

VIII. ILLUSTRATIVE EXAMPLE

The numerical simulations are done with the Moreau’s

time-stepping algorithm of the SICONOS software platform

[2]. The choice of a time-stepping algorithm was mainly

dictated by the presence of accumulations of impacts which

render the use of event-driven methods difficult. The influ-

ence of different parameter as γ1, γ2, en, τk
0 or the time-step,

is studied in [11] by simulating the behavior of a planar

two-link rigid-joint manipulator in presence of one unilateral

constraint.

Let us consider in the sequel a planar two-link rigid-joint

manipulator with two constraints. Precisely we impose an

admissible domain Φ = {(x, y) | y ≥ 0, 0.7−x ≥ 0}. Let us

also consider an unconstrained desired trajectory Xnc whose

orbit is given by the circle {(x, y) | (x − 0.7)2 + y2 = 0.5}
that violates both constraints. In other words, the two-link

planar manipulator must track a quarter-circle; stabilize on

and then follow the line Σ1 = {(x, y) | y = 0}; stabilize
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on the intersection of Σ1 and Σ2 = {(x, y) | x = 0.7};

detach from Σ1 and follow Σ2 until the unconstrained circle

re-enters Φ and finally take-off from Σ2 in order to repeat

the previous steps. It is noteworthy that the task presented

above is not of type (4) since after a constraint phase (when

the end-effector is attached to Σ1) follows a transition phase

instead of a detachment. However, as we have pointed out

in Section II the succession of phases is not determinant and

the manipulator can accomplish the task under consideration

in a weakly stable way.

Let us consider in this case that a cycle is Ω2k ∪ I1
k ∪

Ω1
2k+1 ∪ I2

k ∪ Ω2
2k+1 where Ω2k is the free-motion phase

and Ii
k, Ωi

2k+1 are the impacting transients and the con-

strained phases associated to the surface Σi. The numerical

values used for the dynamical model are again l1 = l2 =
0.5m, I1 = I2 = 1kg.m2, m1 = m2 = 1kg and the

restitution coefficient en = 0.7. We impose a period of 10

seconds for each cycle and we simulate the dynamics during

6 cycles. Setting the controller gains γ1 = 15, γ2 = 15
we see in Figure 3 that the desired trajectory is accurately

followed. The same conclusion can be deduced looking at

the variation of the Lyapunov function plotted in Figure 4.
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X

Fig. 3. The trajectory of the system during 6 cycles.

Fig. 4. Up: Lyapunov function-zoom on the transition phases during
the first cycle; Down: The variation of the Lyapunov function on
the last 5 cycles.

The simulation are done imposing a constant contact-

force λ1 during the motion on the surface Σ1 (see Figure 5

(left)) and a decreasing contact-force, that allows a smooth

detachment, during the motion on Σ2 (see Figure 5 (right)).

t

λ1

t

λ2

Fig. 5. Left: Variation of the contact force during the motion on
Σ1; Right: Variation of the contact force during the motion on Σ2

IX. CONCLUSIONS

In this paper we have proposed a methodology to study

the tracking control of fully actuated Lagrangian systems

subject to multiple frictionless unilateral constraints. The

main contribution of the work is twofold: first, it formulates

a general framework and second, it provides a complete

stability analysis for the class of systems under consideration.

It is noteworthy that even in the case of only one frictionless

unilateral constraint the paper presents some improvements

with respect to the existing works in the literature. Precisely,

the stability analysis result is significantly more general than

those presented in [4] and [7] and, each element entering

the dynamics (desired trajectory, contact force) is explicitly

defined. Numerical simulations for an illustrative example,

using the SICONOS software platform [2] complete the study.
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